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Multilevel adiabatic population transfer
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%'e present a theoretical description of a scheme in which coordinated laser pulses transfer population
efficiently from any initially populated state (e.g. , the ground state) to a multiply excited state of an atom
or molecule without producing appreciable population in intermediate states. Our analytic results for
multilevel excitation transfer provide a simple yet instructive extension to the counterintuitive pulse se-
quence studied previously for a three-state system.
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I. INTRODUCTION

For many applications in collision dynamics and spec-
troscopy, it is desirable to be able to transfer populations
from an initial atomic or molecular state (e.g., ground
state) to some specific excited state [1]. Coherent excita-
tion by laser pulses [2,3] offers, in principle, a means of
achieving complete population transfer. (Schemes based
upon incoherent excitation will not be considered here. )

The essential physics of such excitation derives from the
time-dependent Schrodinger equation for a succession of
nondegenerate levels (i.e., quantum states); inclusion of
degeneracy (or Doppler broadening) requires a summa-
tion over atomic orientations (or detunings), and will not
be considered in the present paper.

For a two-state system (1~2) the desired population
change (1~2) may be produced by a resonant sr pulse [4]
or by a pulse with swept (chirped) frequency [3,5]. Al-
though m pulses are simple to apply in theory, they are
very sensitive to actual experimental conditions. In par-
ticular, averages over intensity profiles or atomic orienta-
tions (magnetic sublevels) make it impossible to induce
the same excitation to each atom or molecule in a beam.
Furthermore, it is difticult to prepare optical pulses that
have precisely predetermined area. Chirped pulses do
not have this disadvantage.

For a three-state chain (1~2~3) linked by two
separate laser beams, complete transfer (1~3) may be
produced by a sequence of two resonant vr pulses (1—+2
followed by 2~3). This procedure deals with multiple
excitation as a sequence of independent two-level process-
es, and suffers from the same invalidating conditions. An
alternative possibility, applicable when state 3 lies below
state 2 (a A, system), is the stimulated emission process

(SEP) [6], in which incoherent excitation into an excited
state is accompanied or followed by deexcitation. It is
now known that a very effective alternative to this "intui-
tive" pulse order is the "counterintuitve" scheme in
which the first-step excitation pulse is applied after the
second-step pulse [7]. This process, stimulated Raman
scattering by delayed pulses (STIRAP) [1], is a unique
combination of adiabatic following and a specific
prescription for pulse timing that, taken together, move
population between initial and final states without pro-
ducing appreciable population in the intermediate state.
Unlike SEP, the population transfer of STIRAP occurs
coherently, and therefore the process requires the coher-
ence of laser radiation.

Two particular three-state chains have been of interest:
the simple ladder, in which each successive state lies
higher in energy [8], and the A configuration [9], in
which state 2 has greater energy than either state 1 or
state 3. Ladder excitation has application to the excita-
tion of Rydberg states or high-lying molecular vibrational
states. A A configuration has application in transferring
population into an excited molecular level, say, starting
from level J", moving into an electronic excited levelJ'+ 1, and subsequently returning to low-lying levelJ"+2. The k configuration could also be used, e.g. , to
transfer molecular population to high-J states by succes-
sive cycles of J,~J, +1~J&+2.

There are several possibilities for producing complete
population transfer in an X-state ladder
(1+-+2~ . ~N). Conceptually the simplest is a succes-
sion of two-state ~ pulses that produces a succession of
population inversions (1—+2, 2~3, . . . , N —1 —+N).
This coherent excitation procedure, as well as the corre-
sponding scheme of excitation as a succession of three-
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state systems, has the undesirable property of placing
population into a succession of states, from each of which
spontaneous emission may occur. Such emission acts as
an effective loss mechanism and thereby diminishes the
yield of the final-state population.

Another possibility is to employ simultaneous pulses of
multiple nonresonant lasers, subject to the constraint of
an (N-1)-photon resonance between states 1 and ¹ Such
a procedure avoids populating intermediate states, but
suffers from other disadvantages. In the limit of in-
coherent excitation (as described by rate equations), we
can get, at most, only half the population into the excited
state. In the alternative limit of coherent excitation, the
population undergoes Rabi oscillations (at the multipho-
ton Rabi frequency) and the population transfer will be
sensitive to the duration of the interaction (i.e. , to the
pulse area). In either case, the rate of transfer will be
slow unless the laser intensity is very high: the atomic
response is set by a multiphoton transition rate or a mul-
tiphoton Rabi frequency, and these are very small.

Other possibilities can be based on N-level excitation
with chirped pulses, in which rapid adiabatic passage
occurs via a succession of single-photon transitions. As
noted in previous work [5,7], it is desirable to proceed in
a "counterintuitive" manner in which resonance condi-
tions occur in reverse order.

Here we suggest another alternative, possible when N
is an odd integer, that has the potential advantage of
large transition rates while avoiding population transfer
into some of the intermediate states. Our procedure is
based on a straightforward generalization of the theory
for three-state excitation [5,8,9], subsequently experimen-
tally verified [1,10]. Specifically, we obtain a null-
eigenvalue solution to the instantaneous Hamiltonian for
an ¹tateexcitation ladder (with N an odd integer), sub-

ject to two-photon resonance constraints. When experi-
mental conditions are such that this eigenstate remains a
good approximation to an actual state vector (i.e., the
adiabatic approximation applies), then we show that it is
possible to produce complete population inversion
without precise control of pulse area. Unlike the three-
state results, however, our solutions place population
briefly into some of the intermediate states.

We demonstrate the method by restricting considera-
tion to two pulses (a "bottom" or "late" or "pump"
pulse, and a "top" or "early" or "Stokes" pulse). We ex-
hibit the analytic expressions for probability amplitudes
of three-, five-, and seven-state systems. We show exam-
ples of our analytic expressions for the time-dependent
Schrodinger equation and, for comparison, numerical
solutions of the same equations. DifFerences between the
analytic and numerical results, attributable to the break-
down of the adiabatic approximation, diminish as the
pulses become more intense.

II.EQUATIONS OF MOTION

Consider the multistate Schrodinger equation for
pulsed excitation in the rotating-wave approximation
(RWA) by a succession of lasers in the absence of spon-
taneous emission [2]:

Here fiW is the (Hermitian) RWA Hamiltonian matrix,
and the absolute square of the complex-valued amplitude
C„(t) is the probability P„(t) of finding the system in

state n at time t

When states couple only to adjacent states, as they do for
electric dipole transitions, the matrix 8'becomes tridiag-
onal and the probability amplitude equations read

i ,'f—I„—(t)C„~)(t),

III. STATIONARY ADIABATIC SOI.UTION

Let us regard the Rabi frequencies A„(t) and detunings
b, „(t) as slowly varying functions of time (we clarify
below the conditions that must be met for this adiabatic
approximation to hold), and determine the stationary
solutions to these equations at an arbitrary time t. That
is, we set (dldt)C„(t)=0 for all n This solu. tion is a
null-eigenvalue eigenstate of the R%'A Hamiltonian eval-
uated at time t

(4a)

or

Q,
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We desire a solution for which the population remains as

C~(t)= id~(t)C~(t) i ,'Q~,—(t)—C~,(t) . (3)
dt

Here 2W„„+&(r)—:Q„(t) is the Rabi frequency for the
transition between states n and n +1, and W„„(t)—:g„(t)
is the frequency mismatch between the nth Bohr frequen-
cy and the associated laser carrier frequency. Without
loss of generality we take b, ,(t) =0, thereby making h„(t)
the cumulative detuning after n —1 excitation steps. We
desire solutions for which C, (0)=1 is the initial condi-
tion and which, at some final time t, have Cz(t„)=1.
Such solutions describe complete population transfer be-
tween state 1 and state N.
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small as possible in the intermediate states, 1 & n &X. It
is evident that there exist solutions that place no popula-
tion into state 2 at any time, C2 ( t ) =0. This property,
which is well known for three-state systems, readily ex-
tends to all of the even n states: We can require solutions
such that

Q„(t)C„(t)= —Q„+,(t)C„+,(t) .

From this formula we deduce that the succession of odd
n amplitudes is given by the pattern

C, (t)=Q, (t)Q, (t)Q, (t) . . Q„,(t)IS(t),
C, (t)= —Q, (t)Q,(t)Q,(t) . IS(t),
C, (t)= +Q, (t)Q, (t)Q,(t) . IS(t),

(8)

ending with a final state amplitude C~(t) that is the prod-
uct of all odd n Rabi frequencies

C~(t) =+Q, (t)Q, (t)Q, (t) . Q~, (t) IS (t) .

The number S(t) is the normalization, obtained by sum-

ming the squares of the various combinations of Rabi fre-
quencies.

S = iQ,Q,Q,

+ iQ, Q,Q, . i'+ iQ, Q,Q, .

(10)

The succession of nonzero components can also be writ-
ten as

C, (t),
C, (t) =%,(t)C, (t),
C, (t) =&,(t)W i(t)Ci(t),

Cz (t) =0 for all t .

It follows from this requirement that the odd n detunings
h„must vanish (those for even n remain arbitrary):

+i(t)=0

That is, we require that the ¹tate ladder should behave
like a sequence of two-photon resonances. This con-
straint ensures that the (virtual) populations in intermedi-
ate states (even n) will be negligible. Evidently X must be
an odd integer for such a solution to be valid.

The relevant equations for odd-integer n are

amplitude C2(t). This state is selectively populated in the
experiments that have demonstrated complete population
transfer [8,10].

IV. PROCEDURE F(OR PQPULATIQN TRANSFER

Our generalization of the Oreg-Bergmann method for
complete population transfer consists of devising a set of
slowly varying (adiabatic) pulses that have the following
properties.

(i) Prior to the initial time t =0, all Rabi frequencies
vanish.

(ii) Subsequent to the initial time t =0, the odd-n Rabi
frequencies A„A3, . . . remain zero, while each of the
even-n Rabi frequencies A2, 04, . . . becomes nonzero.
Symbolically we require

odd & even

(iii) At some later time, all even-n Rabi frequencies
vanish while the odd-n Rabi frequencies do not. Symboli-
cally we require

odd +even '

(iv) Eventually, at some large time t =t„, the odd-n
Rabi frequencies also vanish; there are no excitation fields
present.

(v) The pulses must at all times maintain connection to
permit population Row 1~3~5~ . ~%; i.e., there
must be an interval of adequate length during which the
product of all Rabi frequencies is not zero. Ideally A,dd

will be diminishing while 0„,„is rising.

If such a pulse sequence can be constructed while main-
taining conditions of adiabatic change, then the initial-
state vector has the single component C, (t) and the
final-state vector has the single component CJv(t); com-
ponents Cz (t) will remain zero at all times. At each
step of the excitation the rate of upward population How
is governed by a single Rabi frequency, not by a two-
photon (or more general multiphoton) Rabi frequency.

V. EXAMPLES

A simple example of such a pulse sequence is one for
which all even-n Rabi frequencies have a common time
dependence f (t), while all odd-n Rabi frequencies have a
common time dependence g (t),
Q (t)=Q (t)= =Qof(t), f(0)&0, f(t )=o,

(13a)

where
Q (t)=Q (t)= =Qog(t) g(0)=0 g(t )%0

(13b)

W„(t)= —Q„(t)/Q„+, (t) . (12)

These odd n amplitudes, combined with null even n

amplitudes, provide components of a null-eigenvalue
eigenstate of the RWA Hamiltonian AW(t). For the
three-state A system, this eigenstate is the well-studied
"population-trapping" state [11], a coherent superposi-
tion state that has no admixture of the population-losing

Ci(t) =", C3(t)=-f(t) g(t)
S(t) ' ' S(t) ' (14a)

Such a scheme allows complete population inversion,
bypassing even-n intermediate states but briefly populat-
ing odd-n intermediate states.

For three states the amplitudes are those considered in
earlier works,
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s(t)'= If (t) I'+ lg (&) I' (14b)

This solution predicts population How from P, = 1 when

g =0, through P, =P3 when f =g, to a final asymptote
P3 = 1 as f~0. This is the "counterintuitive" three-state
excitation, in which the second-step excitation pulse is
applied before the first-step excitation pulse. The ratio
f (t) IS (t) may be viewed as an angle, the mixing angle.

For five states the amplitudes are
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This solution requires two mixing angles. For seven
states the amplitudes are

C, (r)=",C,(r)=-f (&) g(&)f (&)
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C, (t)= ", C,(t)=-g (&)'f (&) g (t)
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+ If«) I'Ig (&)I'+ Ig «) I' .
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FIG. 1. Analytic solutions for five-state excitation by two
pulses, each of duration T=1, whose delay is ~=0.2T. Top
frame: intensities of the two pulses vs time, normalized to unit
peak value. Bottom frame: populations vs time.

In both these latter cases, as well as for larger systems,
appreciable population will brieAy appear in an inter-
mediate state. This population will be greatest when

f =g. For the five-state system the intermediate-state
population is largest, P3 —,', when f =g, while for the
seven-state system the intermediate states have the
greatest populations P3 P5 =

—,'. Whether the population
present in these intermediate states poses a practical limi-
tation on achievable population transfer will depend on
the rate at which radiative or collisional processes re-
move population from these states. The time scale for
such detrimental processes should be much longer than
the population transfer time.

A =I dt Bop(t)= GOT .
0 8

(19)

For a single-photon transition this area is the traditional
tipping angle: it has the value vr for a pulse that produces
complete two-state inversion (a vr pulse). With these
choices our numerical model depends on only two param-

1.0—
M

0.5—
Q)

venient for present purposes to specify the traditional
pulse area,

VI. NUMERICAL EXAMPLES

To illustrate the preceding solutions we consider the
pulse shape

0 for t&0
p(r)= 'sin (crt/T) for 0(t (T

0 for t&T,

and we choose the two pulses f (t) and g (t) to be onset in
time by an increment ~,

0.0
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10

This shape turns on and ofF smoothly (as contrasted with
linear ramps) and has finite duration (as contrasted with a
Gaussian).

To parametrize the field strength one might choose
peak pulse intensity or total pump fluence, together with
a specification of the dipole moment. It proves more con-
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FIG. 2. Numerical solutions for five-state excitation, as in
Fig. 1. The pulse area is 2 = 12~.
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FIG. 3. Analytic solutions for seven-state excitation for the
pulses of Fig. 1. Top frame: intensities of the two pulses vs
time. Bottom frame: populations vs time.

FIG. 4. Numerical solutions for seven-state excitation for
pulses with area 3 = 12m., as in Fig. 3.

eters: pulse delay ~ and pulse area A. We take the pulse
duration as our unit of time, by setting T = 1.

Figure 1 shows an example, for a five-state system, of
the analytic solutions for excitation by these pulses, in the
adiabatic approximation. The upper frame shows the
pulse intensities, ~f(t)~ and ~g(t)~, while the lower
frame shows the several populations P„(t). In the upper
frame the thick line indicates the pulses that couple states
1 and 2 as well as states 3 and 4 (the "bottom" pulse); the
thin line refers to the radiation that couples states 2 and 3
as well as states 4 and 5 (the earlier "top" pulse). In the
lower frame the thick line denotes the population in the
ground state (state 1).

For comparison, Fig. 2 shows the solutions obtained by
numerical integration of the Schrodinger equation for in-
tensity such that the pulse area is 12m. . The populations
of odd-n states are nearly the same in the two figures, but
the numerical solutions show small populations in even-n
states. These deviations from the adiabatic approxima-
tion will be present in the actual response of a five-level
system to such pulses; they represent the failure of the
analytic solutions to mimic faithfully the excitation pro-
duced by these pulses. For the computations displayed
here, these even-state populations remain, at all times,
less than l%%uo of the total population. The population in
state 3 is always less than —,'. More intense pulses produce
excitation that follows the analytic expressions more
closely (when A =20m the largest even-n populations are
about one-third as large as shown here, and when
A =40rt the even-n populations are less than 0.1%).
With appreciably weaker pulses the adiabatic approxima-
tion fails and the population transfer becomes incomplete
(when A =4m the even-n populations are as large as 10%
and the population transfer is only 87%). Failure of the
adiabatic approximation means that the actual state vec-

tor is a combination of dressed states, rather than a single
dressed state. The oscillatory behavior of the numerical
solutions is the expected interference between their com-
ponents.

Figure 3 shows the analytic solutions for a seven-state
atom, in the adiabatic approximation, for these same
pulses. Figure 4 shows the numerical results (again for
A = 12m ). Again the differences between these two
figures, particularly the occurrence of small portions of
population in even-n states, indicates the inaccuracy of
the adiabatic approximation as a faithful description of
the actual excitation. It will be observed that the 12m.

pulses with a seven-state system (Fig. 4) are noticeably
less adiabatic than are 12~ pulses with a five-state system
(Fig. 2). As the number of states increase it is necessary
to increase the pulse areas if one wishes to maintain the
same small value of intermediate-state population. For
the example of Fig. 4, an increase of pulse area to 20m
will produce results comparable to Fig. 2.

VII. ADIABATIC CONDITION

Conditions for applicability of the adiabatic approxi-
mation in these kind of problems have been discussed
previously [lj. A sufficient condition is the so-called adi-
abatic criterion: the rate of change of the mixing angle is
less than the separation of the dressed eigenvalues. Al-
though the adiabatic criterion is a sufhcient condition, it
is not also a necessary condition, and so the breakdown
of the criterion does not always mean the breakdown of
the adiabatic approximation. In particular, the criterion
is most restrictive at the beginning and end of the pulse
sequence (where it is known to fail), but at those times the
breakdown has the least effect on population transfer.
Generalization of this to multiple mixing angles (i.e.,
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multiple ratios of pulse products) offers a possible guide
to the applicability of the adiabatic approximation to
larger systems: we require that none of the amplitudes
change rapidly compared with the separation of instan-
taneous dressed states.

portant for experimental implementation of the pro-
cedure. The pulses may be made resonant with the tran-
sitions, but this condition is not necessary. The simple
analytic solutions, valid in the adiabatic approximation,
provide an interesting class of multistate solutions to the
time-dependent Schrodinger equation.
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