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Modal study of the role of excess noise in x-ray lasers
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Current x-ray laser designs rely on amplifying spontaneous emission in a high-temperature plasma. A
central problem in the study of x-ray lasers is determining and optimizing the degree of transverse spa-
tial coherence for holographic applications. The inherent non-power-orthogonal character of the nor-
mal modes in a general amplifying medium necessarily results in excess noise and cross-correlation
e6'ects that can significantly afT'ect the predicted coherence and intensity profiles of an x-ray laser. In
particular, loosely bound discrete transverse eigenstates of the paraxial wave equation have previously
been found to dominate the intensity and coherence in the low-amplification regime if the continuum
eigenstates are omitted from the spectrum [London, Strauss, and Rosen, Phys. Rev. Lett. 65, 563 (1990)].
A detailed analysis of the role of excess noise on steady-state laser intensity and coherence is presented
for the simple case of a transverse square gain and density profile in a finite geometry. The inclusion of
the continuum portion of the spectrum is found to substantially reduce the level of excess noise and to
alter the coherence predictions for low and intermediate gain-length products.

PACS number(s): 42.50.Ar, 42.55.Vc, 42.60.Da, 52.25.Nr

I. INTRODUCTIVE

The recent demonstration of x-ray lasing near the car-
0

bon K edge ( =43.7 A) in Ni-like tantalum and tungsten
brings closer the feasibility of holographic imaging of wet
biological samples [1,2]. A key requirement in holograph-
ic applications of x-ray lasers is adequate coherence, both
in the longitudinal (temporal) and transverse (spatial)
directions. The longitudinal coherence appears sufficient
based on measured and estimated intrinsic linewidths.
For example, in Ni-like Ta the width AA, of the 44.8-A
line is estimated to be less than the intrinsic Doppler line

0
profile width of 5 mA, giving a longitudinal coherence
length of A, /hA, greater than 37 pm. Recent measure-
ments of the 206-A Ne-like Se line profile in fact support
this argument [3]. Because this coherence length far
exceeds the path-length diA'erence between the object and
reference beam in current x-ray laser holography designs
[4], longitudinal coherence appears to be satisfactory.
The situation is more problematic for transverse coher-
ence where the required coherence length (at the position
of the object) must exceed the transverse dimension of the
object, which is typically about 10 pm, and the photon
fluence must exceed some minimum value [2]. In prac-
tice, these conditions generally mean that we must re-
quire a coherence length at least comparable to the lasing
half-width, giving a significant fraction () 10%) of the
output energy as coherent energy. As London, Rosen,
and Strauss have recently suggested [S], the most direct
way of improving the transverse coherence is to increase
the gain-length product in concert with gain-guiding and
refractive-defocusing e6ects. Unfortunately, the use of
cavities to increase the e6'ective gain-length product is
hindered by current x-ray mirror technology (particularly

at shorter wavelengths) and by the short lifetime ( —100
psec) of the lasing plasma equilibrium state. At present,
one particularly promising approach towards improved
transverse coherence relies on the use of multistage
(oscillator-amplifier) architectures with spatial filtering
[6].

There are at present two main analytic approaches to
understanding x-ray laser coherence: (1) expanding the
electric field in terms of a longitudinally coupled orthogo-
nal basis set and then solving for the electric-Geld correla-
tion function by Green's-function techniques [7,8], or (2)
employing a longitudinally decoupled nonorthogonal
(and possibly incomplete) set and solving directly for the
correlation function [S,9,10]. The former procedure has
the advantage of avoiding altogether the completeness
problem for the spectral basis, but sufi'ers from a difficult
implementation. The second technique, or modal ap-
proach, involves solving a Schrodinger-type equation
with a complex potential where the associated eigenfunc-
tions possibly may not constitute a complete set. The
main advantage of the modal approach lies in the relative
simphcity of solving for the mode spectrum, which, we
argue, more closely agrees with the conventional descrip-
tion of the normal modes of a lasing medium, e.g. , in
terms of Fox-Li transverse resonator modes.

The modal method has recently been used to under-
stand some basic properties of x-ray laser coherence for a
few simple transverse gain and density profiles [2]. The
square gain profile permits a considerable degree of ana-
lytic progress and thus has served as a useful model to de-
scribe some of the essential aspects of x-ray laser coher-
ence. The spectrum associated with the transverse square
profile consists partially of a set of discrete bound states
or "laser" modes that dominates the intensity for
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suKciently large gain-length product. These modes were
exclusively considered by London, Rosen, and Strauss in
their study of x-ray laser coherence [5]. A key finding in
their analysis is that the total intensity and coherence
profiles are particularly sensitive to the gain strength.
Specifically, if the gain is increased by an infinitesimal
amount, a very marginally bound mode may suddenly
emerge that can dominate the intensity at large trans-
verse distances away from the lasing medium (see Fig. l).
This phenomenon is not at all new; it is related to excess
spontaneous noise that arises from the inherently non-
self-adjoint character of any amplifying medium [10,11].
A conventional measure of excess spontaneous emission
is the so-called Petermann factor, which equals unity in
the absence of gain and can be much larger than one if
the mode is loosely bound or marginally localized [12].
An understanding of excess spontaneous noise is of
paramount importance in determining and optimizing
transverse coherence in current x-ray-laser experiments.

In this paper we emphasize that the continuum portion
of the spectrum must be considered in addition to the
bound modes for a proper description of x-ray laser in-

tensity and coherence, as originally suggested by London,
Rosen, and Strauss [5]. Our contribution in this work is
to study in detail how the properties of excess spontane-
ous noise are affected when unbound or continuum nor-
mal modes are included in the spectrum. It is found that
the aforementioned sensitivity of the electric-field intensi-

ty on the gain strength largely disappears when bound
and unbound modes are treated together. As a conse-
quence, the contribution to the electric-field intensity out-
side of the lasing medium from loosely bound modes is
greatly reduced, thereby effectively lowering the value of
the Petermann factor. The explanation for such a re-
duced level of excess spontaneous noise is that the normal
modes are often highly cross-correlated and provide the
required cancellation when a presumably complete spec-
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trum is considered. This behavior is not limited to very
short amplifiers where no gain discrimination occurs [9],
but also arises in systems with moderately large gain-
length product. In brief, the inclusion of the continuum
affects the overall intensity and coherence profiles for
gain-length products that are presently of experimental
relevance by mostly eliminating what is often character-
ized as excess noise.

We organize the paper as follows. In Sec. II we consid-
er square transverse gain and density profiles in a finite
geometry and analyze the full spectrum of eigenmodes.
We then proceed to show, both analytically and with nu-
merical examples, how the inclusion of the continuum
provides the required cancellation of global intensity due
to one loosely bound mode. In Sec. III we study in detail
local intensity and coherence profiles and explore how
they each differ in the absence of the continuum modes.
We present a summary and conclude in Sec. IV.

II. ANALYSIS

A. Mode equations

Our starting point for investigating the role of excess
noise in x-ray laser optics is the scalar wave equation for
the transverse component of the electric-field E

1 8 E 4m. BP (l)
c2 c)t2 c2

where P is the atomic polarization responsible for spon-
taneous and stimulated emission (or absorption), and J is
the current density. We assume that the current density
is due only to the free electrons of the plasma, giving
BJ/Bt =(to /4~)E, where a~„=5.64X10 n,'~ rads ' is
the electron plasma frequency and n,, is the electron den-
sity. We next make a slowly varying envelope approxi-
mation for the electric field and atomic polarization as
follows:

E(r, t)=6' (r)e' ' "'+c.c. ,
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FIG. 1. Shown are intensity profiles using only bound modes
as in London, Rosen, and Strauss [5] as a function of normal-
ized transverse position x when the strength of the gain as mea-
sured by I", is slightly varied from 100 to 110. Note the particu-
lar sensitivity of the intensity profiles beyond x =1 as P, is
raised and new bound modes are created.

where k =u/c is the free space wave number and the m

subscript on the fields refers to one Fourier component of
the electric field traveling in the positive z direction. In
steady state we may write P„=iK E„+P, , where the
first expression describes stimulated processes and the
second term represents a random polarization source that
is associated with spontaneous emission [13]. The
response function K (r) =(m.d z, /3A')N(r)ttj(co) is propor-
tional to the gain, where d2i is the dipole matrix element
for the n =2 ~ n = 1 atomic transition, bN(r) is the
atomic population inversion per unit volume, and t/r(co) is
the line profile function (or imaginary part of the atomic
susceptibility) normalized by the condition f g(co)dao = l.
We assume that the transition is unsaturated, so that AN
is independent of E,„.

The particular physical system we wish to study is that
of a plasma uniform in the z direction that can support
amplified spontaneous emission (ASE), given a set of
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where Vi is the transverse Laplacian, h (x) =co (x)/ kc
is the refraction strength, and g(x, co)
=4ir dz, kf(co)b, X/3A' is the frequency-dependent gain
coefficient. In the modal approach, a solution to Eq. (2)
is sought by writing the electric-field amplitude E„as a
(presumably complete) mode expansion of longitudinal
and transverse factors:

E„(r)= g c„(z)u„(x), (3)

where the transverse functions or modes u„(x) are eigen-
functions of the paraxial equation mi thou t the
spontaneous-emission source term:

—F, [i)h (x)—ig(x) ] u„(x)= —E„u„(x), (4)
X

and the longitudinal functions c„(z) satisfy

Bcn
u„

n

l——E„c,u„=—iI',

In Eqs. (4) and (5), E„ labels the eigenvalue
(E„=—2ika q„of London, Rosen, and Strauss [5]) and
we have rescaled all quantities according to the following
prescription: x —&xa, z ~zka, P, ~P,„/2n(ka)2,
h ~h /ho :=h, g ~g/go =—g, where ho denotes a mean re-
fraction strength, go is an average value of gain, and a is
a representative width of the lasing medium. We also
have introduced the dimensionless parameters I", and g,
where I, =kgoa is an effective Fresnel number for an
amplifying medium, and g=ho/go provides a measure of
the relative strengths of refraction and gain.

Equation (4) is a Schrodinger-type equation with a
complex potential. Because of the non-self-adjoint prop-
erties of such an equation, the eigenvalues E„are general-
ly complex, the eigenfunctions u„(x) are not mutually or-
thogonal, and the spectrum of eigenfunctions may not be
complete in general [16]. The first two properties are of
clear physical relevance to ASE systems, but the last one
presents a mathematical complication about which we
can say very little in general. A proof of completeness ex-
ists for the special case of unbounded parabolic gain and
refraction profiles, but the physical appropriateness of
such an example is not clear. For most ASE x-ray laser
experiments the refraction strength parameter q is much

transverse profiles for the gain and electron density. For
typical ASE x-ray laser experiments prepared by intense
line focusing [1],we may further assume that the system
is homogeneous in the y direction as also commonly
adopted in stripe geometry solid-state laser modeling
[14]; the extension to a two-dimensional (2D) transverse
system is straightforward but will not be considered here.

A steady-state paraxial wave equation follows from Eq.
(1) by substituting the above definitions and assuming
I&'E„/Bz'I «(2k&E„/&z I or )O'E„/&x'I [15]:

r

2i ——h (x)+ig (x, co) E(r) = 4~k—P (r),1. 2 a
k '

Oz SP

dc„(z) =—E„c„—ip„,
dz

(7)

where p„ is the projection of the spontaneous polarization
term onto the nth eigenfunction:

p„=f u„P,„dx .

The quantity of main interest is the two-point electric-
field correlation function in space (E (r, )E*(r2)),
where the angular brackets indicate an ensemble average.
This is conventionally called the mutual intensity in the
optics literature [17]. For r, =r~, the correlation function
reduces to the radiation energy density, while for r,&r2,
it describes the degree of spatial coherence of the field.
From the mode expansion given by Eq. (3), we can write
for the correlation function:

(E (r, )E*(r,))= g (c„(z,)c'(z, ))u„(x, )u'(x, ) .

The correlation term (c„c* ) is found by formally solving
Eq. (7) for c„(z) and then taking the ensemble average of
the product, which will involve a term of the form
(p„p* ). This spontaneous emission is assumed to be 5-
function correlated in space, since all length scales of in-
terest are much larger than the interatomic spacing, and
the spontaneous emission from dift'erent atoms is expect-
ed to be uncorrelated. The normalization is determined
by equating the classical radiation from an ensemble-
averaged dipole moment per unit volume to the atomic
spontaneous radiation given by the Einstein relations
[10],yielding

larger than unity, and the gain contribution to the "po-
tential" in Eq. (4) may be viewed as a small perturbation
to the zero-order continuum portion of the spectrum,
which is complete for a finite "potential. " However, the
discrete modes are not describable by conventional per-
turbation techniques, and although they represent only a
"small" yet finite contribution to the full spectrum, their
inclusion is essential for all values of the gain-length
product. For the square gain profile that we will consider
shortly, a qualitative measure of completeness will be
presented that allows us to gauge the degree to which our
adopted spectrum is complete.

It is straightforward to show that the eigenfunctions of
Eq. (4) are biorthonormal in the following sense:

f u„u dx =5„,and satisfy the following identity:

(E„—E* )f u„u*dx+2iF, f gu„u*dx =0, (6)

provided the operator 8 is Hermitian with respect to
the eigenfunctions u„and u, which satisfy the boundary
condition u„*du /dx

~ z =u„*du /dx
~ z. We will

shortly construct eigenfunctions for the square profile
that satisfy homogeneous boundary conditions at the
boundaries x =+A and thereby permit use of Eq. (6).
Using the biorthonormal property of the eigenfunctions
and a chosen normalization Ju„dx =1, we find the fol-
lowing equation for the longitudinal functions c„(z):
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(P, (r, )P,' (r2)) =8m. F,g(x, co)fib, co (k/~ )

X5(r, —r2), (10)

where X2 is the upper atomic state number density and
b,co is the full width at half maximum (FWHM) linewidth
of the atomic transition. From Eqs. (6) (7), and (10) we
easily find

(c„(z)c'(z))=C, (e " —1)8„

where C& =8' Amoco(kla )N2/AN is assumed to be con-
stant, and 8„=f u„u *dx(%5„). In Eq. (11) we have
taken ( c„(0)c'(0) ) =0, so that only the amplification of
modal emission from within the lasing medium
(0 z ~ I. ) is considered.

We define the coherence function as the absolute value
of the complex coherence factor [18]:

p(x„x2,z)= (E.(x „z)E.*(x,,z) )

[(E (x„z)E*(x„z))]' [(E„(x2,z)E*(x2,z)) ]' (12)

For example, p is the fringe visibility in a two-
slit interferometer when (E„(x„z)E*(x „z) )
=(E„(x2,z)E*(x2,z)). We identify (lE (x„z) )c as
the field intensity I (x „z), where c is the speed of light.

Determining the field intensity and coherence function
requires performing a double summation over all possible
eigenfunctions of the spectrum, cf. Eq. (9). The inherent
non-self-adjoint nature of the transverse operator [Eq. (4)]
implies that the off-diagonal contributions in Eq. (9) are
nonzero in general and that the diagonal terms satisfy

f lu„l dx/f u„dx ) 1. The left-hand side of this latter
inequality defines the Petermann factor, which has served
as a conventional measure of the amount of excess spon-
taneous noise arising from each eigenfunction [12]. How-
ever, this definition makes no allowances for cross-
correlation effects between differing eigenmodes, which
can greatly modify the amount of excess spontaneous
noise up to moderate values of the gain-length product.
For systems dominated by only one laser mode, the
Petermann factor provides a meaningful description of
excess noise. However, present ASE experiments do not
seem to be dominated by one transverse mode but by
many modes, some of which are marginally bound and
may indeed contribute substantially to the excess noise
level. In this case the effect of cross-correlations between
eigenmodes may significantly reduce the level of excess
noise as gauged by the Petermann factor. We now illus-
trate this phenomenon by studying in detail the case of a
transverse square gain profile.

I

of the boundaries. The ensuing analysis will bear a close
relationship with the well-known quantum-mechanical
treatment of a square well or barrier, but where the gain
now acts as a potential well and the refraction strength
behaves as a potential barrier. Similar modeling has pre-
viously been applied toward simple diode junction lasers,
with transverse intensity profiles generally dominated by
far fewer modes than for the case of an ASE x-ray laser
[19]. From the former application, the phenomenon of
excess noise was later predicted, but only within the con-
text of the fundamental laser mode [12]. Here we are in-
terested in exploring this phenomenon for the case of aII
laser modes which pertains to an x-ray laser.

The square transverse profiles considered here are not
proposed as realistic descriptions of a laboratory ASE x-
ray laser medium. There are two main reasons why we
choose to use these simple transverse profiles as given by
Eqs. (13a) and 13(b). First, an understanding of some key
properties of excess noise in an ASE x-ray laser is greatly
advanced by adopting such a simple model. Second, the
consideration of more realistic profiles can be convenient-
ly based on the relatively simple properties of the square
transverse profile as a starting point. In a forthcoming
paper we will show that the derived properties of the
square transverse profile prove useful in studying arbi-
trary profiles by simply numerically evolving the square
case into any desired configuration.

B. Square transverse gain modeling: The spectrum

We consider the following square gain and refraction
profiles:

g, if IxI~1
'=0 fll»,

h, if lxl

0 if lxl) 1

(13a)

(13b)

for a finite slab geometry of half-width A ) 1 (see Fig. 2).
The finite geometry is employed only as a mathematical
device to naturally introduce the continuum; no physical
significance is necessarily attached to the actual location

x =-A -a a

FIG. 2. Cxeometry of lasing medium with outer conducting
boundaries.
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where P„= QE—„, [20], a„=[P„F,(—g i )]—', X„ is
the normalization constant, and A„and D„are deter-
mined by matching conditions on u„(x) and du„(x)/dx
atx =1:

P„tang„—a„tana„D„=
a„tanP„tana„+P„

A„=
a„sina„sin13„+P„cosa„cosP„

The vanishing of E„atx =+A determines the eigenvalue
condition

a„tana„=P„cot[13„(A —1)] . (17)

We divide the spectrum into two distinct types:
discrete or bound modes and continuum or free modes, in
analogy with quantum-mechanical potential theory. The
bound modes are determined from the condition that
Im(P„) )0 remain finite in the limit as A —& ~. This en-
sures that the bound eigenfunctions are localized near the
lasing medium and tend asymptotically to zero with in-
creasing A. For the bound even parity solutions the ei-
genvalue condition (17) reduces to

a„„tana„b = i P„/,— (18)

where the nb subscript is used to distinguish the bound-
mode portion of the spectrum. For ImP„b )0, the solu-
tions of Eq. (18) yield a finite set of eigenvalues that was
treated previously by London, Rosen, and Strauss [5].
For typical x-ray laser experimental parameters, both
F, )) 1 and F, /i) ))1 are satisfied [1,21], and the number
of bound or guided eigenmodes n scales as
2 ,F[/~l [nF, (/1 +my)]] [5]. Typically, n is on the order
of several hundred, which is merely an artifact of the
sharp-edged profiles we have chosen. For more realistic
profiles that are smooth everywhere, e.g. , g (x, co),
h (x) ~sech (x/a), the number of bound states can be
shown to be on the order of only five —ten [5]. In general,
the spectrum is misrepresented by including only the
bound or guided modes in the low and intermediate
gain-length regime; the continuum modes must also be
considered, as we verify shortly.

The free or continuum modes (denoted by the subscript
E) are defined by the requirement that in the limit as
3 —+ oo, the product A Im(/3E):=vE remain finite or at
most scales logarithmically with A. Stated more simply,
the free modes remain finite in x as A —+~. Analytic
properties of the continuum modes are presented in Ap-
pendix A.

The solutions of the transcendental eigenvalue equa-

We adopt perfectly reflecting boundary conditions at
x =+A so that E (x) is vanishing at both boundaries.
The eigenfunctions are of two types: even and odd pari-
ty. For example, the even parity solutions to the paraxial
wave equation (4) read

cosf3„x +D„sin/3„x, x ) 1

u„(x)=X„A„cosa„x, ixi ~ 1 (14)

cosf3„x —D„sinP„x, x & 1

0 s ~ ~ ~ I ~ ~ ~ ~ I ~1 s

Bound eigenstates

O

E 01 Continuum eigenstates

0.01

0..001 ~ ~ ~ ~ I s s ~ ~ I ~ ~ ~ s I ~ s s ~ I ~ s ~ ~ I s ~ ~ ~ I ~ ~ ~ ~

20 30 40 50 60 70 80 90

Re(-P)

FIG. 3. Spectrum of even-parity eigenmodes in complex ei-
genvalue (P) plane.

tion (17) are readily found by the Newton-Raphson root-
finding technique. Figure 3 displays a particular spec-
trum of even-parity eigenmodes in the complex-P plane.
Shown also is the contribution to the spectrum from the
bound or discrete modes. The first bound mode appears
precisely at the top of the refractive "potential' barrier,
i.e., Re( f3„b

—)=(F,g)', with successive bound modes
found above the barrier. The last bound mode nearly
merges with the continuum, indicating a virtual coales-
cence of the two branches of the spectrum in this region
of the P plane. It is quite clear that situations may arise
in which this last marginally bound mode is practically
indistinguishable from its neighboring set of continuum
eigenstates. This possibility nicely illustrates the need to
include the contribution from neighboring free modes
when considering the field intensity associated with a
loosely bound mode.

A further look at Fig. 3 shows that the presence of
bound modes in the spectrum has the e6'ect of locally per-
turbing the underlying continuum states upward [in
Im(P)], particularly those near the more loosely bound
modes. Beyond the last bound mode, however, the con-
tinuum continues to experience a similar type of behav-
ior, despite the apparent absence of bound states. We can
gain some insight into this phenomenon if we briefly note
that the A = ~ analysis of London, Rosen, and Strauss
[5] happens to also generate unbounded (in x) solutions
that very nearly coincide in Re( —13) with the positions of
the local maxima of the continuum in Fig. 3. These
spurious solutions (or negative energy states) were
correctly discarded on physical grounds in their analysis,
but the e6'ect of these quasimodes on our finite A model
is unmistakable: free-state resonances arise in their place
instead [22]. Such resonant states have their natural
analogue in quantum mechanics, where free states in the
vicinity of a transmission resonance can behave as "alss

most bound states" in a potential well [23]. As we
demonstrate in the next section, the spectrum associated
with any ASE medium can be approximately viewed as
an infinite set of "normal" modes that consists of a finite
number of bound modes and a complementary set of
"almost-bound states" or resonances originating from the
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continuum. However, weakly bound modes and neigh-
boring free-state resonances are not at all independent
but effectively interact to give a substantially reduced in-
tensity contribution. This simplified description of the
spectrum may prove useful for more complicated gain
and refraction strength profiles, which may e8'ectively
prevent us from performing a detailed spectral analysis.

C. Square transverse gain modeling: The intensity

An understanding of the spectrum for Eq. (4) now al-
lows us to consider in some detail the properties of inten-
sity profiles in an ASE transverse square gain medium.
We begin by rewriting Eq. (9) for the correlation function
in terms of explicit bound and continuum contributions:

(F. (x„z)E*(x2,z)) =C, QB„u„(x,)u*(x2)(e " —1)+ g BEF.u~(x, )u~ (x2)(e"' ' —1)
n, m E,E'

iz(E„—E *)/2 iz( E —E„)/2+QB„Eu„(x,)uE(x2)(e " —1)+ QBz„uz(x, )u„(x2)(e " —1)
n, E E, n

(19)

I„,(z) = ~ B2 (
"~.— m~~'

1)
n, m

B2
(

iz(E —E' )/2

E,E'

E, n

(20)

where

F,E,1V 3;A.*
B;

sin(a, —a,*) sin(a, +a~ )+
(a, —a*) (a;+a~ )

(21)

i and j both refer to bound or free states, the + ( —) sign
denotes even (odd) parity eigenfunctions, and the
coefficients A, are determined from Eq. (16). For large
half-width A, the normalization constants for the bound
and free states are readily evaluated:

where the first expression on the right-hand side
represents the bound-bound ( b b) con-tribution, the
second term is the free-free (f f) portion, -the third term
refers to the bound-free (b f) contrib-ution, the last ex-
pression corresponds to the free-bound (f b) portion -of
the electric-field correlation function, and the B; . 's are
defined below Eq. (11). For ease of notation we have re-
placed the previous bound-mode subscript nb by the sub-
script n in Eq. (19).

In this section we concentrate on analytically evaluat-
ing Eq. (19) for the integrated intensity to see to what de-
gree the intensity contribution from free modes can can-
cel the anomalously large intensity associated with one
marginally bound mode. Setting x, =x2 and integrating
Eq. (19) over x, for the total intensity I„, gives with the
aid of Eq. (6)

I

sin2cK n1V„= An 1+
20,'n

X,= t ~ (I+D2 )]-'"

2g'P !
—1/2

e

2iP„
(22)

(23)

We can make further use of the large A assumption by
converting the sums over free states in Eq. (20) into in-
tegrals over PE, .

1~ 1 yo (24)

Equation (25) clearly demonstrates that the total intensity

Consider two neighboring marginally bound modes in
Eq. (20), which we label with the indices n' and m'. We
wish to estimate the intensity derived from these particu-
lar bound modes, taking into account the e6'ect of neigh-
boring or "resonant" free modes. Clearly, the diagonal
elements (n =n', m =m') in the b bsumrnatio-n of Eq.
(20) will dominate this partial contribution to the total in-
tensity if Im(p„) and Im(p, ) are small relative to those
of the other bound modes. For the other three terms in
Eq. (20) involving free-mode contributions, i.e., f f, b f, --
and f b, we note that t-heir contribution is only dominant
in the vicinity of a bound mode, i.e., when E=En. and
F. '=E . This simply follows from Eq. (23), where a res-
onance is identified for DE=+i. However, with use of
Eqs. (15) and (18), this condition defines precisely the
bound-mode dispersion relation, Eq. (18). Thus, we may
Taylor expand all of the exponential terms in Eq. (20),
noting that this procedure holds even for quite large
values of the gain-length parameter goz if the mode is
very marginally bound and n' =m'. This means that our
analysis is not necessarily restricted only to the
spontaneous-emission stage (goz ( 1), where no gain
discrimination of modes occurs.

In the vicinity of one loosely bound mode (labeled by
n ) we may evaluate Eq. (20) by contour integration
methods, which are briefly described in Appendix B. The
various intensity contributions are found to satisfy

(25)
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FIG. 4. Dispayed are the normalized integrated intensity
contributions from the bound-bound (b b), free--free (ff),
bound-free plus free-bound (b f) terms -in Eq. (20) and their sum

(total) as a function of gain-length parameter goL in the absence
of refraction (g =0).

tially integrated intensity disappear within the context of
a complete spectrum, at least in a global sense. Figure
5(a) shows the various intensity contributions as a func-
tion of transverse position. A particular loosely bound
(odd-parity) mode with the same parameters as used in
Fig. 4 and which has an appreciable amplitude well away
from the lasing slab ( ~x~

~ 1) was selected. The neighbor-
ing free modes were chosen with the aid of Fig. 3 by
selecting only those modes situated near a local max-
imum in Im(p) that also coincides with the bound mode
under consideration. The results are not at all sensitive
to the precise segment of the continuum used as long as
the few free modes lying near the center of the resonance
are included. Although the individual component inten-
sities are relatively large over the transverse distance in-
dicated, the total intensity profile shows how efFective the
cancellation is almost everywhere. Beyond x =3, the glo-
bal cancellation rule represented by Eq. (25) turns out to
be quite well obeyed for this local case. As we increase
the parameter goz, the b-b component of intensity in-

b b +If f +Ib f +If b vanishes in the spontaneous-
emission stage. Figure (4) displays the relative contribu-
tions to the total intensity for a particular weakly bound
mode (ReP„.=27.4, ImP„=0. 118, Im(E„ /F, )=g„ /' go=0.065, A = SO), which were found by numerically
evaluating Eq. (20). In this evaluation we sum over the
free modes ( =SO) in the immediate vicinity of the bound
mode on the Re( —p) axis (see Fig. 3). Strong
confirmation of our analysis is evident even for gain-
length parameters a good deal larger than unity. The
conclusion drawn from this exercise is that the intensities
derived from loosely bound modes make little global con-
tribution to the total intensity for small and moderately
large gain-length parameters. Thus the "excess noise"
derived from marginally bound modes is insignificant in
the presence of cross-correlation efFects. For larger gain-
length parameters, gain discrimination renders irrelevant
any contribution from loosely bound states, since the
higher gain states (or more tightly bound states) dominate
the intensity. In the next section we study the amount of
cancellation occurring in the local intensity.

III. INTENSITY AND COHERENCE PROFILES

A. Intensity

The evaluation of the average ASE intensity profile
from Eq. (19) (with x, =x2) is analytically intractable in
general and requires a numerical efFort. In this section
we examine further the role of excess noise on ASE inten-
sity profiles by verifying the local cancellation of b-b in-
tensities, qualitatively studying the degree of spectral
completeness, and determining total intensity profiles for
experimentally relevant gain-length parameters.
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Local b-b intensity cancellation

In the last section we confirmed that the anomalously
large contributions from loosely bound modes to the spa-

FIG. 5. Shown are the normalized local intensity contribu-
tions from the bound-bound (b b), free-free (f-f-), bound-free
and free-bound (b-f) terms in Eq. (19) (with x, =xz ) vs normal-
ized transverse position x for gain-length goL =10,10.
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creases, but as Fig. 5(b) demonstrates, significant cancel-
lation still occurs even for goz as large as 10.

2. Spectral completeness

As we have indicated in Sec. II A, the issue of spectral
completeness is very relevant to our use of the modal ap-
proach in exploring the degree to which excess noise phe-
nomena may affect our conceptual understanding of ASE
x-ray laser intensity and mutual coherence profiles. So
far we have exhaustively examined many aspects of a
square gain profile under the working assumption that
our spectrum of normal modes is "adequately" complete.
A precise measure of completeness is beyond the scope of
this paper, but we can gain some insight into a qualitative
measure of this property by analyzing intensity profiles in
the very low gain-length parameter regime.

In the limit z ~0, Eq. (9) for the field correlation func-
tion becomes

1.2
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where we have relaxed the previously assumed form of
the spontaneous-emission correlation function, Eq. (10),
as follows:
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For a biorthonormal basis set, spectral completeness is
defined by the relation [9]

W

0 ~ ~ ~ ~ I ~ ~

0 0.5 2.5

gu„(x, )u„(x2)=5(x, —xz) . (28)

(E (x„z)E (x2, z)) =z(P, (x, )P,*~(x2)) . (29)

Applying Eqs. (26)—(28) and performing the integrations
gives

FIG. 6. (a) Normalized local intensity vs transverse coordi-
nate x for three spectra labeled by the total number n& of modes

included, and (b) normalized local intensity vs normalized trans-

verse coordinate x for two values of the refraction strength pa-
rameter q.

Physically, a minimum correlation length for spontane-
ous emission should be on the order of an atomic dimen-
sion [10]. Accounting for such a correlation length al-
lows us to take x, =x z for evaluating the intensity
without formally encountering a divergence, cf. Eq. (10).

An important feature of Eq. (29) is that the right-hand
side must vanish where the density of spontaneous emit-
ters is zero and that the field intensity within the gain
medium must be Hat, since the density of upper-state
emitters N2 is assumed constant in x. More simply stat-
ed, the intensity profile must reproduce the source profile
if the spectrum is complete [9]. Consequently, a qualita-
tive measure of completeness is found by comparing a
computed transverse intensity profile for a given basis set
of eigenfunctions with this idealized field profile. In Fig.
6 we display some intensity profiles as a function of the
number of eigenmode states n& (free and bound) that are
taken to define a basis set. For larger values of n&, the
source is satisfactorily reproduced by the profiles, al-
though some slight difference with the idealized case is

evident. A quantitative measure of the discrepancy is a
dificult endeavor, but a qualitative notion of complete-
ness can be gleaned from inspection of very low gain-
length intensity profiles in general. Figure 6(b) displays
two intensity profiles that differ only in the value of the
refraction strength parameter q. Clearly, the q=1 and
10 cases do a better job of reproducing the source for the
same number of free modes compared to the lower g ex-
amples. We note that as g becomes large compared to
one, the "potential" term in Eq. (4) is nearly real and the
eigenvalue problem is approximately Hermitian with
respect to the continuum portion of the spectrum. On
the basis of conventional perturbation theory arguments
[24], the degree of completeness can therefore be
quantified, since the spectrum is dominated by the con-
tinuum in the low gain-length regime. However, for
i) =0, the "potential" term is strongly non-Hermitian (or
actually anti-Hermitian), so that the gain cannot be treat-
ed as a perturbation. Thus, we are not able to say to
what degree the spectrum is possibly incomplete in the
absence of refraction. For present ASE x-ray laser exper-
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iments, the refraction parameter g typically exceeds 50,
and the issue of spectral completeness fortunately does
not appear to be of serious concern.

3. Spectral cutoff

A major issue raised by Eq. (29) is the possible diver-
gence of the field energy when the spontaneous-emission
correlation length goes to zero. This feature requires the
introduction of a spectral cutoff, several of which we now
consider. A plausible lower limit for the correlation
length is of the order of an atomic dimension [10],but for
the physical examples in mind an atomic scale length is
very small compared to the transverse extent of the laser.
With use of Eqs. (Al) and (A3) we can estimate the num-
ber of modes corresponding to this cutoff: n&-k, 3/m,
where k, represents a transverse wave-vector cutoff or a
reciprocal correlation length (times 27r) for spontaneous
emission. Consequently, the number of off-diagonal ele-
ments ( nti —) involved in the calculation of the total field
intensity can become prohibitively cumbersome for real-
istic x-ray laser parameters (I', —10, goa -0.05,
k, /k —10, ka = 3 X 10, a = 100 pm, and 3 /a ) 5, giving
n&) 10 ). The validity of the paraxial approximation
naturally demands an upper limit on the propagation an-
gles of the radiation with its associated cutoff
n&-(A/a)F, /(vrgoa), but this is still inaccessibly large
in general. A further constraint may be found by equat-
ing the spontaneous-emission rate AcoX2y~ V/3 to the
(transversely) integrated intensity J I(x,z)dx dy, where V
is the lasing volume and yz is the radiative relaxation
rate. With the aid of Eqs. (9), (ll), (Al), (A5), and (24),
we can estimate the following maximum value of P:P,„-k/(24~). Here we have assumed that the field in-
tensity is fiat and localized to the lasing medium ( ~x~ ~ 1)
and that the higher free modes are mutually orthogonal.
From Eqs. (Al), (A3) we can further show that the corre-
sponding total number of free modes is on the order of
several hundred for kA =1.5 X 10 (k =3X10 cm ' for
neon-like Se, 2 =5.5a =550 pm), which agrees well with
the maximum number of free modes used for Figs. 6(a)
and 6(b). This represents a dramatic improvement over
the previous constraints described above, but the cri-
terion does not take into account gain discrimination
effects for larger values of gain-length product, which is
our primary interest. For this purpose the Fresnel num-
ber for one transverse dimension is particularly con-
venient and arises naturally by including only those rays
that have not undergone a reAection at the boundary:
k~/k ~ 2 /t„where I. is the length of the laser. In terms
of the free modal index n, we can rewrite this condition
with the aid of either of Eqs. (Al) or (A3):

which serves as a rough, yet useful, estimate of the num-
ber of free modes (of either parity) to consider. The phys-
ical motivation for this nonreAecting constraint is that
the dominant laser modes that are observed are not ex-
pected to have undergone one or more rejections, since

the associated trajectory would yield very minimal
amplification. This argument is not at odds with our
mathematically imposed rejecting boundary condition
[see below Eq. (13b)] because the boundaries at x =+A
are imposed not as a realistic feature of a laser, but only
as a mathematical aid to allow us to define and normalize
the eigenfunctions. Physically, we would prefer to let
3~~, but as 3 increases, more continuum states arise,
and a numerical evaluation of the electric-field correla-
tion function [Eq. (9)] becomes quite impractical.

Still another constraint, though more stringent than
the nonreAecting constraint, is that waves with trajec-
tories lying principally within the gain medium be select-
ed only, i.e. , ki/k ~ 2a /L, or, in terms of the number of
free modes (of either parity),

2 +,
7T goI Q

(31)

The choice between Eq. (30) or (31) as a cutoff' for the
spectrum is largely arbitrary. The overall ambiguity in
deciding on a spectral cutoff encountered here basically
arises because the underlying assumption used in our
treatment is that the source term (P, P,*„)excites equal-
ly all of the eigenmodes, with no discrimination occurring
under our adopted choice of boundary condition. In the
next section we concentrate on using Eq. (30) as our
adopted spectral cutoff.

4. Intensity proftles for moderate goL

We now examine the intensity profiles in the intermedi-
ate gain-length regime. Previously, London, Rosen, and
Strauss have computed intensity profiles in this relevant
experimental regime and found an unacceptable sensitivi-
ty on the value of gain strength for small gain lengths and
large values of F, [5]. We now redo some cases with the
free modes included and study their overall effect. Fig-
ures 7(a) and 7(b) display the b bintensity pro-files and to-
tal intensity profiles when both constraints on the free-
mode spectrum, Eqs. (30) and (31), are used [25]. A
significant difference between the total intensity profile
and the b bprofile is seen-in Fig. 7(a) with gDL =5, par-
ticularly when the cutoff' described by Eq. (31) is used.
As we increase the refraction strength parameter as in
Fig. 7(b), the relative contribution from the free-mode
portion of the spectrum, i e , f f+b f.+.f b, rema-ins--
significant for the same cutoff;

We now settle on exclusively using Eq. (30) to con-
strain the free-mode spectrum. In Figs. 8(a) and 8(b), we
plot the b-b and total intensity profiles for both
goI. =5, 10. For the case of g=0, the free-mode contri-
bution to the intensity is very slight at higher goL, and
barely perceptible in the presence of refraction (71=10),
Fig. 8(b). Thus, we can conclude that the issue of spec-
tral cutoff is important for moderate values of gain
length; for higher goI., the effect of gain discrimination
renders the free-mode contribution practically irrelevant.

London, Rosen, and Strauss have noted in their
analysis a disturbing sensitivity of the b-b intensity profile
outside of the gain medium ( ~x

~

~ 1) on the strength of
the gain go [5]. From further inspection of Fig. 8(a) we
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FIG. 7. Normalized local intensity vs normalized transverse
position x for three types of spectra with no refraction (a) and
with refraction (b). The variable n refers to the number of free
modes included in the (total) spectrum as determined by Eqs.
(30) and (31).

FIG. 8. Normalized local intensity vs x for two values of the
gain-length parameter with no refraction (a) and with refraction
(b). The indicated spectra include bound modes only (bound-
bound) and bound modes plus free modes (total), according to
Eq. (30).

do notice some surplus b-b intensity outside of the slab,
but not a large amount of anomalous energy. The ex-
planation for this reduced noise is that the finite
geometry model we are considering, i.e., finite A,
effectively truncates the higher end [in Re(p„)] of the
bound-mode spectrum and transforms the very loosely
bound modes into free modes. Thus, the modes responsi-
ble for large "excess noise" found in the A = ~ analysis
of London, Rosen, and Strauss [5] are practically forced
into the continuum of our finite A model, where their in-
tensity contribution largely cancels. For large values of
A, the integrity of the bound modes is well maintained
vis-a-vis the free modes. However, for the relatively
small value of A (=5.5) employed in Figs. 7 and 8, the
distinction between a loosely bound mode and a free
mode essentially disappears. In this case we must be
careful to concentrate on summing over all the modes
without dwelling on what to label the various "divisions"
of the full spectrum. For the sake of convention only, we
settle on characterizing those modes that have direct
correspondences [in Re( —P)] with the guided modes

found in the A = ~ analysis of London, Rosen, and
Strauss [5] as bound modes despite their hybrid nature in
the small A case.

Figure 9 displays the total intensity profiles from three
separate models for describing ASE x-ray laser proper-
ties: (l) our finite geometry modal analysis, (2) the un-
bounded model of London, Rosen, and Strauss [5] and (3)
a time-dependent numerical wave optics propagation
treatment by Feit and Fleck [26]. First, a large difference
between our b-b intensity profile and the total intensity
profile of London, Rosen, and Strauss (which includes
only bound modes) is very evident. In particular, the in-
tensity profile of London, Rosen, and Strauss shows a
significant portion of energy beyond x = 1, which is due
to uncompensated loosely bound modes or "excess
noise. " Second, the total intensity profiles derived from
our model and the analysis of London, Rosen, and
Strauss show substantial differences over most of the
range of x for this intermediate value of goL, . However,
as we increase goL beyond about ten, the two profiles be-
come essentially indistinguishable because of gain
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FICx. 9. Normalized intensity profiles for four di6'erent mod-
els with no refraction. The indicated spectra derived from our
model 'include bound modes only (b-b) and bound modes plus
free modes (total}, according to Eq. {30).

0.8

discrimination and the decreased importance of cross-
correlation e6'ects. Although cross-correlations have sub-
stantially degraded the intensity contribution from loose-
ly bound modes, there still persists an excess noise (or
Petermann) factor associated with the dominant modes
that has recently been experimentally verified [27]. Also
evident from Fig. 9 is the relatively good agreement be-
tween our total intensity profile and the predicted intensi-
ty from Feit and Fleck. Although we defer an exhaustive
comparison of the two approaches to a later publication,
we can say that the agreement is reassuring in view of the
very di6'erent nature of the two methods.

B. Coherence

An understanding of the coherence properties of ASE
x-ray lasers is of crucial importance for their eventual ap-
plication to holography. London, Rosen, and Strauss
have investigated coherence phenomena from the point
of view of optimization. They concluded that rounded
profiles, such as parabolic, provide acceptable coherence
when the lasing medium width is suitably, but not un-
reasonably, small. For square gain profiles, the number
of bound modes is substantially larger, thereby degrading
the degree of coherence to an unacceptable level. Coher-
ence is always improved in the far field, but the resulting
low level of energy deposition is the serious tradeofF. Be-
cause our present analysis is restricted to the special case
of square profiles, we cannot reliably address the specific
issue of laboratory x-ray-laser coherence; rather, we in-
tend to explore qualitatively the influence of the free-
mode portion of the spectrum on the amount of noise
that survives and its eff'ect on coherence, using Eq. (12).
As found in Sec. EEE A 4 in our study of intensity profiles,
we expect some significant e6'ects for intermediate values
of the gain-length parameter.

Figure 10(a) shows the coherence profiles for the bb-
portion of the spectrum and the "full" spectrum, which
includes the free-mode contribution as constrained by

0.6
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0.2

0
0 0.1 0.25

FIG. 10. Coherence profiles for three separate spectra with

no refraction (a) and with refraction (b). The variable n refers to
the number of free modes included in the spectrum, (total), ac-
cording to Eqs. (30) and (31).

Eqs. (30) and (31). Clearly, the addition of more free
states [as given by Eq. (30)] degrades the coherence
significantly in the absence of refraction. In Fig. 10(b) re-
fraction is seen to lessen the e6'ects of the continuum:
both total coherence profiles are in close proximity to the
b bprofile. -Figure 11(a) shows the eff'ect of increasing
gain length on the free-mode contribution to the total
coherence. Beyond goL —10, the total coherence proper-
ties are dominated by the most localized bound modes
and "excess noise*' is not an important factor. For
nonzero refraction strength, the same conclusion holds,
as shown in Fig. 11(b). The overall decrease in coherence
evident in Fig. 11(b) is due to the general increase in the
number of bound modes n as the refraction strength pa-
rameter g is increased. The slow increase with g of ng is
due to internal reAections from the sharp boundaries at
x =+a, which are not realistic features of a plasma x-ray
laser but may be applicable to hard-edged lasers.

Finally, in Fig. 12 we compare the various coherence
profiles from our analysis and the models of London,
Rosen, and Strauss [5] and Feit and Fleck [26]. The de-
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gree of spatial coherence is often measured by the coher-
ence length, which is defined as the distance over which
the coherence profile falls to some number typically be-
tween 0.5 and 0.85. From inspection of Fig. 12 we note
that our b-b coherence profile is somewhat better than
the coherence found by London, Rosen, and Strauss. The
reason is simply that a finite A analysis efFectively loses
the most marginally bound modes to the continuum.
With fewer bound modes remaining, the field coherence
can only improve. Overall, all four profiles shown are in
rough agreement with each other for this specific value of
gain-length parameter. The coherence predicted by Feit
and Fleck is somewhat poorer than the other profiles
shown. This may be attributed in part to the larger spec-
tral base (-2048 orthogonal modes) used in comparison
with our nonorthogonal basis set (400 modes for this par-
ticular example). For larger gol. , the effect of gain
discrimination will yield rapid convergence among the
four difFerent profiles.

IV. SUMMARY
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FIG. 11. Coherence vs x for two values of the gain-length pa-
rameter with no refraction (a) and with refraction (b). The indi-
cated spectra include bound modes only (bound-bound) and
bound plus free modes (total), as constrained by Eq. (30).

The previous square gain analysis by London, Rosen,
and Strauss has provided evidence of a peculiar sensitivi-
ty of the intensity and coherence profiles on the precise
strength of the gain parameter go, which is a manifesta-
tion of the "excess noise" phenomenon. For small and
intermediate values of the gain-length parameter, this
efFect can be particularly prominent. The point of this
paper has been to remove this anomaly by considering
the role of the free modes on the spectrum through
cross-correlation efFects, thereby greatly reducing the lev-
el of excess noise in the system. We emphasize that not
all of the excess noise is removed from the system in this
manner: what surplus noise remains is aptly described by
the Petermann factor for the most dominant modes.

We have limited our study to the case of square gain
and density profiles mainly for analytic ease. However, a
thorough study of this basic profile is essential to under-
standing from a modal viewpoint the role of potentially
high noise levels in ASE systems. Our goal has been to
extract as many salient features as possible from this
analysis with the idea of applying these insights toward
more realistic but less tractable profiles. In particular,
the sharp corners of a square profile yield some modal
features somewhat distinct from those of smooth profiles.
Consequently, we cannot yet view our modal treatment
as a phenomenological model for understanding many
properties of current ASE x-ray laser experiments. We
expect that our future investigations with smooth profiles
will provide more direct relevance for x-ray laser coher-
ence experiments.

0.1 0.2 0.25

ACKNO% I.KDGMKNTS

FIG. 12. Coherence profiles for four di6'erent models with no
refraction. The indicated spectra obtained from our model in-
clude bound modes only (b-b) and bound modes plus free modes
(total), according to Eq. (30).
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APPENDIX A Case (ii): Re( —PE) =(FeI))

We derive some analytic properties of the continuum
by distinguishing between three cases: (i)
Re( —pE)»(F, I))' 2, (ii) Re( —pE)=(F,I))', and (iii)
Re( —pE ) «(F,I))'".

Case (i): Re( —pz) » (F, I))I ~

aE, = PE, =—(n + ,' )Ir/2—,

QE2 sinQE1cosQE1+ QE1
sin2[pE1( w —1)1,

COS QE1PE 1

(A2)

where aE, and PE, are the real parts of aE and PE, re-
spectively, QE2 is the imaginary part of QE, and n is an in-
teger. For the odd-parity free modes we similarly find

These continuum states correspond physically to states
whose "energies" lie high above the refractive "poten-
tial" barrier and are hardly a6'ected by the presence of
the lasing medium. We assume ~E &&1, formally expand
the even-parity dispersion relation (17) in powers of KE,
and take the real part of a„[which is defined below Eq.
(14)] [28], to find

This class of continuum states has "energies" nearly
matching the refractive "potential" barrier height E,g,
and the eigenvalues and eigenfunctions are strongly
afFected by the imaginary part of the "potential", i.e., the
gain. From the real and imaginary part of QE, we con-
clude that ~pE, ~

)) aE, ~
and aE, =aE2=(F, /2)'

Again assuming ~E to be small compared to one, using
F,' &&1 and Taylor expanding the dispersion relations
for both the even- and odd-parity solutions, we find

(3E, = Ir( n +—,
'

) /( 3 —1 ),
KE = —(1/f3E, )(F, /2)'~

(A6)

(A7)

Case (iii): Re( —pz) «(F, I))'

pE, = n Ir /( 3 —1 ), (A8)

These free states have "energies" lying far below the
refractive "potential" barrier height and are strongly at-
tenuated in the transverse direction within the amplifying
medium. By considering the real and imaginary part of
QE we conclude that QF2-qE, and QE2/QE1=2g, which
is typically larger than unity in practice. From the real
and imaginary part of the dispersion relation we also find

aE, = PE, n Ir/A—, — (A3)

QE2 SlnQE1COSQE1 QE1
KE = sin [pEI(A —1)] .

El Sln QE1

KE= PE, /(I) F, )'~—&&1, (A9)

for both even and odd solutions. We further note that ~E
is an increasing function of PE, in this regime.

With the aid of Eqs. (Al) and (A3) we can show that for
the even (+) and odd (

—
) parity eigenfunctions, KE

reduces to

APPENDIX B

We write the total integrated intensity in the
spontaneous-emission stage as follows:

QE2
KE = ( slnaEIcosaE1+aE1)

El f f bf+If (Bl)

Ordinarily, QE, is much larger than unity so that
~E= —

QE2 in leading order. By considering the imagi-
nary part of QE, we can say further that
KE = F, /(2aE, ), wh—ich is a decreasing function of aE, .
Moreover, Eq. (A5) predicts that KE has a small-
amplitude periodic variation with aE, (or pE, ), with
pel lod

where

Ib-b X
n, m

2
1+ —---l

ZF„
(B2)

is the bound-bound intensity,

1 —— (E E*)—
n m

2ZFE E
2 2
E . 2 2 E' . 2

COS QE +
2

Sln QE COS QE +
2

S1n QE —(E E')—
2

(B3)

is the free-free intensity,

Ib f (If b ) —g' j dP
n 1+ '

ZF„E
2

2 E
COS QE+ S111 QE —(E —E)l

n

(B4)
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(85)

2 2
(XE &E

cos cxE+ 2
sin AE cos cxE +

2
sin O,'E

O,'Ecoto.'E.—aE coto.E
2 alt 2

CXE AE
(86)

where ti =a@ /3 =F,(i ——q). Because both cotaz, and
cotaE~+i on such a contour, the exponential depen-
dence in the numerator and denominator of Eq. (83) can-
cels and the contour integration is greatly simplified by
dropping this contribution.

Next we locate poles of the integrands in Eqs. (83) and

are the bound-free and free-bound intensities, and

sin(a, —a*) sin(a, +a*)
(a; —a,". ) (a;+aj*)

for even (+1) and odd ( —1) parity modes. Moreover,
the cC,F, /8m. prefactor originating from Eqs. (20) and
(21) has been ignored for convenience, the primed sum-
mation refers only to positiue gain states (ImE„&0), and
the El and El' subscripts on P and P' have now been
dropped.

We now proceed to evaluate Eqs. (83) and (84) by the
methods of contour integration, where P and P' are now
extended from the real line into the complex P and P'
planes [29]. First consider Eq. (83), where we note that
for appreciably large Im(aE) and Im(az) on asymptoti-
cally large semicircular contours in the P and P' complex
planes, respectively, the following identity holds:

2
E E'

FIG. 13. Representative contour used to evaluate integral in

Eq. (84) with indicated poles.

(84) and apply the residue calculus. Beside bound-mode
resonances with positive gain, cf. Eq. (18), there are also
resonances with negative gain (ImE„)0, ImP„) 0) that
must be included in the evaluation. These negative-gain
resonances cannot represent true physical modes since
they do not satisfy Eq. (6) and therefore are not eigen-
functions of the paraxial wave equation when the medi-
um is amplifying (g )0). In Fig. 13 we show a represen-
tative contour used in the evaluation of Eq. (84) together
with the indicated poles. After much analysis, we find for
the total spontaneous emission

—z

n, pl

2

(g —E+ )n 172

. + g(g„—1)

2

2F, p

2

PEcos aF 1+ tan aE2

p2 pE =p„

2
n 2PEcos aE 1+ tan aE

/32 pE =p„

(87)

where g„=+I depending on whether P„corresponds to
positive or negative gain states, and ~/3„)) 1 is used.

We next evaluate Eq. (86) for the case of one positive
gain loosely bound mode, i.e., ~lm/3„~ && ~Re/3„~. After a
straightfoward Taylor expansion of the bound-mode reso-
nant denominators in Eq. (87), we finally obtain

I(n) —I(n) — I(n) — I(n)
b-b f-f b-f f-b

so that

I(n) O

(88)
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