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We consider a system of two masers that are pumped by the same beam of excited atoms. The atoms
pass first through one maser and then through the other. As a result, the first maser modifies the pump
going into the second and an effective coupling results. We examine this system in the amplifier
configuration, i.e., we do not consider saturation effects. The fields in the two masers are mutually
coherent and can, under the proper circumstances, be free of noise in their relative phase. Therefore this
system exhibits behavior similar to that of a correlated-emission laser. We also find that the photon
number in the second maser grows faster than that in the first. These effects should be observable even if

the pump beam has a finite velocity spread.

PACS number(s): 42.50.—p, 03.65.—w, 42.52.+x

I. INTRODUCTION

Recently it has become clear that pump fluctuations
have a significant effect on the fluctuations of the light
that emerges from a laser. This was first observed and
studied in the context of dye lasers, where pump fluctua-
tions lead to a more noisy output than that predicted by
standard laser theory [1-8]. A second line of work has
been the investigation of quieter, more regular pumps
than those considered in the usual theory [9-21]. This
has led to the realization that it is possible for lasers to
produce light with sub-Poissonian photon statistics.

Standard laser theory takes the pump to be a beam of
two-level atoms initially in their excited states. The num-
ber of atoms that pass through the laser cavity in a given
period of time follows a Poisson distribution. One way of
modifying the pump is to consider something other than
a Poisson distribution for the atomic arrivals. The usual
choice is a distribution in which the fluctuations in the
number of atoms are smaller than for a Poisson distribu-
tion. This decreases the intensity fluctuations of the out-
put light [9-21]. Another approach is to consider a Pois-
son arrival distribution but to assume that the states of
the atoms entering the laser vary in some way. It is one
realization of this scheme that we wish to consider here.
The theory we develop is most easily applied to micro-
masers so that we shall, henceforth, refer to masers rath-
er than lasers.
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FIG. 1. Schematic arrangement of the pump-coupled micro-
masers. The pump beam first passes through one maser and
then through the other.

The specific system we shall examine consists of two
masers pumped by the same atomic beam (Fig. 1). The
beam first passes through one maser and then through
the other. The atoms are injected into the first maser in
their excited states, but by the time they reach the second
maser the interaction with the first has changed their
states. Therefore, the state of an atom entering the
second maser depends upon the state of the field in the
first. This means that the first maser modified the pump
going into the second, and an effective coupling between
the masers is produced.

This coupling produces a coherence between the fields
in the two cavities. This would not be the case for in-
dependently pumped masers. In fact, the phase of the
field in the second cavity is locked to that of the field in
the first. One also finds behavior reminiscent of that in
correlated emission lasers [22-24]. That is, the noise in
the relative phase is smaller than that in either of the in-
dividual phases and can vanish under optimal cir-
cumstances.

In this paper we shall consider the system in the
amplifier configuration, i.e., atomic saturation effects will
be ignored. The nonlinear effects and steady-state fields
will be examined in a future publication.

II. MASTER EQUATION AND FIELD AMPLITUDE
EQUATIONS

We now want to derive a master equation that de-
scribes the evolution of the field density matrix for the
two cavities. We assume that an average of r two-level
atoms per unit time are injected into the first cavity in
their excited states. Each atom interacts with the field in
the first maser for a time T and then proceeds to the
second cavity, where it interacts with the field there,
again for a time 7. We assume that the time of flight be-
tween the cavities is sufficiently short that we can ignore
the effect of spontaneous emission for atoms in this re-
gion, so that the atom enters the second cavity in the
same state as it left the first. We also assume that the in-
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44 PUMP-COUPLED MASERS: TRANSIENT REGIME

teraction time is short compared to the inverses of the
Rabi frequencies in the two cavities and to the lifetime of
the atoms. Finally, we consider only the case in which
there is no detuning between the atoms and the fields.
The field mode frequencies are taken to be w.

The two-level atoms themselves have ground and excit-
ed states |b) and |a), respectively. Their interaction
with a single field mode is described by the interaction
picture Hamiltonian

H,=glac " +a'o7). 2.1)
Here g is the atom-field coupling constant, ¢ and a’ are
the mode annihilation and creation operators, and o "
and o~ are the atomic raising and lowering operators.
The operator H; is time independent in the interaction
picture.

In order to find the master equation for the
interaction-picture field density matrix pp, we must first
find, to second order in g, the change produced in p, by
the passage of a single atom through the system [25].
This is calculated from second-order perturbation theory
and is given by

2
Spr=3 1(&T)*/2)2a]pra;—a;afpr—prajaf)
j=1

+(gT)2(a;pFal +aJ{pFa2_aIazpF—pFala;) .

(2.2)
Here a, and a, are the annihilation operators for the

fields in the first and second cavities, respectively. The
coarse-grained time derivative of the two-mode field den-
sity matrix is obtained by multiplying 8py by the atomic
injection rate r. Finally by adding terms to take into ac-
count the cavity losses we obtain the master equation for
the interaction-picture field density matrix

dpp
dt

2
=3 [(A/2)(2aijFaj—ajaijF—pFajajT)
j=1

+(y/2)(2aijajT—ajTaij_pFa_]Taj)]

+ A(GZPFal +aIPF“2_aI‘12PF_PF‘11‘1J2r) .

(2.3)

The constant 4 =r(gT)? is the gain and ¥ is the inverse
of the cavity lifetime, which is assumed to be the same for
both cavities. The terms in the square brackets are just
those which describe two independent masers in the
linear regime. It is the last four terms that describe the
coupling between the fields induced by the common
pump.

In the derivation of this equation we have assumed that
the change in the field, during the time that a single atom
interacts with it, is small. In order to meet this require-
ment it is necessary that the atomic transit time T be
much smaller than the cavity decay time 1/y. For both
masers and micromasers this condition is well satisfied.
We are also assuming that the effect of spontaneous emis-
sion during the time the atom is between the cavities is
negligible. For this to be true the spontaneous lifetimes
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of the maser levels must be large in comparison to the
time it takes for the atom to traverse the distance be-
tween the cavities. In micromaser systems, where the
masing levels are long-lived Rydberg states, this condi-
tion should be satisfied for intercavity distances of the or-
der of centimeters.

We can derive equations of motion for the expectation
values of the field amplitudes by multiplying Eq. (2.3) by
either a; or a, and taking the trace. The results are

d{a())/dt=—iw{a,(t))+[(A —y)/2Ka,(8)) ,
2.4)
d{a,(t)) /dt=—iw a,(t))+[(A—y)/2]{a,(t))
+Aa, (1)) .

Note that, as expected, the first maser is unaffected by the
second, but the equation for the field amplitude in the
second maser contains a source term that is proportional
to the amplitude of the field in the first. These equations
are easily solved with the result that

(a,())=(a,(0))eliota=n/2}
; (2.5)
(a, (1)) =[(a,(0)) +(At){a,(0))]el ~iot(4=r/2)

For A >y the amplitudes of the fields in both masers
grow [unless {a,(0))=0]; but for sufficiently large times
we see that the field in the second cavity grows faster
than that in the first. In fact, for times ¢ such that

(At)|[{a(0))]>>(a,(0))],

the amplitudes of the fields are proportional, which im-
plies that they have the same phase. Thus, the phase of
the second cavity locks to that of the first. A second way
to see this is to express {a,(¢)) and a,(¢)) as

(ay(0)y=r (e,
eidzz(t) (26)

(a,(£))=r,(2)

’

and then use Egs. (2.4) to find equations of motion for r,
75, ¢;, and ¢,. These in turn can be used to find the equa-
tion of motion for ¢=¢,—¢,, the phase difference be-
tween the two fields. We find

ﬂZ-A(rl/rz)sin(ﬁ , (2.7
dt

which is the standard mode-locking equation [25]. This
equation has a single, stable steady-state solution at ¢=0.
As t increases ¢(t) tends to this solution with the result
that the phases of the field amplitudes become the same.

III. INTENSITY EQUATION

.One can also derive from the master equation equa-
tions of motion for the intensities of the fields in the cavi-

ties. First let us define
ni()=<(al(ta, (), ny()=C(al(t)a (1)}, o
np(t)={a,(al(t)+al(t)ay (1)) . '

The quantities n,(¢) and n,(t) are just the numbers of
photons in cavities one and two, respectively. The quan-
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tity n,(¢) describes the amount of interference the two
fields would exhibit if they were superposed. Calculating
these expectation values from the master equation we find

dn,
7:(/1—7/))114-14 s

dn,,

i =(A—yhn;,+24(n,;+1), (3.2)
dn,

ar =(A—yhn,+An;,+ A4 .

These equations can be solved in a straightforward
fashion. Before giving the solution, however, note that as
in the case of the amplitudes the first maser is indepen-
dent, but the second is coupled to the first. The solutions
to Eqgs. (3.2) are

n()=n;(0)e 4"+ £(1),

1, (1)=[n,(0)+2(At)n (0)]e' 4 ~V1+£,(2) , (3.3)

ny(8)=[n,(0)+( At)n,(0)+( A2)’n(0)]e A~V +£(1) ,

where

E(N=[A/(4—y))(e4Vi=-1),

Ep()=2[At—y /(A—y)]&()+24%t /(A —y),

E()=[At—y /(A —p)PIEW+ A/(4 —7)]
H[A/(A—py)PE()— AY2 /(A —y) .

(3.4)

The latter set of quantities are the values that n(1),
n,(t), and n,(¢) would assume if the initial state is in the
vacuum. We shall assume in the following discussion
that 4 >y.

Let us note two things about these solutions. The first
is that if n,(0)=0 and n,(0)=0, then for times ¢ >0 we
have that n,(¢)7%0. This means that if the fields were
brought together in an interference experiment, then
time-stationary interference fringes would be present.
This would not be the case if the two masers were
pumped independently. Therefore, even if the fields in
the two masers are initially in the vacuum state they will
be coherent at later times because of the common pump.
The second point is that the photon number in the second
cavity grows faster than that in the first. In particular,
for times such that ( A¢) >> 1, the intensity in the first cav-
ity grows as e'4 7" while that in the second grows as
(AI)ZQ(A_Y)I.

IV. INTERPRETATION OF RESULTS

Here we want to discuss some of the main features of
the two-maser system and to show in a simple way how
they come about. In particular we wish to explain the
time dependence of the fields in the two cavities and the
growth of coherence between them.

Let us consider first the time dependence of the field
amplitudes. As we saw in Sec. II the field in the first cav-
ity obeys the same equation of motion as that in a single
maser, but the field amplitude in the second cavity devi-
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ates from this behavior. This can be understood in terms
of the atomic coherence produced in the pump beam by
the field in the first cavity.

In order to see this directly let us consider a maser
with injected atomic coherence. The master equation in
the interaction picture for such a maser in the linear re-
gime is [26]

dpy

72( A /2)(2(1TpFa —aanF—pFaaT)

+(y /2)2apra’—a'apr—prata)

—i[(saT+s*a),pF] . 4.1

Here atoms are injected into the maser in a state de-
scribed by an atomic density matrix p(‘”’. The parameter
s is given by s(t)=grTpa(¢), where T is again the time
the atom interacts with the field and p3" is given by
pa=Tr[p®)(t)o ~(¢)] (the operators in this expression
are in the interaction picture). We discuss the derivation
of Eq. (4.1) in the Appendix. The equation of motion for
the field amplitude that results from this master equation

1S

d{a(t))

- iela)+{(4—y)/2)(a(0) —is .
4.2)

Let us now go back to the two-cavity problem and con-
sider the amount of atomic coherence that an atom ac-
quires by passing through the first cavity. An atom in-
jected into the first cavity at time t —T — 7, where 7 is the
time of flight between the two cavities, will arrive at the
second cavity at time . Using first-order perturbation
theory we find that the total density matrix of the system
at time ¢ is

pt)=la){al®pp(t —T —71)
—igT[o (t =T —7)al(t —T —7)pp(t =T —7)
—ot(t =T —1)pplt =T —7)a,(t —T —1)] .
4.3)

For the off-diagonal element of the atomic density matrix
(at)

Pap’ we find
()= Trp(t)o ()]
=igT Tr ;[0 T (t =T —7)o " (2)]
X Trpla,(t
—igTe T+ (a,(t =T —7)) .

—T —7)pplt =T —17)]

4.4)
Here the subscripts on the traces indicate whether they
are over atomic or field states, and in evaluating the trace

over the atomic variables we have used the fact in the in-
teraction picture

ot (t)=e'®oT(0), o (t)=e ¢ (0). 4.5)
We can now use the relation
(a,(t))=e T+ g (t —T—7))+0(g) (4.6)
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to give

p2(t)=igT{a,(1))+0(g?) . 4.7

This result can now be substituted into the field ampli-
tude equation (4.2). We first note that

s=ir(gT){(a, (1)) +0(g’)=id(a,(1))+0(g*), (4.8)

which, dropping terms of greater than second order in g,
gives us for Eq. (4.2)

d{ay(t))dt=—iwla,(t)) —[(A—y)/2]{a,(t))
+A4{a, (1)) . 4.9)

This is just the second of Egs. (2.4). We see, then, that
the origin of the extra term in the equation of motion for
the field amplitude in the second cavity is a result of the
atomic coherence, which is induced in the pump beam by
the field in the first cavity.

This fact is the explanation for the unusual time depen-
dence of the field amplitude in the second cavity. As the
field in the first cavity grows the amount of atomic coher-
ence injected into the second cavity increases. This leads
to the rapid (At)e'?~7"/2 increase of the field in the
second cavity.

Now let us examine the coherence between the fields in
the two cavities. One might think that the coherence
would be produced, as in the preceding discussion, by the
atomic coherence that the field in the first maser induces
in the pump beam. This is, however, in general not true.
One can see this by considering the case in which
(a,(0))=0. The first of Eqs. (2.4) implies that
(a,(t))=0, and Eq. (4.7) then gives us that p{3"(¢)=0
This means that there is no atomic coherence in the
beam. On the other hand, from Eq. (3.3) we see that
n,(¢)70 so that there is coherence between the two
fields. Therefore, a different explanation of the field
coherence is necessary.

It is possible from a simple example to see how the pas-
sage of an atom through the cavities creates coherence
between the fields. Let us suppose that both cavities are
in number states with the first cavity containing n,; pho-
tons and the second n, photons. This 1mp11es that initial-
ly the fields are incoherent and that {a,al)=0. Atz=0
we inject an atom in its upper state |a ) into the first cavi-
ty. The wave function of the system at t =0 is

V=l|a,n,n,) . (4.10)

After the atom has passed through the first cavity it has
either emitted a photon into cavity one, or it has not. Let
the amplitude for the first event be ¢, and that for the
second be c¢,. The state of the system when the atom is
between the cavities is then
V=c,la,n;,ny)+c,lb,n,+1,n,) . (4.11)
The atom now passes through cavity two. We can think
of each of the terms in Eq. (4.11) as evolving indepen-
dently. If the atom enters the second cavity in its upper

state, then it can either emit a photon into cavity two or
not. Let the amplitude for these events be d,, and d,,,
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respectively. Similarly, if it enters in its lower state, then
it can either absorb a photon or not. The amplitudes in
this case we shall call d,, and d,,, respectively. There-
fore, the state of the system after the atom has passed
through both cavities is

V=c,(d,,la,n,ny)+d,,|b,n,n,+1))

+epldy,la,n, +1,n,—1)+dy,lb,n,+1,n,)) .

(4.12)
If we now calculate (a,a}) we find
(@,a])=(c,du)*(cydp, )V 1 +1V ny
F(cudoy)*(cydpy V' n +1V ny+1 . (4.13)

The passage of a single atom has led to coherence be-
tween the fields.

This coherence can be thought of as arising from the
interference of two atomic paths. Suppose that we con-
sider only the situation where the atom emerges from the
second cavity in its excited state, i.e., we measure the
atom at the output of the second cavity and only perform
a measurement on the fields if the atom has come out in
its upper state. Then only the ﬁrst term in Eq. (4.13) will
be present, but we still have (a,a] )50. In this case the
atom starts in the upper state; between the cavities it has
a nonzero amplitude to be in either state, and it leaves the
second cavity in its upper state. We can think of this as
two possible paths for the atom, one in which it is in its
upper state between the cavities and the other in which it
is in its lower state there. Therefore, the atom can follow
two different paths to reach the same final state. The am-
plitudes for these two paths interfere leading to the
nonzero value of {a laZT).

Note that if we measured the atom between the cavities
we would know whether the atom was in its upper or
lower state there, and we would know which path the
atom followed. This means that after the measurement
we would have either ¢, =0 or ¢, =0. A qulck glance at
Eq. (4.13) shows that this would result in (a,al)=0,ie.,
the coherence would be destroyed. Therefore, as expect-
ed, a measurement of which path the atom takes elimi-
nates the interference effect.

V. PHASE DIFFUSION

Using standard techniques, we can derive from the
master equation (2.3) a Fokker-Planck equation for the P
representation of the two-mode field P(a,,a,,t) [25]. We
find that

P _ 2 9’P
o= A== HA—y)g — (aP)
o 2 |“earaq, 277
—H4=7)3 *(a*P)
]
2 2
fa4|_¥P_, ®P _ BP_ . 0P
dafda, Oda,da; da, a3

(5.1)
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i0 i6 .
If we set a;=pe ' and a@,=p,e > we can rewrite Eq.

(5.1) in polar form as an equation for the P representation
considered as a function of p,, p,, 6;, and 6,. The discus-
sion in Sec. IT shows that the quantity of primary interest
is the difference between the phases of the two fields.
Therefore, we define the variables

p=(6,+6,)/2, 0=6,—0,, (5.2)

and find the Fokker-Planck equation for P considered as
a function of p;, p,, u, and 6. The coefficient of the
9’P /3%6 term D(0) is the diffusion constant for the rela-
tive phase of the fields 0 and is given by

D(O)=(A/8)[(1/p)*+(1/p,)*—(2/pp,) cosh] .

If p;=p, and 6=0, we see that D (0)=0. In fact, under
these conditions the angular drift and diffusion terms of
the Fokker-Planck equation become

(5.3)

10P_ 0P

P .
—— —— — A sinb
s 2 du a6

. (5.4)

Thus, the diffusion matrix for the angular variables is di-
agonal and the element corresponding to 8, D (6), is zero.
This means that there is no noise in the relative phase of
the fields in the two cavities. This kind of behavior is
characteristic of correlated-emission lasers [22-24]. In
order to determine how close one can come to achieving
these conditions in the oscillator rather than the amplifier
configuration, one needs to develop the nonlinear theory
for this system. We do know, however, from Eq. (2.7) or
Eq. (5.4) that 6 will lock to zero. What we cannot deter-
mine from the linear theory is the ratio p,/p, at the
operating point.

VI. ATOMIC VELOCITY SPREAD

Finally, let us discuss the effect that a velocity spread
in the atomic pump beam has on the performance of the
masers. The question which arises is whether the finite
spread destroys the coherence between the fields in the
two cavities. In order to provide an answer we note that
the atomic velocity enters the description of the system
via three parameters. We consider each of these in turn.

First, the interaction time 7 depends on the velocity of
the atoms. An examination of the expressions in the pre-
vious sections shows that the effect of a velocity spread is
to replace T by an average value in the expression for the
gain 4. In the Appendix we consider this issue from the
point of view of injected atomic coherence using the mod-
el in Ref. [26]. There we find that if the field in the first
cavity is strong, so that the interaction time is of the or-
der of the inverse Rabi frequency, then the velocity
spread does lead to a mild suppression of the coherence
between the fields. In the two-maser model we have as-
sumed that the Rabi frequencies in both cavities are
much smaller than the reciprocal of the interaction time,
so that in this regime a velocity spread has little effect.

The second parameter that is affected is the transit
time of the atoms between the two cavities. This parame-
ter does not appear in any of the expressions describing
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the coupled maser system on resonance. This is also the
case if the first cavity contains a strong classical field that
generates atomic coherence in the beam [27]. This is dis-
cussed in the Appendix. The reason that this quantity
does not appear is that on resonance the free evolution of
the phase of the field and the phase of the atomic coher-
ence are the same. Thus, no matter how long the atom
takes to go between the cavities it arrives at the second
cavity in phase with the field there.

The third place where the velocity enters is in the reso-
nance frequency. Atoms moving with different velocities
will have different resonance frequencies due to the
Doppler shift. A full consideration of this issue requires
an analysis of the situation in which the atom and the
field modes are detuned, and inhomogeneous broadening
is taken into account. A similar analysis, however, has
been carried out in the case of a more conventional
correlated-emission laser (CEL), and it has been shown
that only the atoms whose resonant frequencies are close
to that of the cavity interact significantly with the light
[28]. The physical reason is obvious; the gain is strongly
reduced for atoms with larger detunings. Thus, only the
resonant velocity group is selected, and the CEL effect
(vanishing phase diffusion constant) remains. By analogy,
we anticipate that the situation with the two-maser sys-
tem is similar. Only the resonant velocity group contrib-
utes significantly to the gain, and, from the discussion in
the Appendix, it follows that for this group the atomic
coherence is in phase with the field upon entering the
second cavity. The full pump beam can be utilized if
TA <1 (A being the inhomogeneous width). Otherwise,
only that portion for which the detuning times T is less
than 1 will contribute to the gain. A complete analysis of
the two-maser problem including nonlinear operation as
well as inhomogeneous broadening will be presented in a
future publication.

VII. CONCLUSION

We have seen that the fields of two masers pumped by
a common beam of excited atoms will be coherent. The
first maser induces atomic coherence in the beam passing
through it. As a result the atoms carry information
about the field in the first cavity. This information is
then transferred to the field in the second cavity, thereby
producing coherence between the fields. In particular,
the relative phase of the two fields locks to zero and can,
under the proper conditions, have a diffusion constant
that is zero. This makes the pump-coupled maser system
an example of a correlated-emission laser. If the effect of
atomic decay between the cavities is taken into account
this conclusion is modified slightly. If the lifetimes of the
masing levels are large in comparison to the time that the
atom spends between the cavities, then at equal intensi-
ties the diffusion coefficient will not vanish but can be
made very small.

We also found that the field in the second cavity grows
faster than that in the first. This is caused by the fact
that as the field in the first cavity grows, the amount of
atomic coherence injected into the second cavity grows as
well. This leads to a greater than exponential increase
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with time of the photon number in the second cavity.

It should be noted that in the case of micromasers, due
to the lack of photocounters in the microwave regime
and the fact that the fields are weak, it is impossible to
directly measure the field in the cavity. The state of the
field is inferred from the state of appropriately prepared
probe atoms as they exit the cavity, as measured by
state-selective field ionization [29-32]. In the case of the
two-cavity scheme being considered here, the coherence
of the two fields can be deduced from a scheme involving
several probe atoms. For example, let p,(p,) denote the
probability that probe atoms initially prepared in their
upper state and sent through the first (second) cavity are
detected in their lower state upon exiting that cavity, and
P 1, be the probability that an atom injected into the first
cavity in its upper state emerges in its lower state after
having passed through both cavities. A short calculation
using second-order perturbation theory shows that the
quantity p,, —p; —p, is equal to (gT)?n,,, where all cavi-
ty transit times have been taken to have the same value
T. Therefore, by using a three-probe-atom scheme one
can find n,.

Previous schemes for coupling two lasers have involved
taking a part of the output light from one laser and in-
jecting it into the second [33]. This produces coherence
between the output of the two lasers. What has been
shown here is that coupling via a common pump can pro-
duce similar results.

Finally, we note that a finite velocity spread in the
pump beam should not present a problem in observing
the effects discussed above. As a result, it should be ‘pos-
sible to realize this system in the laboratory.
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APPENDIX

. Here we would like to discuss two aspects of the mas-
ter equation for a maser with injected atomic coherence.
First, the definition of the parameter s appearing in Eq.
(4.1) is slightly different from that given in Ref. [26]. We
shall derive the definition we use. The second point con-
cerns the sensitivity of a maser with injected atomic
coherence to the velocity spread of the atomic beam. In
particular, if the atomic coherence is generated by a
strong classical field in the first cavity, then, on resonance
and to the level of approximation used in this paper, the
dependence of the behavior of the maser on the velocity
spread is relatively weak.

The atomic coherence produces the last term in Eq.
(4.1). It is derived by considering, to first order in g, the
effect of an atom with density matrix p®(¢) entering the
maser cavity at time ¢ and interacting with the field for a
time T. The other terms that appear in the master equa-
tion are standard. Thus, the change in the maser field
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produced by the atomic coherence is
t+T
8pr(Deon=—1 [ dt'[H,(1),p(1)]
=—iT Tr {[H,(1),p*"(t)®pp(t)]}
=—igT[{ Tr 4 [p*t)o ~()]a'(2)
+ Tr [p® () T () ]a(t)},pp(t)] .
(A1)

Here we have used the fact that H, is time independent
and have chosen to evaluate it at . The contribution of
the atomic coherence to the coarse-grained time deriva-
tive of pp is given by multiplying py(t).,;, by the atomic
injection rate r. Doing so immediately gives the last term
of Eq. (4.1) with the definition of s quoted after Eq. (4.1).

Let us now consider the case in which the first cavity
contains a strong field that can be described classically.
The interaction of the atom with this field can be de-
scribed by the interaction picture Hamiltonian

H(1)=g'Ey[e®o (t)+e o™ ()], (A2)

where resonance between the atom and the field has been
assumed. Here E; is the amplitude of the field and g’ is
one-half the transition dipole matrix element. The Ham-
iltonian H;(¢) is, in fact, time independent because the
time dependences of the operators are cancelled by the
time-dependent exponential factors.

Let us inject an atom into the first cavity at ¢t —7—T.
This means that it will arrive at the second cavity at time
t. Our object is to find s =grTp'a(¢). The atom is inject-
ed in its upper state so that at time ¢t —7— T we have

Pt —r—T)=|a)(al . (A3)

Upon leaving the first cavity at time ¢ —7 the atomic den-
sity matrix is

p* Nt —7)= exp(—iTH,;)p'"*(t —7—T) exp(iTH,,),

(A4)
from which we find
Pt —7)=Tr ([p* Nt — 7)o " (t—7)]
=je """ Tsin(g’EyT) cos(g'E,T) . (A5)

The atom now propagates freely reaching the second cav-
ity at time z. Because there is no interaction during this
period we have p®(z)=p'® (¢ —7). On the other hand,

o ()=e o (t—7), (A6)
so that
pa(t)=e " 1opa(t — 1)
=je " 1%'sin(g'E,T) cos(g'ET) . (A7)
For s we then have
s(t)=igrTe "'sin(g’'EqT)cos(g'E,T) . (A8)

Note that the combinations s (¢)a'(¢) and s(¢)*a (z) that
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appear in the master equation are time independent. The
time dependence of s cancels the time dependence of the
interaction-picture operator a (z).

The only dependence on the atomic velocity in Eq.
(A8) is through the interaction time 7. If the atomic
beam has a velocity spread, then the expression for s ()
must be averaged over the values of T corresponding to
the range of atomic velocities. In particular consider an
atomic beam with an average velocity 7 and velocities be-
tween U—Av /2 and U+ Av /2, where we assume that
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Av /v <<1. If an atom with velocity 7 has an interaction
time of T, then the interaction times lie in the range be-
tween T—AT/2 and T+AT /2, where AT=(Av/7)T.
If we average s over the interaction times we find that if
QAT <<1, then s is of order grT. If QAT is of order one
or greater, then s is of order grT /QAT. Thus, we see
that while the dependence of the atomic coherence term
in the master equation is rather weak, the effects of atom-
ic coherence will be greatest if QAT =(Av /7)QT is of or-
der one or less.
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