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Dark spatial solitons of the TM type
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The existence of dark spatial solitons of the TM type is examined. This type of two-dimensional soli-
tary wave is found to exist in the self-defocusing nonlinear medium of a Kerr-law type in the range of the
wave effective index n.; from 0.82n, to ng of the linear refractive index of the medium. This contrasts
with dark spatial solitons of the TE type, which exist in the range of n.4 from O to n,. The longitudinal
component is shown to play a key role leading to this distinction. The comparison between TM and TE
solitons is also made on other aspects. For example, the field profile of the TM soliton is shown to vary
with the wave effective index, whereas that of the TE soliton is characterized by the hyperbolic tangent

function, independent of 7 ..

PACS number(s): 42.65.Jx, 42.50.Qg, 42.65.Bp

I. INTRODUCTION

Spatial solitons are the stable formation of self-guided
beams propagating in homogeneous nonlinear media
[1-15]. Trapped in a self-focusing nonlinear medium, a
stable self-guided beam is referred to as a bright spatial
soliton on account of its convex intensity profile which
induces a convex refractive index profile for self-
guidance, whereas that trapped in a self-defocusing non-
linear medium is referred to as a dark spatial soliton on
account of its concave intensity profile which induces a
convex index profile for self-guidance. A self-guided
beam is a mode of the optical waveguide it induces
[11,15]. Therefore, as in a linear waveguide [16,17], the
self-induced waveguide could support TE and TM mode
patterns. Indeed, it has been shown that trapping in a
self-focusing nonlinear medium can occur in these pat-
terns [1,4-9] for any beam effective index n .4 (defined as
the wave propagation constant 3 divided by k of the wave
number) greater than n, of the linear refractive index of
the medium. For a self-defocusing nonlinear medium,
the TE mode pattern has been predicted [10] and experi-
mentally observed [12—-14] to be a trapped light pattern
for all the possible values of n. ranging from O to n,.
Naturally, it is tempting to know whether light trapping
in a self-defocusing nonlinear medium is possible in the
form of the TM pattern. In this paper, we will show that
a two-dimensional TM beam can indeed be a trapped
light pattern in the self-defocusing nonlinear medium of a
Kerr-law type. But the self-guidance in this pattern is
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limited to the range of the wave effective index n.4 from
0.82n, to ng, in contrast with the TE type that exists for
all possible values of n .4 ranging from O to n,,.

II. WAVE EQUATIONS AND INEXISTENCE
OF GRAY SPATIAL SOLITONS

The refractive index in a self-defocusing nonlinear
medium decreases with increasing electric-field intensity.
For a Kerr-law nonlinearity, the refractive index n? of a
homogeneous medium relies on the field intensity |E|?
linearly,

n?=n3—ngyn,|E?, (1
with n, a positive constant, depending on materials. A
light wave propagating in a medium obeys Maxwell’s
equations which, in terms of the electric field alone, read
1 & ap_
VXVXE+——(n"E)=0, (2)
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with ¢ the speed of light in free space. The stationary
propagation of the TM wave (cw) along the longitudinal
distance z stipulates the field E to have the functional
from of

E(x,z,t)=[e, (x)X+e,(x)2]e!Fe—en | 3)

where w denotes the frequency of a cw. Substitution of
this E into Eq. (2) with the specified n2 of eq. (1) leads to
two coupled diffeential equations governing the com-
ponents e, and e,,
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where the normalized fields ¥, and ¥, are relat-
ed to the actual ones by W, =e,V'n,/ny/b and
W,=—ie,\/n,/ny,/b, the prime denotes differentiation
with respect to the normalized transverse coordinate
X =knybx, k is the wave number in free space, Re indi-
cates taking the real part, and the waveguide height is
defined as

b=(1—B%/k*n3)""?, (5

the magnitude of which determines the degree of cou-
pling between the components ¥, and ¥,. The decou-
pling occurs only when b approaches zero. This then
leads to ¥, =0 and Eq. (4) reduces to

Vv, — W 2P =0, (6)
which is in fact the wave equation governing the normal-
ized field ¥, of the TE mode provided that W, is replaced
by ¥, =e,V/'n,/ngb.

Now consider first the solutions for this special case.
The solutions to Eq. (6) can in general be written as

W, (X)=f (X)exp[ih (X)], (7

where f(X)=|W¥,(X)| and & (X) are real functions. Sub-
stitution of this expression into Eq. (6) plus some algebra-
ic manipulation leads to the solitary wave solutions (Ap-
pendix)

W (X)=f max[ 1 — 4 %sech?(f . AX /V2)1V iR (X)]
(8a)

B (X)=%{f minX /V2+tan " [(f2 /f2in— 1!
Xtanh(f pmax AX /V2)]) ,
(8b)

where f,,=|V, (£ )| and f, =|¥,(0)| are the max-
imum and minimum values of | W, (X)| related by

2fx2nax +f1?nin =2 (9a)
and

A=(1—‘fr2nin/ffnax)l/2 . (9b)

The case of 4 =1 (or f;, =0) is referred to as the dark
spatial solitary wave (Fig. 1), whereas A <1 is referred to
as the gray spatial solitary waves (Fig. 1). As defined
[10], the spatial solitary waves are the solutions of the
wave equation obeying |W¥,(X)|—const, ¥, (X)—0 and
Y/ (X)—0 as X — F «, i.e., the evolution of the field
starts and ends up at the equilibrium points of the equa-
tion. This condition ¥, (X)—0 as X — F « applied to
Eq. (6) yields

W, (t0)|=fx=1o0r0. (10a)
But f,,=0 means ¥, (X)=0. Thus the only physical
solution for the spatial solitary wave is f,,, =1, which
inserted into Eq. (9a) yields
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FIG. 1. Schematic illustration of solitary wave solutions of

Eq. (8).

|W,(0)|=f,,, =0 and A4 =1. (10b)

Accordingly, we conclude that the self-defocusing non-
linear medium of a Kerr-law type can only support the
dark spatial solitary wave, or no gray spatial solitary
waves can possibly exist in such a nonlinear medium.

This conclusion seems contradictory to the work of
Ref. [10]. But one must be aware that the existence of
gray spatial solitary waves of the TE type predicted in
Ref. [10] was based on the solutions to the nonlinear
Schrédinger equation which is a consequence of the slow-
ly varying approximation of the wave equation (2). The
stationary solutions of the gray spatial solitary waves pre-
dicted in Ref. [10] appear no longer possible when the
term involving the second derivative with respect to z is
retained in the wave equation.

III. PHASE-SPACE ANALYSIS

In the special case of b —0, Eq. (4) [or Eq. (6)] is shown
only to yield the dark solitary wave solution and the nor-
malized fields are real functions. This is also true for gen-
eral cases of b >0. Thus we take ¥, and ¥, to be real.
Equation (4) can then be written alternatively in the form
of the two first-order differential equations

b
v, =
o 1—b23V2+V2)

X 26w W' +(1—52)172 (—bl;—w§~w§ v, ,
(11a)
’— —b 2 2
‘Pz—m(l—‘llx—‘l/z)wx . (11b)

It can be shown that the system of Eq. (11) possesses an
invariant

b> 2 22952
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=TI=const, (12a)

which can be written in an explicit form
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Plotted on the W, —W, phase space, this equation yields
an infinite set of trajectories associated with the solutions
to Eq. (11). Illustrated in Fig. 2 are the characteristics of
the trajectories for 0<b<1V3 (=0.58) in (a),
0.58<b <0.82 in (b), and 0.82<b <1 in (c). Although
the trajectory characteristics in Figs. 2(a)-2(c) are quali-
tatively different, they all possess five singular points

(V,,¥,)=(0,0), (13a)
(¥,,¥,)=(%1,0), (13b)
(V,,¥,)=(+1/V"3p,0) , (13¢)

surrounded by enclosed curves or run through by a
separatrix. The singularities are the points at which the
slope of the ¥, — V¥, curves becomes indeterminate, i.e.,

dVv, )
dv, 0’

(14)

which leads to Eq. (13) upon substitution of Eq. (11).

The shape of the trajectories determines the charac-
teristic of solutions. Enclosed curves are associated with
periodic solutions while open trajectories represent grow-
ing or decaying solutions (i.e., ¥,— 1o and ¥, —const
or ¥, >+ as X —* ). The solitary waves are related
to the separatrix when it passes through the equilibrium
points (where W), =¥, =0 giving rise to d¥, /d¥,=0/0,
i.e., an equilibrium must be a singularity but not neces-
sary conversely) identified as the starting or the terminat-
ing points at X — F o0 of the field evolution. This ap-
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pears only in Fig. 2(a) for the trajectory marked with ar-
rows. But when a separatrix runs through singularities
which are not the equilibrium points (i.e., at these points
dV¥,/d¥,=0/0 but ¥,70 or ¥,70) such as the trajec-
tory marked with arrows passing through singularities
(V,,¥,)=(%£1V'3b,0) in Fig. 2(b), the separatrix is then
associated with a periodic solution. Recall that the soli-
tary wave is defined as W, —const and W,—const as
X —>+o or ¥, =W, =0 as X—tc at which the system
comes to rest. The points at which W, =W, =0 are re-
ferred to as equilibrium points of the system. For Eq.
(11), there are three equilibrium points (¥, ,¥,)=(0,0)
and (%1,0) which are run through by the separatrix in
Fig. 2(a). The points (¥,,¥,)=(+1/v3b,0) passed
through by the separatrix in Fig. 2(b) are singularities
(d¥,/d¥,=0/0) arising from the singularities of Eq.
(11a). At these points, ¥, =dW¥, /dX=0/0 leading to
d¥,/d¥,=0/0 but V¥,50. Therefore (£/Vv'3b,0) in
Fig. 2(b) do not correspond to the starting or the ter-
minating points at which the system is at rest, but (+1,0)
in Fig. 2(a) do. It follows from this analysis that the soli-
tary waves can_possibly exist only within 0<b < 1/V3,
equivalent to V'2/3n, (~0.82n,) <B/k <n,.

IV. DARK SPATIAL SOLITONS OF THE TM TYPE

By solving Eq. (11) numerically, it is found that the
dark spatial solitary waves of the TM type can indeed ex-
ist within 0<b < 1/V'3, confirming the prediction from
the phase-space analysis. Figure 3 illustrates the normal-

V.

: L0 .
153 AWE W3

(a) (b) ©

FIG. 2. Characteristics of the trajectories on the W, — W, phase space for (a) 0<b <1/V3 (=0.58), (b) 0.58 <b <0.82, and (c)
0.82<b< 1.



S

T T T

T
1.09 . N’xfz

E %]
E :
Z Z
= EO'S—
Z
[a] a
g g
[ =
b=0.55
0.0 L
6 4 -2 0 2 4 6
X
(b)

FIG. 3. Intensity profiles of the dark spatial solitary waves of
the TM type for waveguide heights b =0.1 in (a) and b =0.55 in
(b). The curve composed of large solid circles delineates the
field intensity profile of the TE dark spatial solitary wave.

ized field intensity profiles for various b. Recall that the
dark spatial solitary waves of the TE type can exist across
the whole range of the wave effective index n g=fB/k
from O to ng, in contrast with the TM dark spatial soli-
tary wave which can exist within 0.82ny <n. <n, only,
almost five times as narrow as that of the TE type. The
difference in the self-trapping behavior between the TE
and TM types here is due to the presence of the longitudi-
nal component ¥, (or e,) which tends to exaggerate de-
focusing thus lessens the self-guidance. And this defocus-
ing effect of the ¥, component becomes significant when
b is large. This is shown in Fig. 3 for the field intensity
profiles and in Fig. 4 for the corresponding self-induced
index profiles of the TM wave together with the TE wave
(identified by the curve of large solid circles) for compar-
ison.

One impressive feature revealed from Fig. 3 is that the
longitudinal component ¥, of the TM wave has a bright
intensity profile. This bright intensity induces an extra
hole index profile which inclines to counterbalance the
convex index profile created by the dark intensity profile
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FIG. 4. Induced index profiles n?=n3—ngn,|E|?

=nj[1—b%¥2+W¥?)] corresponding to the intensity profiles of
Fig. 3.
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of the transverse component and thus belittles the self-
focusing induced by the transverse component. See, for
instance, Figs 3(a) and 4(a) where the refractive index nf
induced by the transverse component W2 is indistinguish-
able from that for the TE wave delineated by the curve
composed of large solid circles but the total induced in-
dex including the contribution from the longitudinal
component is weakened compared with #2. This defocus-
ing effect is strengthened with increasing b since the in-
tensity of the bright longitudinal component increases
with increasing b as shown in Fig. 3 and in the following
analytic relation between the peak intensity W2(0) of the
longitudinal component and the waveguide height
b=(1—n%/n})V%

v2(0)=[1—(1—b6%"2]/b?, (15)
which is derivable from Eq. (12) by specifying I' =1 cor-
responding to the separatrix. This peak intensity is in
fact directly related to the peak-induced index height by
(Fig. 4)

AnZy=(nd—nle)[1—¥2(0)]=Anig[1—V2(0)], (16)

which decreases with increasing W2(0) and thus with in-
creasing b. Here An%y; =n} —n?; is the peak-induced in-
dex for the TE wave. Therefore, on the one hand, as in-
dicated in Fig. 3 or Eq. (15), the bright field distribution
of the longitudinal component gradually manifests itself
with increasing b and hence poses a growing demand for
the induced refractive index to support. On the other
hand, the self-guidance based on the induced refractive
index is attenuated with increasing b [as seen from Eq.
(16) and Fig. 4]. Apparently, when b augments to a cer-
tain extent exceeding the critical value of 1/V'3, the lon-
gitudinal component then becomes so intense but the in-
duced refractive index is so weakened that the induced
weak index profile can no longer bear the strongly guided
longitudinal component. Accordingly, the self-guidance
becomes impossible.

Another interesting characteristic of the TM wave dis-
closed in Fig. 4 is its propagation at cutoff. As illustrat-
ed, the wave effective index n.s=p/k of the TM wave is
always equal to the minimum value of the induced index
profile in spite of the fact that its longitudinal component
behaves like a bright solitary wave. This is the same as
the TE wave.

But in contrast to the TE case, the field intensity
profile shape of the transverse component W, varies with
the waveguide height b, deviating from the tanh?X /v2
function of the TE wave as shown in Fig. 3. Consequent-
ly, this change of field shape with varying b leads to a
change in power carried by the wave.

For a bright spatial solitary wave, the power, defined as
P=1Re [, EXH*dA with H the magnetic field, is a

finite quantity. However, for a dark spatial solitary wave,
this is a divergent quantity because of the constant inten-
sity background. Accordingly, we define the hole power
by the finite quantity
Proe=1Re [ | (B XH},

max

—EXH*)dA ,
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FIG. 5. Normalized hole power Py, kn,240m/n, for trap-
ping the TM and Te type dark spatial solitons vs waveguide
height b.

where E_,, and H,_,, are the values of E and H at
|X|= . Figure 5 illustrates the hole power as a function
of waveguide height b for TM and TE dark spatial soli-
tons. In both cases, the hole power increases with in-
creasing b when b <0.71, but P, . for TE increases fas-
ter than that for TM. This indicates that the TM wave
requires slightly higher real power to support than that
for TE.

Theoretically, an infinite power would be needed to
form the proper constant background for a dark soliton
to propagate, thus hampering experimental realization.
This difficulty, however, can be overcome by approximat-
ing the constant background with a finite-width bright
background (such as a Gaussian background) as done in
Refs. [12-14]. The dark wave would not “feel” any
difference between the constant background and a finite-
width background provided that the background width is
much larger than the dark soliton width.

V. CONCLUSION

In summary, the dark spatial solitons of the TM type
are predicted to exist in the self-defocusing nonlinear
medium within the range of the wave effective index from
0.82n4 to ng, in contrast to the TE type which exists over
the range of n s from O to ny. The field profile of the TM
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spatial soliton is also shown to depend on the wave
effective index n, deviating from the hyperbolic tangent
function of the TE type with decreasing n ¢4

APPENDIX

Equation (6), decomposed into two real coupled equa-
tions, reads

fh"+2f'h'=0,
fr=fhif—fi=o,

upon substituting Eq. (7) into Eq. (6) and separating into
real and imaginary parts. Direct integration of Eq. (A1)
yields

I:IIfZ H

where I, is a constant. This equation, inserted into Eq.
(A2) which is then integrated leads to
, I3
f 2=%f4—f2—}7+-’z ,
with I, a constant. This directly gives the solutions for f
in an integral form

x=x+ dfz
WS

(A1)
(A2)

(A3)

(A4)

o+ . (A5)

The solutions (A5) are in general oscillatory, expressible
in terms of elliptical functions. The solitary wave solu-
tions occur only when the integration constants I, and I,
are related to the maximum and minimum values f_ .,

and f;, of f by

2I%= ?nax rznin ’ (A6)
212:fr2nax(fr2nax +2f12nm) ’ (A7)

plus the condition of Eq. (9a). Substitution of these con-

ditions into (A5) immediately results in
f=Fmax[1— A%sech?(f . AX /V2)]'?, (AS)

which then, substituted into Eq. (A3), gives 4 (X) in Eq.
(8b).
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