Bose-Einstein condensation in low-dimensional traps

Vanderlei Bagnato

Instituto de Fisica e Quimica de Sao Carlos, Caixa Postal 369, 13560 Sao Carlos, São Paulo, Brazil

Daniel Kleppner

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 8 April 1991)

We demonstrate the possibility of Bose-Einstein condensation (BEC) of an ideal Bose gas confined by one- and two-dimensional power-law traps. One-dimensional systems display BEC in traps that are more confining than parabolic: $U(x) \sim x^{\eta}, \eta < 2$. Two-dimensional systems display BEC for any finite value of η . A possible experimental configuration for a two-dimensional trap is described.

PACS number(s): 32.80.Pj, 05.30.Jp, 67.65.+z, 64.60.-i

I. INTRODUCTION

The development of techniques to cool gaseous atoms to extremely low temperature is providing new possibilities for studying gases in the quantum regime [1]. Prominent among the goals of this research is the observation of Bose-Einstein condensation (BEC), a phase transition that occurs when the atomic de Broglie wavelength becomes comparable to the interatomic spacing. For a noninteracting Bose gas of N particles of mass M and confined in a hard-wall continuum of volume V, this takes place at the critical temperature T_c given by [2]

$$kT_c^{3D} = \frac{h^2}{2\pi M} \left[\frac{1}{g_3(0)} \frac{N}{V} \right]^{2/3}, \qquad (1)$$

where $g_3(\mu/kT)$ is the three-dimensional Bose function and μ is the chemical potential

$$g_3(0) = \zeta(\frac{3}{2}) = 2.612 , \qquad (2)$$

where $\zeta(x)$ is the Riemann zeta function. Because strategies for achieving BEC in a gas have so far been elusive, it is natural to inquire whether similar physical phenomena can be observed in other geometries, for instance, in a two-dimensional (2D) system composed of atoms adsorbed on a surface. Hohenberg has shown, however, that BEC cannot occur in an ideal two-dimensional system [3], and for this reason such systems have received relatively little attention. However, this result is true only for a system confined by rigid boundaries-the two-dimensional equivalent of ideal rigid walls. As we shall show, if a system is confined by a spatially varying potential-i.e., a "trapping" potential-BEC can in principle occur. We shall consider both one- and twodimensional systems, though experimental interest is likely to be limited to the latter. Our analysis is restricted to power-law potentials because these potentials lead to analytical solutions and because most traps display power-law behavior close to their minimum. Our method is semiclassical, as is appropriate for the relatively weak confining potentials of neutral atoms traps that produce energy-level spacings which are generally microscopic compared to the mean energy.

Possibilities for achieving BEC in some special lowdimensional systems have been pointed out by a number of authors [4(a)]. These include particles confined by a gravitational field [4(b)] and by a rotating container [5], and also in an interacting one-dimensional gas [6]. A rotating quantum liquid has also been analyzed [7]. In this case, the inhomogeneous density leads to behavior equivalent to that in a square-law potential, analyzed below. However, to our knowledge, there has been no general treatment of the problem.

II. BEC IN A ONE-DIMENSIONAL GAS

We consider a one-dimensional gas of particle of mass M confined by a power-law potential $U(x) = U_0(|x|/L)^{\eta}$. The density of states is

$$\rho(\varepsilon) = \frac{\sqrt{2M}}{h} \int_{-l(\varepsilon)}^{l(\varepsilon)} \frac{dx \, 1}{\sqrt{\varepsilon - U(x)}} , \qquad (3)$$

where $2l(\varepsilon)$ is the available length for particles with energy ε . $l(\varepsilon)=L(\varepsilon/U_0)^{1/\eta}$. Equation (1) becomes

$$\rho(\varepsilon) = \frac{\sqrt{2M}}{h} L \frac{\varepsilon^{1/\eta - 1/2}}{(U_0)^{1/\eta}} F(\eta) , \qquad (4)$$

where

$$F(\eta) = \int_{0}^{1} \frac{y^{(1-\eta)/\eta}}{\sqrt{1-y}} dy .$$
 (5)

The total number of particles is given by

$$N = N_0 + \int_0^\infty \eta_c \rho(\varepsilon) d\varepsilon .$$
 (6)

Here N_0 is the number of particles in the ground state which we explicitly retain because $\rho(0)=0$. In this equation, $n_c = [\exp(\varepsilon - \mu/kT) - 1]^{-1}$ is the Bose-Einstein occupation number.

The system will display BEC if the integral of Eq. (6) has a finite value at $\mu=0$ for some $T=T_c$. Below this

VANDERLEI BAGNATO AND DANIEL KLEPPNER

FIG. 1. Evolution of the critical temperature with the potential parameter η for one- and two-dimensional traps.

temperature the ground state becomes heavily populated. Inserting Eq. (4) into Eq. (6) yields

$$N = N_0 + \frac{\sqrt{2M}}{h} \frac{F(\eta)}{(U_0)^{1/\eta}} (kT)^{1/\eta + 1/2} g_1(\eta, \mu/kT)$$
(7)

where

$$g_1(\eta, x) = \int_0^\infty \frac{y^{-1/\eta - 1/2}}{e^{(y - x)} - 1} dy$$
(8)

is the one-dimensional Bose function. As high temperatures, Eq. (5) is satisfied by some negative value of μ and $N_0 \sim 0$. As T is reduced μ increases, reaching $\mu = 0$ at some T_c . For $T < T_c$, μ remains zero and the last term in Eq. (7) decreases. Consequently, N_0 increases.

The function $g_1(\eta, 0)$ can be written in terms of the γ and Riemann ζ functions [8]:

$$g_1(\eta, 0) = \Gamma(1/\eta + \frac{1}{2})\zeta(1/\eta + \frac{1}{2}) .$$
(9)

From the properties of the Riemann ζ function, $g_1(\eta, 0)$ is finite only if $\eta < 2$. Because $\zeta(s)$ diverges for s < 1, the one-dimensional gas will display BEC only if the potential power is less than 2, i.e., only if the external potential is more confining than a parabolic potential.

The critical temperature is obtained setting $N_0 = 0$ in Eq. (7). In this case

$$kT_{c}^{1D} = \left[\frac{Nh}{\sqrt{2M}} \frac{U_{0}^{1/2}}{F(\eta)} \frac{1}{g_{1}(\eta,0)}\right]^{2\eta/(2+\eta)}.$$
 (10)

The variation of kT_c^{1D} with η is shown in Fig. 1. The critical temperature increases monotonically as η is decreased below 2.

III. BEC IN A TWO-DIMENSIONAL BOSE GAS

Next, we consider a two-dimensional Bose gas confined by a power-law potential. The most general potential is $U(x,y) = U_1(x/b)^m + U_2(y/c)^n$, but for simplicity we assume that the potential is isotropic: $U(r) = U_0(r/a)^{\eta}$. In analogy to Eqs. (4) and (7) we obtain

$$\rho(\varepsilon) = \frac{2\pi M}{h^2} \int_0^{r^*} 2\pi r \, dr = \frac{2\pi^2 M a^2}{h^2} \left[\frac{\varepsilon}{U_0}\right]^{2/\eta}, \quad (11)$$

where $r^* = (\epsilon/U_0)^{1/\eta}$, and

$$N = N_0 + \frac{2\pi^2 M a^2}{h^2 (U_0)^{2/\eta}} (kT)^{2/\eta+1} g_2 \left[\eta \frac{\mu}{kT} \right].$$
(12)

The two-dimensional Bose function $g_2(\eta, x)$ is given by

$$g_2(\eta, x) = \int_0^\infty \frac{y^{2/\eta}}{e^{(y-x)} - 1} dy \quad . \tag{13}$$

For $\mu = 0$, we obtain

$$g_2(\eta, 0) = \Gamma(2/\eta + 1)\xi(2/\eta + 1)$$
 (14)

Unlike the 1D case, $g_2(\eta, 0)$ remains finite for all positive values η . Consequently, BEC, an ideal two-dimensional gas confined by a power-law trap, can, in principle, always occur. A rigid box corresponds to the limit $\eta \rightarrow \infty$. Since $g_2(\infty, 0)$ diverges, BEC does not occur, in agreement with Hohenberg's finding (ζ). For BEC to occur in a nonisotropic 2D potential, the requirement is that $n^{-1}+m^{-1}$ be finite. From Eq. (12), the critical temperature in 2D trap is

$$kT_c^{2D} = \left(\frac{Nh^2 U_0^{2/\eta}}{2\pi^2 Ma^2 g_2(\eta, 0)}\right)^{\eta/(2+\eta)}.$$
 (15)

The dependence of T_c^{2D} on η is shown in Fig. 1. T_c has a broad maximum in the vicinity of $\eta = 2$.

These results are valid only for the ideal Bose gas. The weakly interacting Bose gas can be treated using the mean-field approximation [9], though at the low densities likely to be of experimental interest, the corrections are not expected to be important.

IV. EXPERIMENTAL REALIZATION OF A TWO-DIMENSIONAL BOSE GAS

A possible configuration for a two-dimensional system for spin-polarized hydrogen is a pillbox-shaped container in a uniform field, with its axis parallel to the field axis, as shown in Fig. 2. A thin coil wound around the perimeter provides the inhomogenous trapping field. The inner surface is covered with liquid helium, and atoms in the "high-field seeking" state enter through a thin tube. The field of the coil varies radially according to

$$B(r) \cong -B_t \left[1 + \left[\frac{3}{4} \frac{r}{a} \right]^2 \right], \qquad (16)$$

where a is the radius of the pillbox and B_t is the field at the center of the coil. The trapping potential is given by

$$U(r) = U_0 \left[\frac{r}{a}\right]^2, \qquad (17)$$

where $U_0 = (3/4)\mu_0 B_t$ and μ_0 is the Bohr magneton. The total number of particles trapped on either end surface is

$$N_{S} = \int_{0}^{a} 2\pi r \sigma_{0} e^{-U(r)/kT} dr = \pi a^{2} \frac{kT}{U_{0}} \sigma_{0} , \qquad (18)$$

where σ_0 is the surface density on axis and we have assumed that $\exp[-U(a)/kT] \approx 0$. From Eq. (15), we obtain

FIG. 2. Geometry for a two-dimensional trap for spinpolarized hydrogen. A gas of spin-polarized hydrogen is confined in a solenoid by the field B_0 . Atoms in contact with the ⁴He surface produce a two-dimensional adsorbed gas that is trapped by the radial potential created by the field of the current loop $B_t(r)$.

$$kT_c^{2D} = \frac{1}{2\pi} \frac{h^2 \sigma_0}{Mg_2(2,0)} .$$
 (19)

The surface and volume density for a weakly interacting adsorbed gas are related by [10]

$$\sigma_0 = \lambda_D n_0 e^{E_b / kT} \tag{20}$$

where $\lambda_D = h / (2\pi M kT)^{1/2}$ is the thermal de Broglie wavelength, E_b is the surface adsorption energy, and n_0 is the volume density on axis. The total number of atoms in the gas phase is

$$N = \int n_0 e^{-U(r)/kT} dV = n_0 V(kT/U_0) .$$
 (21)

To compare the critical temperature for the 2D and the 3D system, one can combine Eqs. (1) and (19)-(21) to yield

- Special Issue on laser cooling and trapping of atoms, J. Opt. Soc. Am B 5, (1988); N. Masuhara, John M. Doyle, Jon C. Sandberg, Daniel Kleppner, Thomas J. Greytak, Harald F. Hess and Greg P. Kochanski, Phys. Rev. Lett. 61, 935 (1988); I. F. Silvera and J. T. M. Walraven, in *Progress in Low Temperature Physics*, edited by D. Brewer (North-Holland, Amsterdam, 1986), Vol. 10, Chap. D.
- [2] K. Huang, Statistical Mechanics (Wiley, New York, 1963).
- [3] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
- [4] (a) R. Masut and W. J. Mullin, Am. J. Phys. 47, 493 (1979); (b) H. A. Gersch, J. Chem Phys. 27, 928 (1957).
- [5] J. J. Rehr, and D. Mermin, Phys. Rev. B 1, 3160 (1970).
- [6] L. Ioritti, S. Goulart Rosa, Jr., and O. Hipolito, Am. J.

 $(kT_c^{2\mathrm{D}})^{5/2} = 1.588(kT_c^{3\mathrm{D}})^{3/2}U_0 e^{E_b/kT_c^{3\mathrm{D}}}, \qquad (22)$

where we have introduced the numerical values $g_2(2,0)=1.645$ and $g_3(0)/g_2(2,0)=1.588$. Because $(U_0E_b) \gg kT_c$, Eq. (22) predicts an enormous enhancement of the critical temperature for the surface compared to the bulk.

In practice, three-body recombination on the surface limits the useful surface density. The three-body recombination rate constant is [11] $L_s = 1.2 \times 10^{-24} \text{ cm}^4 \text{ s}^{-1}$. This value was measured in the temperature range 0.3-0.6 K and was found to be approximately temperature independent. One expects L_s to vary as $T^{1/2}$, but to be conservative we shall assume that L_s is temperature independent. A surface density on axis of $\sigma_0 = 2 \times 10^{11}$ cm^{-2} would yield a characteristic recombination decay time $\tau_s = (L_s \sigma^2)^{-1} = 20$ s, which is an acceptable value. From Eq. (19), $T_c^{2D} = 4$ mK, a temperature that is low but achievable. The value of U_0 is fixed by the requirement that $\exp(-U_0/kT_c^{2D} \ll 1)$. Taking $U_0 = 10kT_c^{2D}$, a conservative value, leads to a trapping field of $B_t = 400$ G, which is easily achieved. The total number of atoms, Eq. (18), is 6.3×10^{10} . Note that the interparticle separation under these conditions is larger than the hydrogen Swave scattering length by $\sim 4 \times 10^3$, so that the independent-particle approximation is expected to be realistic.

Although the experimental conditions appear to be favorable, we point out that removing the heat recombination may present a challenge and that methods for studying the surface gas remain to be developed. Nevertheless, this analysis suggests that low-dimensional systems are of potential experimental interest.

ACKNOWLEDGMENTS

V. S. B. acknowledges financial support from the Intra American Bank for Development through the project BID/University of São Paulo, and helpful comments from I. F. Silvera. The work of D. K. was supported by the National Science Foundation, Contract No. DMR-88-15555.

Phys. 44, 744 (1976).

- [7] A. Widom, Phys. Rev. 168, 150 (1968).
- [8] Handbook of Mathematical Functions, edited by A. Abramowitz, I. A. Stegun (Dover, New York, 1965).
- [9] V. Bagnato, D. E. Pritchard, and D. Kleppner, Phys. Rev. A 35, 4554 (1987).
- [10] T. J. Greytak and D. Kleppner, in New Trends in Atomic Physics, Proceedings of the Les Houches Summer School of Theoretical Physics, 1982, edited by G. Greenberg and R. Stera (North-Holland, Amsterdam, 1984).
- [11] D. A. Bell, H. F. Hess, G. P. Kochanski, S. Buchman, L. Pollack, Y. M. Xiao, D. Kleppner, and T. J. Greytak, Phys. Rev. B 34, 7670 (1986).