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Bose-Einstein condensation in low-dimensional traps
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We demonstrate the possibility of Bose-Einstein condensation (BEC) of an ideal Bose gas confined by
one- and two-dimensional power-law traps. One-dimensional systems display BEC in traps that are
more confining than parabolic: U(x ) -x",g & 2. Two-dimensional systems display BEC for any finite
value of g. A possible experimental configuration for a two-dimensional trap is described.
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I. INTRODUCTION

The development of techniques to cool gaseous atoms
to extremely low temperature is providing new possibili-
ties for studying gases in the quantum regime [1]. Prom-
inent among the goals of this research is the observation
of Bose-Einstein condensation (BEC), a phase transition
that occurs when the atomic de Broglie wavelength be-
comes comparable to the interatomic spacing. For a
noninteracting Bose gas of X particles of mass M and
confined in a hard-wall continuum of volume V, this
takes place at the critical temperature T, given by [2]

' 2/3

kT,"= "
(1)

2aM g3(0) V

energy-level spacings which are generally microscopic
compared to the mean energy.

Possibilities for achieving BEC in some special low-
dimensional systems have been pointed out by a number
of authors [4(a)]. These include particles confined by a
gravitational field [4(b)] and by a rotating container [5],
and also in an interacting one-dimensional gas [6]. A ro-
tating quantum liquid has also been analyzed [7]. In this
case, the inhomogeneous density leads to behavior
equivalent to that in a square-law potential, analyzed
below. However, to our knowledge, there has been no
general treatment of the problem.

II. BKC IN A ONK-DIMKNSIONAL GAS

where g3(p/kT) is the three-dimensional Bose function
and p is the chemical potential

g3(0) =g( —', ) =2.612, (2)

where g(x) is the Riemann zeta function. Because stra-
tegies for achieving BEC in a gas have so far been elusive,
it is natural to inquire whether similar physical phenome-
na can be observed in other geometries, for instance, in a
two-dimensional (2D) system composed of atoms ad-
sorbed on a surface. Hohenberg has shown, however,
that BEC cannot occur in an ideal two-dimensional sys-
tem [3], and for this reason such systems have received
relatively little attention. However, this result is true
only for a system confined by rigid boundaries —the
two-dimensional equivalent of ideal rigid walls. As we
shall show, if a system is confined by a spatially varying
potential —i.e., a "trapping" potential —BEC can in
principle occur. We shall consider both one- and two-
dimensional systems, though experimental interest is like-
ly to be limited to the latter. Our analysis is restricted to
power-law potentials because these potentials lead to
analytical solutions and because most traps display
power-law behavior close to their minimum. Our method
is semiclassical, as is appropriate for the relatively weak
confining potentials of neutral atoms traps that produce

We consider a one-dimensional gas of particle of mass
M confined by a power-law potential U(x)= Uo(~x~/L)"
The density of states is

&2M I &(E~ dx 1
p E

h —t(E) V'e —U (x )
(3)

where 2l(e) is the available length for particles with ener-

gy E. l(e) =L(s/Uo)'/". Equation (1) becomes

1/g —1/2

( U )1/gp(E) = L F(ii), (4)

where

(1—Tl) /q
F(rl)= f dy .

The total number of particles is given by

N=X0+ g,P C. dC, .
0

(6)

Here X0 is the number of particles in the ground state
which we explicitly retain because p(0) =0. In this equa-
tion, n, = [ exp(s —p, /kT) —1] is the Bose-Einstein oc-
cupation number.

The system will display BEC if the integral of Eq. (6)
has a finite value at p=O for some T=T, . Below this
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where r*=(E/Uo)' ", and

r2 M~=X+ ' ' (k7.)'"+'
I 2( U )2/g 2 (12)

CO—0.6

o Og 2/g

g, (g, x)= f-",y, dy. (13)

The two-dimensional Bose function gz(g, x) is given by

For p=O, we obtain

g2(g, O) = I (2/g+1)g(2/q+1) . (14)

FIG. 1. Evolution of the critical temperature with the poten-
tial parameter q for one- and two-dimensional traps.

temperature the ground state becomes heavily populated.
Inserting Eq. (4) into Eq. (6) yields

~=~+ ' (k7-)". /

( U )1/g gi '9~9
0

(7)

where
—1/q —1/2

g, (g,x)= f —(, dy

is the one-dimensional Bose function. As high tempera-
tures, Eq. (5) is satisfied by some negative value of p and
Xp-0. As T is reduced p increases, reaching p=Q at
some T, . For T (T„p remains zero and the last term in
Eq. (7) decreases. Consequently, %0 increases.

The function g, (v), 0) can be written in terms of the y
and Riemann g functions [Sj:

g, (g, O)=I (1/g+ —,
' g'(1/g+ —,') .

From the properties of the Riemann g function, gi(g, O)
is finite only if g &2. Because g(s) diverges for s & 1, the
one-dimensional gas will display BEC only if the poten-
tial power is less than 2, i.e., only if the external potential
is more conGning than a parabolic potential.

The critical temperature is obtained setting %0=0 in
Eq. (7). In this case

Unlike the 1D case, g2(g, O) remains finite for all positive
values g. Consequently, BEC, an ideal two-dimensional
gas confined by a power-law trap, can, in principle, al-
ways occur. A rigid box corresponds to the limit v~

—+ ~.
Since g2( ~,O) diverges, BEC does not occur, in agree-
ment with Hohenberg's finding (g). For BEC to occur in
a nonisotropic 20 potential, the requirement is that
n '+I ' be finite. From Eq. (12), the critical tempera-
ture in 20 trap is

XI 'U "&
0

kT,
2~ Ma g2(g, O)

9/(2+ 9)

(15)

The dependence of T, on g is shown in Fig. 1. T, has a
broad maximum in the vicinity of g=2.

These results are valid only for the ideal Bose gas. The
weakly interacting Bose gas can be treated using the
mean-field approximation [9j, though at the low densities
likely to be of experimental interest, the corrections are
not expected to be important.

IV. EXPERIMENTAL REALIZATIC)N
QF A TYPAL-DIMENSIONAL BOSE GAS

A possible configuration for a two-dimensional system
for spin-polarized hydrogen is a pillbox-shaped container
in a uniform Geld, with its axis parallel to the field axis, as
shown in Fig. 2. A thin coil wound around the perimeter
provides the inhomogenous trapping field. The inner sur-
face is covered with liquid helium, and atoms in the
"high-Geld seeking" state enter through a thin tube. The
field of the coil varies radially according to

U 1/2 2'/(2+ q)
Xh Up 1

v'2M +(q) g, (q, O)
(10)

3 T8(r)—= —8, 1+
4 a

(16)

The variation of kT,' with g is shown in Fig. 1. The
critical temperature increases monotonically as q is de-
creased below 2.

III. BEC IN A T%'0-DIMKNSI(ONAI. BOSE GAS

where a is the radius of the pillbox and 8, is the field at
the center of the coil. The trapping potential is given by

2

U(r)= U (17)
a

Next, we consider a two-dimensional Bose gas confined
by a power-law potential. The most general potential is
U(x, y)= Ui(x/b) + Uz(y/c)", but for simplicity we as-
sume that the potential is isotropic: U(r) = Uo(r/a)". In
analogy to Eqs. (4) and (7) we obtain

where Uo =(3/4)p+, and po is the Bohr magneton. The
total number of particles trapped on either end surface is

X = f 2mro e '".' " dr=era o.kT
S 0 0 &

0

( )
27rMf~* d

2m Ma
2 0 Q2 U0

where o.
p is the surface density on axis and we have as-

sumed that exp[ —U(a)/kTj =0. From Eq. (15), we ob-
tain
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FIG. 2. Geometry for a two-dimensional trap for spin-
polarized hydrogen. A gas of spin-polarized hydrogen is
confined in a solenoid by the field 8o. Atoms in contact with
the "He surface produce a two-dimensional adsorbed gas that is
trapped by the radial potential created by the field of the
current loop B,(r).
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The surface and volume density for a weakly interacting
adsorbed gas are related by [10]

EI, /kT
0p= A,Dnpe (20)

where A,~=h/( 2ttMkT)' / is the thermal de Broglie
wavelength, Eb is the surface adsorption energy, and n p

is the volume density on axis. The total number of atoms
in the gas phase is

N =I noe '"'/" d V =no V (kT/Uo) . (21)

To compare the critical temperature for the 2D and the
3D system, one can combine Eqs. (1) and (19)—(21) to
yield

where we have introduced the numerical values
gz(2, 0)=1.645 and g3(0)/gz(2, 0)=1.588. Because
(UoEs)))kT„Eq. (22) predicts an enormous enhance-
ment of the critical temperature for the surface compared
to the bulk.

In practice, three-body recombination on the surface
limits the useful surface density. The three-body recom-
bination rate constant is [11] L, =1.2X10 cm s
This value was measured in the temperature range
0.3—0.6 K and was found to be approximately tempera-
ture independent. One expects I., to vary as T', but to
be conservative we shall assume that I., is temperature
independent. A surface density on axis of o.p=2X10"
cm would yield a characteristic recombination decay
time r, =(L,cr ) '=20 s, which is an acceptable value.
From Eq. (19), T, =4 mK, a temperature that is low but
achievable. The value of Up is fixed by the requirement
that exp( —UolkT, «1. Taking Uo=10kT, , a con-
servative value, leads to a trapping field of 8, =400 G,
which is easily achieved. The total number of atoms, Eq.
(18), is 6.3X 10' . Note that the interparticle separation
under these conditions is larger than the hydrogen 5-
wave scattering length by —4 X 10, so that the
independent-particle approximation is expected to be
realistic.

Although the experimental conditions appear to be
favorable, we point out that removing the heat recom-
bination may present a challenge and that methods for
studying the surface gas remain to be developed. Never-
theless, this analysis suggests that low-dimensional sys-
tems are of potential experimental interest.
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