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Bose-Einstein condensation in low-dimensional traps
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We demonstrate the possibility of Bose-Einstein condensation (BEC) of an ideal Bose gas confined by
one- and two-dimensional power-law traps. One-dimensional systems display BEC in traps that are
more confining than parabolic: U(x)~x",7<2. Two-dimensional systems display BEC for any finite
value of 7. A possible experimental configuration for a two-dimensional trap is described.
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I. INTRODUCTION

The development of techniques to cool gaseous atoms
to extremely low temperature is providing new possibili-
ties for studying gases in the quantum regime [1]. Prom-
inent among the goals of this research is the observation
of Bose-Einstein condensation (BEC), a phase transition
that occurs when the atomic de Broglie wavelength be-
comes comparable to the interatomic spacing. For a
noninteracting Bose gas of N particles of mass M and
confined in a hard-wall continuum of volume V, this
takes place at the critical temperature T, given by [2]

2 2/3
kT3D=_h__ _1 N , (1)
¢ 27M | g5(0) V

where g3(u/kT) is the three-dimensional Bose function
and p is the chemical potential

g3(0)=E(2)=2.612, @)

where £(x) is the Riemann zeta function. Because stra-
tegies for achieving BEC in a gas have so far been elusive,
it is natural to inquire whether similar physical phenome-
na can be observed in other geometries, for instance, in a
two-dimensional (2D) system composed of atoms ad-
sorbed on a surface. Hohenberg has shown, however,
that BEC cannot occur in an ideal two-dimensional sys-
tem [3], and for this reason such systems have received
relatively little attention. However, this result is true
only for a system confined by rigid boundaries—the
two-dimensional equivalent of ideal rigid walls. As we
shall show, if a system is confined by a spatially varying
potential—i.e., a ‘“‘trapping” potential—BEC can in
principle occur. We shall consider both one- and two-
dimensional systems, though experimental interest is like-
ly to be limited to the latter. Our analysis is restricted to
power-law potentials because these potentials lead to
analytical solutions and because most traps display
power-law behavior close to their minimum. Our method
is semiclassical, as is appropriate for the relatively weak
confining potentials of neutral atoms traps that produce
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energy-level spacings which are generally microscopic
compared to the mean energy.

Possibilities for achieving BEC in some special low-
dimensional systems have been pointed out by a number
of authors [4(a)]. These include particles confined by a
gravitational field [4(b)] and by a rotating container [5],
and also in an interacting one-dimensional gas [6]. A ro-
tating quantum liquid has also been analyzed [7]. In this
case, the inhomogeneous density leads to behavior
equivalent to that in a square-law potential, analyzed
below. However, to our knowledge, there has been no
general treatment of the problem.

II. BEC IN A ONE-DIMENSIONAL GAS

We consider a one-dimensional gas of particle of mass
M confined by a power-law potential U (x)=U,(|x|/L)".
The density of states is
_vaM h e dxl

h ~1te) Ve—U(x)

where 2I(¢) is the available length for particles with ener-
gy e. I(e)=L(e/U,)'/". Equation (1) becomes
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F(n)= —dy . 5
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The total number of particles is given by
N=N,+ fow*qcp(s)da ) (6)

Here N, is the number of particles in the ground state
which we explicitly retain because p(0)=0. In this equa-
tion, n,=[ exp(e —u/kT)—1]"! is the Bose-Einstein oc-
cupation number.

The system will display BEC if the integral of Eq. (6)
has a finite value at £ =0 for some T=T,. Below this
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FIG. 1. Evolution of the critical temperature with the poten-
tial parameter 7 for one- and two-dimensional traps.

temperature the ground state becomes heavily populated.
Inserting Eq. (4) into Eq. (6) yields

N=N0+ ‘/ZM M kT)l/'q+1/2 (

T )1/11 ,u/kT) (7)

where

=172 e dy (®)

is the one-dimensional Bose function. As high tempera-
tures, Eq. (5) is satisfied by some negative value of u and
Ny,~0. As T is reduced pu increases, reaching p=0 at
some T,. For T <T,, u remains zero and the last term in
Eq. (7) decreases. Consequently, N, increases.

The function g,(7,0) can be written in terms of the y
and Riemann § functions [8]:

g1(,0)=T(1/n+1)E(1/m+1) . )

From the properties of the Riemann § function, g,(1,0)
is finite only if 7 <2. Because {(s) diverges for s <1, the
one-dimensional gas will display BEC only if the poten-
tial power is less than 2, i.e., only if the external potential
is more confining than a parabolic potential.

The critical temperature is obtained setting Ny, =0 in
Eq. (7). In this case

N& U1/2 2n/(2+7)

kTP= . 10
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The variation of kT/® with 7 is shown in Fig. 1. The
critical temperature increases monotonically as 7 is de-
creased below 2.

III. BEC IN A TWO-DIMENSIONAL BOSE GAS

Next, we consider a two-dimensional Bose gas confined
by a power-law potential. The most general potential is
U(x,y)=U,(x/b)"+ U,(y /c)", but for simplicity we as-
sume that the potential is isotropic: U(r)=Uy(r/a)". In
analogy to Egs. (4) and (7) we obtain

2/
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where r*=(g/U,)"/", and
. 2772Ma2 2/n+1 L
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The two-dimensional Bose function g,(7,x) is given by
2/n
N S 4
galmx)= [ "Iy . (13)

For =0, we obtain

g:(7,0)=T(2/9+1)E2/n+1) . (14)

Unlike the 1D case, g,(7,0) remains finite for all positive
values 7. Consequently, BEC, an ideal two-dimensional
gas confined by a power-law trap, can, in principle, al-
ways occur. A rigid box corresponds to the limit 77— .
Since g,(,0) diverges, BEC does not occur, in agree-
ment with Hohenberg’s finding (£). For BEC to occur in
a nonisotropic 2D potential, the requirement is that
n " '+m ! be finite. From Eq. (12), the critical tempera-
ture in 2D trap is

thU(z)/n 7/(2+7)

—_—— (15)
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The dependence of T?° on 7 is shown in Fig. 1. T, has a
broad maximum in the vicinity of n=2.

These results are valid only for the ideal Bose gas. The
weakly interacting Bose gas can be treated using the
mean-field approximation [9], though at the low densities
likely to be of experimental interest, the corrections are
not expected to be important.

IV. EXPERIMENTAL REALIZATION
OF A TWO-DIMENSIONAL BOSE GAS

A possible configuration for a two-dimensional system
for spin-polarized hydrogen is a pillbox-shaped container
in a uniform field, with its axis parallel to the field axis, as
shown in Fig. 2. A thin coil wound around the perimeter
provides the inhomogenous trapping field. The inner sur-
face is covered with liquid helium, and atoms in the
“high-field seeking” state enter through a thin tube. The
field of the coil varies radially according to

2
3r

1+
4a

B(r)=—B, , (16)

where a is the radius of the pillbox and B, is the field at
the center of the coil. The trapping potential is given by

2
un=u, |~ |, (17)

where Uy =(3/4)uyB, and p, is the Bohr magneton. The
total number of particles trapped on either end surface is

a _ kT
= f 2rroge VK gr=1q?
0

UO -7 09 » (18)

where o is the surface density on axis and we have as-
sumed that exp[ —U(a)/kT]=0. From Eq. (15), we ob-
tain
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FIG. 2. Geometry for a two-dimensional trap for spin-
polarized hydrogen. A gas of spin-polarized hydrogen is
confined in a solenoid by the field B,. Atoms in contact with
the “He surface produce a two-dimensional adsorbed gas that is
trapped by the radial potential created by the field of the
current loop B,(r).

szDZ.L___h_ZUL . (19)
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The surface and volume density for a weakly interacting
adsorbed gas are related by [10]
E, /kT
go=Apnge ° (20)
where Ap=h/(2eMkT)'/? is the thermal de Broglie
wavelength, E, is the surface adsorption energy, and n,
is the volume density on axis. The total number of atoms
in the gas phase is

N= [noe VKIgy =n,V (KT /U,) . @1
To compare the critical temperature for the 2D and the

3D system, one can combine Egs. (1) and (19)-(21) to
yield
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3D
(kT2P)32=1.588(kT3P)*2U e/ Te | (22)
where we have introduced the numerical values
g,(2,0)=1.645 and g,(0)/g,(2,0)=1.588. Because

(UoyEy)>>kT,, Eq. (22) predicts an enormous enhance-
ment of the critical temperature for the surface compared
to the bulk.

In practice, three-body recombination on the surface
limits the useful surface density. The three-body recom-
bination rate constant is [11] L, =1.2X10"% cm*s™1,
This value was measured in the temperature range
0.3-0.6 K and was found to be approximately tempera-
ture independent. One expects L, to vary as T'!/2, but to
be conservative we shall assume that L; is temperature
independent. A surface density on axis of o,=2X10!!
cm ™2 would yield a characteristic recombination decay
time TsZ(LSaz)“1=20 s, which is an acceptable value.
From Eq. (19), T?°?=4 mK, a temperature that is low but
achievable. The value of Uy is fixed by the requirement
that exp(—Uy/kT?P << 1. Taking U,=10kT?P, a con-
servative value, leads to a trapping field of B,=400 G,
which is easily achieved. The total number of atoms, Eq.
(18), is 6.3X10'°. Note that the interparticle separation
under these conditions is larger than the hydrogen S-
wave scattering length by ~4X103, so that the
independent-particle approximation is expected to be
realistic.

Although the experimental conditions appear to be
favorable, we point out that removing the heat recom-
bination may present a challenge and that methods for
studying the surface gas remain to be developed. Never-
theless, this analysis suggests that low-dimensional sys-
tems are of potential experimental interest.
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