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Dark spatial solitons of the TM type

Yijiang Chen

(Received 11 June 1991)

The existence of dark spatial solitons of the TM type is examined. This type of two-dimensional soli-
tary wave is found to exist in the self-defocusing nonlinear medium of a Kerr-law type in the range of the
wave effective index n, ff from 0.82nD to no of the linear refractive index of the medium. This contrasts
with dark spatial solitons of the TE type, which exist in the range of n, & from 0 to no. The longitudinal
component is shown to play a key role leading to this distinction. The comparison between TM and TE
solitons is also made on other aspects. For example, the field profile of the TM soliton is shown to vary
with the wave effective index, whereas that of the TE soliton is characterized by the hyperbolic tangent
function, independent of n,z.

PACS number(s): 42.65.Jx, 42.50.Qg, 42.65.8p

I. INTRODUCTION

Spatial solitons are the stable formation of self-guided
beams propagating in homogeneous nonlinear media
[1—15]. Trapped in a self-focusing nonlinear medium, a
stable self-guided beam is referred to as a bright spatial
soliton on account of its convex intensity profile which
induces a convex refractive index profile for self-
guidance, whereas that trapped in a self-defocusing non-
linear medium is referred to as a dark spatial soliton on
account of its concave intensity profile which induces a
convex index profile for self-guidance. A self-guided
beam is a mode of the optical waveguide it induces
[11,15]. Therefore, as in a linear waveguide [16,17], the
self-induced waveguide could support TE and TM mode
patterns. Indeed, it has been shown that trapping in a
self-focusing nonlinear medium can occur in these pat-
terns [1,4—9] for any beam efFective index n, s (defined as
the wave propagation constant P divided by k of the wave
number) greater than no of the linear refractive index of
the medium. For a self-defocusing nonlinear medium,
the TE mode pattern has been predicted [10] and experi-
mentally observed [12—14] to be a trapped light pattern
for all the possible values of n,~ ranging from 0 to no.
Naturally, it is tempting to know whether light trapping
in a self-defocusing nonlinear medium is possible in the
form of the TM pattern. In this paper, we will show that
a two-dimensional TM beam can indeed be a trapped
light pattern in the self-defocusing nonlinear medium of a
Kerr-law type. But the self-guidance in this pattern is

limited to the range of the wave e6'ective index n,z from
0.82no to no, in contrast with the TE type that exists for
all possible values of n,& ranging from 0 to no.

II WAV. E EQUATIONS AND INEXISTENCE
OF GRAY SPATIAL SOLITONS

The refractive index in a self-defocusing nonlinear
medium decreases with increasing electric-field intensity.
For a Kerr-law nonlinearity, the refractive index n of a
homogeneous medium relies on the field intensity IEI
linearly,

n =no non2IEI—
with n2 a positive constant, depending on materials. A
light wave propagating in a medium obeys Maxwell's
equations which, in terms of the electric field alone, read

1 a'
VXVXE+ (n E)=0,

c2 Bt2

with c the speed of light in free space. The stationary
propagation of the TM wave (cw) along the longitudinal
distance z stipulates the field E to have the functional
from of

E(x,z, t) = [e„(x)x+e,(x)z]e'P'

where cu denotes the frequency of a cw. Substitution of
this E into Eq. (2) with the specified n of eq. (1) leads to
two coupled di6'eential equations governing the com-
ponents e and e„
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where the normalized fields %'„and 4, are relat-
ed to the actual ones by ql =e„+n2/no/b and
4, = —ie, +n2/no/b, the prime denotes diff'erentiation
with respect to the normalized transverse coordinate
X=knobx, k is the wave number in free space, Re indi-
cates taking the real part, and the waveguide height is
defined as

Gray A&1 1 ~llg„l

in

= max

b =(1—P 2/k 2n2)'/2

the magnitude of which determines the degree of cou-
pling between the components 'k„and 4, . The decou-
pling occurs only when b approaches zero. This then
leads to ~p, =0 and Eq. (4) reduces to

q,"+q„—iq„i'q„=O, (6)

h (X)=+ [f;„X/&2+tan '[(f,„

/f;„—1)'/

X tanh( f,„AX/&2)]J,
(Sb)

where f,„=
~
ql„(+oo ) ~

and f;„=~
ql„(0)

~
are the max-

imum and minimum values of ~'P (X)
~

related by

which is in fact the wave equation governing the normal-
ized field 4 of the TE mode provided that 4 is replaced
by ql =e Qn2/nob

Now consider first the solutions for this special case.
The solutions to Eq. (6) can in general be written as

4'„(X)=f (X)exp[ih (X)],
where f (X)= ~'l„(X)

~
and h (X) are real functions. Sub-

stitution of this expression into Eq. (6) plus some algebra-
ic manipulation leads to the solitary wave solutions (Ap-
pendix)

q/„(X)=f,„[l—A sech (f,„AX /&2)]' /[ih (X)],
(Sa)

FIG. 1. Schematic illustration of solitary wave solutions of
Eq. (8).

I q.(0)l=f,„=0 and A =1. (10b)

III. PHASE-SPACE ANALYSIS

In the special case of b —+0, Eq. (4) [or Eq. (6)] is shown
only to yield the dark solitary wave solution and the nor-
malized fields are real functions. This is also true for gen-
eral cases of b )0. Thus we take V„and 4, to be real.
Equation (4) can then be written alternatively in the form
of the two first-order difFerential equations

Accordingly, we conclude that the self-defocusing non-
linear medium of a Kerr-law type can only support the
dark spatial solitary wave, or no gray spatial solitary
waves can possibly exist in such a nonlinear medium.

This conclusion seems contradictory to the work of
Ref. [10]. But one must be aware that the existence of
gray spatial solitary waves of the TE type predicted in
Ref. [10] was based on the solutions to the nonlinear
Schrodinger equation which is a consequence of the slow-

ly varying approximation of the wave equation (2). The
stationary solutions of the gray spatial solitary waves pre-
dicted in Ref. [10] appear no longer possible when the
term involving the second derivative with respect to z is
retained in the wave equation.

and

2f',„+f;„=2

f2 /f2 )1/2

(9a)

(9b)

b

1 —b (3qI +ql )

X 2b'0„'P,'+(1 b)'—
The case of A =1 (or f;„=0)is referred to as the dark
spatial solitary wave (Fig. 1), whereas A ( 1 is referred to
as the gray spatial solitary waves (Fig. 1). As defined
[10], the spatial solitary waves are the solutions of the
wave equation obeying ~q/„(X)~~const, ql„'(X)~0and
q/,"(X)~0 as X~+ oo, i.e., the evolution of the field
starts and ends up at the equilibrium points of the equa-
tion. This condition ql"(X)~0 as X~+- oo applied to
Eq. (6) yields

(1 la)

(1—q'„—q', )q'„.
b 2)1/2

(1 lb)

It can be shown that the system of Eq. (11) possesses an
invariant

~ql„(+oo )~ =f,„=lor 0 . (10a)
b2

( 1 @2 q/2)2@2 + q/2+qp2 & (qy2 +A)2 )2
b2 x z x b2 z x P x z

But f,„=Omeans %„(X)—:0. Thus the only physical
solution for the spatial solitary wave is f,„=1, which
inserted into Eq. (9a) yields

=I =const,

which can be written in an explicit form

(12a)
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b2 1 —b

2b %„(1—%~ )

1 —b

b 2gg2—4
Q2
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+%„— —I
1 —b 2

(12b)

Plotted on the %' —%', phase space, this equation yields
an infinite set of trajectories associated with the solutions
to Eq. (11). Illustrated in Fig. 2 are the characteristics of
the trajectories for 0 & b & I i/3 ( =0.58) in (a),
0.58&b &0.82 in (b), and 0.82&b &1 in (c). Although
the trajectory characteristics in Figs. 2(a) —2(c) are quali-
tatively different, they all possess Ave singular points

(~I/, q/, ) = (0,0),
(~I/, 'I/, ) =(+1,0),
('P, q/, ) = (+1/i/3b, O),

(13a)

(13b)

(13c)

surrounded by enclosed curves or run through by a
separatrix. The singularities are the points at which the
slope of the 4„—%', curves becomes indeterminate, i.e.,

d'0 0
d%, 0' (14)

which leads to Eq. (13) upon substitution of Eq. (11).
The shape of the trajectories determines the charac-

teristic of solutions. Enclosed curves are associated with
periodic solutions while open trajectories represent grow-
ing or decaying solutions (i.e., 4, ~+~ and %„~const
or %„~+~ as X~+~ ). The solitary waves are related
to the separatrix when it passes through the equilibrium
points (where q/„' =q/,' =0 giving rise to d%„/dV, =0/0,
i.e., an equilibrium must be a singularity but not neces-
sary conversely) identified as the starting or the terminat-
ing points at X~+ ~ of the field evolution. This ap-

pears only in Fig. 2(a) for the trajectory marked with ar-
rows. But when a separatrix runs through singularities
which are not the equilibrium points (i.e., at these points
d%, /d%', =0/0 but q/,'WO or 4' %0) such as the trajec-
tory marked with arrows passing through singularities
(%,V, ) =(+li/3b, O) in Fig. 2(b), the separatrix is then
associated with a periodic solution. Recall that the soli-
tary wave is defined as %'„~const and %,~const as
X~+~ or 4' =4,'=0 as X~+~ at which the system
comes to rest. The points at which %" =4,'=0 are re-
ferred to as equilibrium points of the system. For Eq.
(11), there are three equilibrium points (4'„,0', )=(0,0)
and (+1,0) which are run through by the separatrix in
Fig. 2(a). The points (4,q/, ) = (+1/i/3b, O) passed
through by the separatrix in Fig. 2(b) are singularities
(d% /d+, =0/0) arising from the singularities of Eq.
(1 la). At these points, 4" =dq/ /dX=O/0 leading to
d%', /d'I/, =0/0 but 0/,'%0. Therefore (+/v'3b, O) in
Fig. 2(b) do not correspond to the starting or the ter-
minating points at which the system is at rest, but (+1,0)
in Fig. 2(a) do. It follows from this analysis that the soli-
tary waves can possibly exist only within 0 &b & I/i/3,
equivalent to v'2/3no ( =0.82nD) & P/k & n/0.

IV. BARK SPATIAL SOLITONS OF THE TM TYPE

By solving Eq. (11) numerically, it is found that the
dark spatial solitary waves of the TM type can indeed ex-
ist within 0&b & I/v'3, confirming the prediction from
the phase-space analysis. Figure 3 illustrates the normal-

px
l

Qx'

/

&/W3
0 /

-1/0/3 &/~3

FIG. 2. Characteristics of the trajectories on the 4„—4, phase space for (a) 0& b & 1/&3 ( =0.58), (b) 0.58 & b &0.82, and (c)
0.82&b &1.
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spatial soliton is also shown to depend on the wave
effective index n,z, deviating from the hyperbolic tangent
function of the TE type with decreasing n, ff

APPENDIX

Equation (6), decomposed into two real coupled equa-
tions, reads

0.00
0.0 0.2 0.4 0.6 0.8 1.0

fh" +2f'h'=0,
f" fh +—f f =0—,

(Al)

(A2)

FIG. 5. Normalized hole power Pho~, kn2240m. /no for trap-
ping the TM and Te type dark spatial solitons vs waveguide

height b.

where E „and H,„are the values of E and H at
X

~

= oo. Figure 5 illustrates the hole power as a function
of waveguide height b for TM and TE dark spatial soli-
tons. In both cases, the hole power increases with in-
creasing b when b (0.71, but Ph &, for TE increases fas-
ter than that for TM. This indicates that the TM wave
requires slightly higher real power to support than that
for TE.

Theoretically, an infinite power would be needed to
form the proper constant background for a dark soliton
to propagate, thus hampering experimental realization.
This difficulty, however, can be overcome by approximat-
ing the constant background with a finite-width bright
background (such as a Gaussian background) as done in
Refs. [12—14]. The dark wave would not "feel" any
difference between the constant background and a finite-
width background provided that the background width is
much larger than the dark soliton width.

V. CONCLUSION

In summary, the dark spatial solitons of the TM type
are predicted to exist in the self-defocusing nonlinear
medium within the range of the wave effective index from
0.82no to no, in contrast to the TE type which exists over
the range of n,z from 0 to no. The field profile of the TM

upon substituting Eq. (7) into Eq. (6) and separating into
real and imaginary parts. Direct integration of Eq. (Al)
yields

h'=I f (A3)

where I& is a constant. This equation, inserted into Eq.
(A2) which is then integrated leads to

I2
f '= 'f' f' —, +—I2— (A4)

(A5)

The solutions (A5) are in general oscillatory, expressible
in terms of elliptical functions. The solitary wave solu-
tions occur only when the integration constants I, and I2
are related to the maximum and minimum values f,„

and f;„off by

2 4 2=fmaxf min

2I2 =f,„(f,„+2f2;„),
(A6)

(A7)

plus the condition of Eq. (9a). Substitution of these con-
ditions into (A5) immediately results in

f=f,„[l—3 sech (f,„AX/&2)]'~ (A8)

which then, substituted into Eq. (A3), gives h (X) in Eq.
(Sb).

with I2 a constant. This directly gives the solutions for f
in an integral form
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