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Spectral line shape arising from collisional interference between electric-dipole-allowed
and collision-induced transitions
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A theory is developed to describe the spectral line shape due to interference between electric-dipole-
allowed and collision-induced transitions in pure rotational molecular spectra. Motivation was provided
by experimental data available for HD-inert gas systems. This theory is based on a master-equation ap-
proach to induced spectra employed by Alber and Cooper [Phys. Rev. A 33, 3084 (1986)]. The active
molecule is considered to be immersed in a bath of perturbers. An expression for the absorption
coeKcient is obtained within the binary collision approximation that contains terms due to allowed, in-

duced, and interference contributions. Effects due to m mixing, J mixing, and successive collisions are
included. Low-order approximations of the theory eventually reduce to results of earlier efforts, namely,
the pioneering description of collisional interference by Herman, Tipping, and Poll [Phys. Rev A 20,
2006 (1979)] and refinements to it through consideration of rotational level mixing. The principal attri-
bute of this approach is the treatment of allowed and collision-induced transitions in a consistent
manner.

PACS number{s): 33.70.Jg, 33.10.Ev, 32.70.—n

I. INTRODUCTION

The theory of spectral line broadening is described in a
voluminous amount of literature, the greatest part of
which concerns electric-dipole-allowed transitions. The
line shape accompanying transitions proceeding via
collision-induced electric dipole moments has received
less, but appreciable, attention. Usually allowed lines
have an intensity that is sufficiently large to dominate
collision-induced efFects, and the two types of contribu-
tions need not be considered for the same transitions. In
recent years, interest has been renewed in the infrared
spectrum of the hydrogen molecular isotope HD [1]. The
small permanent dipole moment of HD yields allowed
transitions comparable in magnitude to the collision-
induced transitions, and an observable interference efFect
occurs between these contributions [2].

Considerable experimental data have been gathered on
the total intensity and spectral line shape for both the
pure rotational and rotation-vibrational spectra [3,4]. A
theory of the efFect developed by Herman, Tipping, and
Poll [5,6] predicts the correct order of magnitude of the
interference but is not reliable for a detailed description
of the behavior of the intensity with density or of the
spectral line shape [4,7,8]. The present study was under-
taken with the goal of providing a more general descrip-
tion of the phenomenon. The theory here described
treats both allowed and induced contributions:in a con-
sistent manner and includes provisions for both m- and
J-mixing collisions. Calculations based on application of
the theory to HD-inert gas systems will be reported in a
separate paper.

The outline of this paper is as follows. In Sec. II the
density-matrix equations are written. An expression for

the spectrum is obtained in Sec. III. This expression is
simplified within the impact approximation in Sec. IV
and its angular average is taken in Sec. V. The absorp-
tion coefficient is given in Sec. VI. The paper concludes
with a discussion in Sec. VII that centers on comparison
with previous work.

The system considered is a single neutral radiator con-
tained within a gas of N neutral foreign perturbers and
immersed in a radiation field consisting of modes de-
scribed by wave vector k and polarization vector A, . The
radiator has a series of low-lying, closely spaced energy
levels (which eventually will be taken as vibration-
rotational levels); the perturbers on the other hand have
widely spaced levels (which will be taken as electronic
levels). Electric-dipole-allowed transitions are assumed
possible between levels in both the radiator and per-
turbers. For convenience, the ground state of the per-
turber is taken as a J=O state. In addition, interactions
between radiator and perturber will induce cluster dipole
moments that may also act in radiative transitions occur-
ring at the same frequencies as the allowed transitions. It
is the interference between these induced and allowed
transitions that is our main interest. Absorption and
stimulated emission events are considered. The lifetimes
of excited states are long compared to both the duration
of a collision ~, and the time between collisions. There-
fore, spontaneous emission may be ignored. The spacing
of the radiator states, however, is not taken as large com-
pared to fi/~, or to kT, where k is Boltzmann's constant
and T is the temperature. As a result, the radiator-
perturber interaction may cause inelastic transitions
among the radiator states.

The general approach is that of Alber and Cooper [9],
who studied the collisionally induced excitation and pho-
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toemission of a similar system within the binary collision
approximation. They derived an equation of motion for
the reduced density matrix of the radiator and obtained
an expression for the spectrum of the spontaneously emit-
ted photons, including components due to collisionally
induced radiation, which is valid in both the impact and
quasistatic limits. Their analysis, in fact, incorporates
the essential elements of the present problem, namely
transitions due to allowed and induced moments, the pos-
sibility of interference between them, and the effects of
single and successive collisions.

Here we construct the density matrix of the gas in
which the collisions take place, then describe the evolu-
tion of the density matrix in the presence of the incident
radiation and obtain the absorption and stimulated emis-
sion spectra. The equations are written in the Liouville
space form, which is convenient for line-shape problems
[10] and in which Liouville operators act in a manner
corresponding to normal operators in Hilbert space.

N N
=Ho+ g P;'(R,. ) p~.E——g )M, (R, ).E . (6)

though the change to the quantum-mechanical treatment
of the relative motion is straightforward.

Alber and Cooper [9] solve Eq. (1) with Eq. (3). They
describe in detail how the collisional interaction in associ-
ation with the allowed dipole transitions results in the
binary collision approximation in the induction of pair
dipole moments that also participate in the radiative
transitions. Rather than follow that procedure, we adopt
here an alternative but equivalent route that leads to the
desired final result more directly. To this end, we write
an effective Hamiltonian as

N 1 N

H, =H„+ g p,'+ g V,' '(R, )
1

2 .
1

N N
+HF+ g 0;(R'J) —p~.E—g p, (R, ) E

II. DENSITY-MATRIX EQUATIONS

The density operator p of the full system obeys the
equation of motion:

where the Liouville operator L is defined as

+HF+HRF+ gH$F+H~ (3)

HR and HJ are, respectively, the Hamiltonians for the
internal de rees of freedom of the radiator and the jth
perturber; describes the interaction between them. HF
is the Hamiltonian of a single-mode radiation field,

HF ~~kA kA kA, (4)

where &uk& is the frequency of the incident radiation with
wave vector k and polarization X; ak& and akim are, respec-
tively, photon creation and destruction operators. HRF
and HUFF give the interaction between the radiation field

and, respectively, the radiator and the jth perturber:

HRF+HPF (PR +Pj ) E ' (5)

LO—:. [HO]i'
and 0 is an arbitrary operator in Hilbert space (specified
by the careted symbol). The Hamiltonian H results from
several contributions:

1V' N
H=Hz+ g H + g P(xi —xx')

Here p. is the momentum of the jth perturber and
R =x —xz is intermolecular distance between the radia-J J R
tor and jth perturber. P, is th'e effective interaction po-
tential between the radiator and a perturber and acts only
on the states of the radiator, which are actually accessible
in the interaction, that is, to which real transitions may
occur. High-energy radiator states and the perturber
states have been adiabatically eliminated as described, for
example, by Callaway and Bauer [11]. V,' ' is that part of
the interaction which is spherically symmetric with
respect of radiator orientation and which consequently
does not couple different radiator states but does deter-
mine the classical trajectories. V, is the anisotropic part
of the efFective interaction and can couple different radia-
tor states. En the same manner, p, (R ) is the effective di-
pole moment arising through the radiator-perturber in-
teraction and couples unperturbed states of the radiator.
That Eq. (6) is indeed a valid and appropriate Hamiltoni-
an is demonstrated by the fact that both Eqs. (3) and (6)
lead to Eq. (51) below, from which further analysis
proceeds. An outline of the treatment starting from first
principles with the use of Eq. (3) is given in the Appen-
dix.

The Liouville operator associated with H, is

L =La+ gV;(t;j)+L„F+QL,F(t;j) .
J J

To solve Eq. (1) with Eq. (7), we first transform Eq. (1) to
the interaction picture

p'(t)= g V (t;j)+L'„„(t)+gL,'~(t;j) p'(t),
J J

where pz and p are the dipole moments of the radiator
and jth perturber, E is the incident field, and Hz is the
Hamiltonian associated with the kinetic energies of the
radiator and the perturbers. As a simplification, the
center-of-mass motion of the radiator is neglected (heavy
radiator limit) and xz can thus be set at zero. For con-
venience we will adopt a classical path approach, al-

p'(t) =e ' p(t),

V; (t;j)=e ' V;(t;j)e
R a R=e " V;(t;j)e

(9)

(10)
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Lot +LotaF(t) =e L RFe

L,„(tj ) =e L,F(t;j )e (12)

27TRQ) kgE=i
V

1/2

A,e'" "akz+H. c. , (13)

The time dependence of V, and L,F arises not only from
the exponential operators which transform them to the
interaction picture but also, if we adopt a classical path
approach, from their dependence on the radiator-
perturber distance R, which, in turn, is a function of time
as the collision proceeds.

The treatment of the interaction of the field with the
molecule requires some elaboration. The field E is given
by

=1—P. (22)

~g) is the ground state of the perturber, ~g, g)) is a
tetradic vector, for which the general form is
~a, b )) =—~a ) ( b ~, and p(pj ) is the noninteracting density
operator (at t=O) for the center-of-mass motion of the jth
perturber, normalized so that

f d p p(p. )=1 . (21)

Tr is the trace over the translational degrees of freedom
of the jth perturber and, in principle, also a trace over
the internal states of the perturber. However, after ob-
taining effective interactions and dipole moments, only
the perturber ground state occurs and, for convenience,
in what follows, we omit the internal ~g, g &) projector
from our equations. The operator Q is also defined as

where V is the quantization volume. A photon-number
state corresponds to an electromagnetic wave with the
definite amplitude,

In the classical path approximation, p. becomes

w(vj(0))
p = Tl~ (23)

E0=
1/2

Sm6cokgn (n»1) (14)
where m is the Maxwell distribution of velocities U. , V is
the volume, and

where n is the number of photons. Also [12], the flux of
photons is given by

Trj( )=fdvj(0) fdR (0)( . )

(n~flux~n ) = c, (15)

where c is the speed of light. Thus, the operator L,F be-
comes, from Eq. (12),

= f dv 4vrv f db 2mb f vjdtv f z0 0 00 sm'
~ ~ ~

(24)

L,F(t;j ) =e " [B,(t;j )akim e

=[8,(t;j)a„e "" D, (t;j)—at e ",.. .],
(16)

where in the dipole approximation,

B,(t;j)=— 2&CO kg

AVq

1/2

A, p, (R~(t}) (17)

iH~ tlag . —iH~t/R
(18)

N

P=rrp, (19)

There are similar expressions for Bz(t;j).
Let us now consider solving Eq. (8), to which end we

use the projection operator technique of Zwanzig [13].
The operator P is defined generally in tetradic notation
[10], under the assumption of uncorrelated perturbers at
some time in the remote past, which we take here as t=0,

IPp'(t)= L'„„+Pg[V (t;j)+L,'„(t;j)] Pp'(t)
J

+P g [V (t;j)+I.,'F(t;j)]Qp'(t),
J

(25)

I ' I
Qp (t)= LR„+Q g [V; (t;j )+L,F(t;j}] Qp (t}

j
+Q g [V (t;j)+LIF(t;j)]Pp'(t) . (26)

Here b is the impact parameter, t0 is the time of closest
approach, and the integral over Q represents an angular
average [14]. The time convention whereby p(p ) is the
density matrix at t=O differs from that of Refs. [9] and
[10] where t = —~ is used. We shall eventually take the
long-time limit and t=0 can be considered to be in the
distant past.

Eventually we will require the density matrix (and
similar operators) averaged (traced) over perturber coor-
dinates. The most convenient way to perform this aver-

age is to form Pp and then perform the trace at the end
of the calculations [noting that Tr(Pp) =Tr(p)].

With the application of Eqs. (19) and (22) to Eq. (8), the
latter may be written as two separate equations,

with

p(p, )
p(J '

V J (20)

PLRFQ and QLRFP both vanish since LRF is independent
of perturber variables and QP =PQ=O.

Equation (26) is solved by the Green-function method
and the solution substituted into Eq. (25) to yield
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Pp'(t)= L'„„+P g [V (t;j)+L,'F(t;j)] Pp'(t)
cl

Bt
J

+P +[V; (t;j )+L,~(t;j )]I dt'G, (t, t')Q g [V; (t',j)+L,~(t';j )]Pp (t'),
J J

where

G, (t, t')=Texp I LRF(t";j)+Qg [V; (t";j)+L,z(t";j)] dt" .
J

(27)

(28)

T is the time-ordering operator. Also Q (0) has been tak-
en as zero, equivalent to the assumption of no correla-
tions in the system at t=O.

III. THE SPECTRUM
r

A. General considerations

Following the procedure developed by Mollow [15],we
assume that the photon is absorbed from the field mode
specified by k and A, and the rate of absorption from this
mode is given by [15,16]

N

Wrr(tl n —1 Trn=tt Trtp (tl n —
1)Bt

lim f (t) = limsF(s),
f —+ oo s~0 (30)

where F(s) is the Laplace transform of f (t).
derivative in Eq. (29) is given by Eq. (27). We determine
Wz& in the lowest nonvanishing (second) order of the
molecule-field coupling.

It is convenient to express Wkk(t) as

collision average implied in the trace in Eq. (29) will be
reduced to a binary collision average and the trace over
perturber variables will yield in the classical path approx-
imation an angle average and the average over U, b, and
to, respectively, the relative velocity, impact parameter
and time of closest approach [14] [see Eq. (24)].

The interest is in the long-time limit of 8'k& and we
shall use the property that

n —1,n —1 Tr~ Trj —I'p' t (29) Wkg, (t) WA1(~kA, )+ WA2(tokk)
g —+ oo

(31)

The mode (k, A, ) is assumed to originally have had n pho-
tons. Trz is the trace over all radiator variables. The

where W„,(tokk) and W„2(cokk) explicitly contain LRf
and L,F respectively. They are given from Eqs. (27) and
(29) as

and

N

Wnt(tnrr)= lim n —l, n —1 Trn rf Tr I.trr(t)PP (t)))t —+ oo j= 1

(32)

N N N
W„t(tn„r)= )im n —l, n —1 Trn tt Tr X Lr(t j) Pp (t)+ J G, (tt )Q X [V; (t';,j)+L',r(t',j)]pp (t )dt'

))
. '

t —+ co j=l j=l 0 j=l
n

(33)

The terms preceded on the left by V;I in Eq. (27) do
not contribute to W„2(co). The mathematical reason is
that any tetradic operator when traced over all its vari-
ables vanishes, i.e., Trz Tr V; ( )=0. Physically, the
vanishing of these terms occurs because the observable in
the problem is associated with the square of the dipole
moment operator and V,

' on the left describes an interac-
tion occurring after the dipole operator has acted twice
within the collision.

The total cross section for absorption is

~r[(~kk) [ Wrjl(~kk)+ WA2(~kk)] j (+ j V )c ' (34)

We shall consider 8'~, and 8'~2 in turn.

From the expression for La„analogous to Eq. (16), Eq.
(32) becomes
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N

)P„t(teer)= 1im v'n n, n —1 Tre ii TrtBnpp (t)))f~oo J='=1

+r'n
((n

—1, n Trn ii Tr [e " PP (t)]t)e = iim2 Re[ Tr np(et)8 n],
j=1 g —+ oo

(35)

where

1V

P "(t)=V'
((nn

—1,n ii Tr, e ' "'Pp'(t))) .
j=l

(36)

The portion of the equation of motion (27) which is first order in Eo either explicitly by the presence of L RF or L,F or
implicitly through appropriate elements of p (t) is as follows:

a r .I IPp (—t)=NPV; (t)Pp (t)+NPV; (t)f dt'U, (t, t')V; (t')Pp (t')+LRF(t)Pp (t)ar

+NPL, F(t)Pp (t)+NPL, F(t)f dt'U, (t, t')V; (t')Pp (t')+NPV; (t)f dt'U, (t, t')L,~(t')Ppt(t')

+NPV,"(t)f dt' f dt, U,'(t, t, )LR„(t, )U,'(t„t')V (t')Pp'(t')
f'

+NPV (t)f dt'f dt, U,'(t, t, )L,'~(t, )U,'(t„t')V (t')Pp'(t') .
0

The double integral terms arise from the expansion of G, (t, t') to first order in L R„and L,~:
N

G, (t, t')=G„(t, t')+ f dt, G„(t,t, ) LRF(t, )+Q g L,~(t]j) G„(t„t'),
j=1

(37)

with

N

G„(t,t') = T exp f Q g V;I(ti,j )dt,
j=1

(39)

Cooper [17] and Trippenbach et al. [16] are followed to
obtain a formal expression for the spectral intensity.
First, the function X[ '(t), defined as

In writing Eq. (37), we have made the binary collision ap-
proximation (BCA) as detailed in Appendix A of Ref. [9].
U, (t, t') is the one perturber collisional propagator,

X' (t)=e(tI , ennii Tr, Pp (t))),j=l
(41)

U,'(t, t')=Texp f dt, V (t, )
1"

(40)

1. Sipnpligcation

In this section, the procedures of Smith, Vidal, and

The symbols V; (t) and L,F(t) [as well as D,I(t) in Eq.
(43) below] indicate no dependence on j and are the one
(i.e., representative) perturber operators. The thermo-
dynamic limit has been taken by replacing 1 —p by unity

is the element of the density matrix of the molecular sys-
tem unperturbed by the external field, in the Schrodinger
picture. Then by Eq. (30),

lim X' '(t) = limsr' '(s) =X
s —+0

(42)

where X is the Boltzmann distribution function for the
molecular states.

Now returning to Eq. (36), differentiating F"(t) with
respect to time, and using Eqs. (37) and (42), we get the
equation of motion,

F"(t)=(L~ +i'„i )F"(t)+N( V; (0) ),„F"(t)

+N f ( V; (0)U, (0, (t —t'))V; ( (t —t')) ),„e—" —" F"(t')dt'+nD~X[ '(t)+n (8,'(0) ),„X[ '(t)
P

+n~ D 0 Uro —t —t' p' —t —t e g t dt'

+nN f e ' "' (V (t t')U,'(t —t', )80,'(0—)),„X"](t')dt'
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X f U,'(0, (t—t—'))V ( —(t, —t')),„e ' ' X'"(t')dt'dt,

Lx f U,'(0, —(t, t'))V—( —(t, —t')),„e ' ' X"'(t')dt'dt, . (43)

( . )„=fdv(0)w(v(0)) fdR(0) —t
1

(44)

which is a result of Eqs. (23) and (24). The time origin has been translated with the help of the identity

(0', (t+t, ) . . 0„'(t+t„)),„=e ' (0', (t, ) . 0„'(t„)),„e

where 0 is an operator in the interaction picture [17]. Then, taking the long-time limit through Eq. (30), we obtain

(45)

lim F"(t)= lim
s~O

—(L~+icokz)+N f ( V; (0)U, (0, —r)),„e " " dr(L~+icvkz)
0

X nD~X nN(Lz+i—cok&) f e " ( U, (r, 0)D, (0)U, (0, —co)),„dr X

+nN f e " ( V; (r)U, (&,0)Dz[U, (0, —ao ) —1]),„drX
0

The symbol ~ represents t —t'.
In arriving at this simplified result, the methods described in Smith, Vidal, and Cooper [17] have been used. These

involve applying the following relationships:

d U,'(t, t') = —U,'(t, t')V (t') (47)

U,'(t, t')V (t')dt'= U,'(t, 0) 1, —
0

after taking the Laplace transform.
e e'»(~k~)

(48)

We now return to W~z(cokz) in Eqs. (31) and (33), which may be rewritten in a manner similar to W~, (coke) to give in
the BCA

W„z(cokz)= lim 2Re &nN n —l, n Trz + Tr 8, (t) e " Pp (t)+e " f U, (t, t')V,'(t')Pp (t')dt'
t~ oo j=l

+nNTrz f (D, (t)e " U, (t, t')D, (t')),„e " X~ ~(t')dt'

+nXTr~ D, t e " U, t t) D~ tl +D, t,
0

I

x U'(t„t')e "' ' V"(t') )„e ' X"'(t')dt, dt' (49)

Then, after application of the same simplifying relationships used in the previous section, 8'~2 becomes

W„2(loki)= lim 2Re —NTr~ f (D, (0)U, (0, —r)),„e " ' " ' "dr(L~+imki)sF "(s)
s~O 0

+n+Trg De w Ue +,0 De 0 Ue 0& ~ ave
0

+nNTr~ f (D, (r)U, (r, 0)Dz[U, (0, —~)—1])„e' 'drX
0

(&0)
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D. Full spectrum

Now after the combining of Eqs. (31), (35), (46), and (50) and dropping of the subscript kA, on co, the full absorption
spectrum W "(co) is as follows:

$V (co)= lim 2Re Trodi
' n [X(co)] 'DzX

s~0

nN—[X(co)] '(Lz+ico) f e ( U(r0)D, (0)U(0, —~ ) ),„dr X
0

+nN [X(co)] ' f e " ( V; (r)U, (r, o)8z [U, (0, —~ )
—1]),„dr X Dz

0

—nN f (D, (0)U, (0, —r)),„e dr (Lz+ico)[X(co)] 8+2
0

+nN f (8, (0)U (0, —r)),„e " dr (L„+ice)[X(co)] '(Lz+ico)
0

X f e (U (r 0)D (0)U (0 —~)) dr X
0

nN— f (D, (0)U, (0, —r)),„e dr (L~+ico)[X(co)]

X f "e""""'"(V;(r,O)V,'(r, O)8, [U,'(0, —~)—1]),„dr X'
0

+PlN If 7- UI 7 0 DI 0 UI 0 ao &tao' sw yB
0

+ ~ De w Ue +&0 Dg Ue 0, ~ 1 av~
0

(51)

where

X(co)= —(L~+ico)+N f ( V; (0)U, (0, r)),„e — dr (L~+ico) .
0

(52)

Each term in (51) describes a contribution to the spec-
trum of a particular physical origin. The first term de-
scribes the purely allowed spectrum. The second is an in-
terference term between allowed and collision-induced
transitions. The third arises from purely allowed transi-
tions and is designated as a correlated term, the nature of
which will be discussed below. The fourth term is again
an interference between allowed and collision-induced
contributions. The fifth term describes purely collision-
induced transitions, occurring in successive collisions.
The sixth term is an interference term, involving succes-
sive collisions and a correlated-type term. The seventh
term comes from collision-induced transitions occurring
in a single collision and is the main contribution to the
purely collision-induced spectrum. The eighth, (and last),
term is an interference effect occurring in a single col-
lision and is a correlated term.

Note that [X(co)] ' appears in the first six terms. It is
the usual line-shape operator [17] and will be shown to be
responsible for narrow spectral features. Thus these
terms will all have spectral features of similar widths and
shifts to that of the first or allowed term. They may not
be identical to those of the allowed term because of the
presence of the evolution operator U, in the integrands of
terms two to six. The last two terms in Eq. (51) depend

solely on propagation during a collision and therefore
their widths will depend on the duration of a collision.
Hence these terms give broad spectral features.

The correlated terms were so named by Burnett and
Cooper [18], in analogy to similar terms appearing in sta-
tistical mechanics. They depend explicitly on the Qp
component of the density matrix. A simple argument can
be given to assess their importance. The correlated terms
contain the factor V,' U, . The integrals are of the form

~

~

~

V; U, Bz( U, —1)dr, where the integrands are nonzero
essentially only for the duration of the collision ~, . From
Eq. (52) [or Eq. (55) below], it is seen that V,

' U, is of the
order of a collisional width y, to be defined explicitly in
Sec. V, and thus the correlated term is of the order of
Bzyr . In contrast, the purely allowed term contains
only D~. For a typical allowed line, y is of the order of
0.01 or 10 Hz. The duration of collision is about 10
s. (These values are consistent with those found for the
HD pure rotational lines [4]). The correlated terms are
then less than the terms involving just Di, by a factor of
10 . Therefore, in comparison, the correlated terms in
Eq. (51) may be neglected, as we shall do. This argument
applies to intensities near the line center. In the spectral
wings, the contribution of the correlated terms may be



7386 B. GAO, G. C. TABISZ, M. TRIPPENBACH, AND J. COOPER

very significant; in the consideration of the redistribution
of radiation in the line wings these terms must be re-
tained [18].

IV. IMPACT APPROXIMATION

Expression (51) for the spectrum is valid in general.
We are interested in the effects of interference on the
sharp spectral features close to line center controlled by
X(co), since these may be separated readily from the
broad background [1—8]. It is thus appropriate to work
within the impact approximation. This approximation is
valid when A~, && 1, where 6 is the detuning and

(53)

for g~ ~ez, g~ and ez being the initial and final states of
the radiator transition under consideration. (For the HD
pure rotational spectrum, h~, is about 10 and the ap-
proximation is quite suitable. )

id~—st~ (54)

After integration by parts and the setting of
i hv.e' =e '=1, where ~, is the only interval in which

V; U, V; is essentially nonzero, Eq. (54) becomes

(55)

The expression for the absorption spectrum (51) is then

For isolated lines, it is easy to show that Trz in Eq.
(51) reduces to ((gz, gz l

for the first three terms and to
((ez, e~ l

for the next three terms. Both lgz & and le~ &

may be degenerate (see Sec. V). Terms involving other
matrix elements are of the order of y/co, and are conse-
quently small. The last two terms of Eq. (51) will be ig-
nored since they contribute only to the broad feature. As
a result, all the (Lz +i co) in Eq. (51) may be replaced by
ih. Within the impact approximation, the formulas of
Eq. (51) may be further simplified. For example, the
line-shape term is

X(co)= i 5—+ lim ihN f ( V;i(0) Ul(0, —r) &,„s~O

IV "(co)=2Re lim [Tr~([n [X(co)] D~X +nN [&(~)] i( Ui( oo, o)D i(0)UI(0 —~ ) &s~O

+nN(8, (0)U, (0, — ) &,„[X(co)] '8 X

+nN (8, (0)U, (0, —oo ) &,„[X(co)] '( U, ( 00,0)8,(0)U, (0, —~ ) &„X )] . (56)

V. ANGULAR AVERAGE

These expressions within the impact approximation are
now isotropically averaged over all orientations of the ra-
diator and of the intermolecular axis. The assumption is
made that the incident field is weak. Consequently, there
is no relationship between the polarization vector of the
incident field and the orientation of the perturber. The
distribution of perturbers about the radiator is assumed
to have spherical symmetry and therefore it is convenient
to write the tetradic states involved in an irreducible
tetradic basis with respect to the rotation group. This is
defined by [9]

m I) m~

The collisional angle average is then easily obtained
through the properties of the irreducible tensor under ro-
tation [19,20].

By taking a spherical collision environment, we ignore
velocity-changing collisions, which are described by a
perturber distribution of cylindrical symmetry due to the
radiator moving through the perturber ensemble. We
thereby do not consider the intercollisional interference
effect elucidated by Lewis and Van Kranendonk [21,22].
This effect manifests itself as a narrow "dip" in the ab-
sorption spectrum and results from anticorrelated in-
terference between the dipole moments induced in succes-
sive velocity-changing collisions, arising from the tenden-
cy of the radiator to hit the perturber "head-on. "

After the angular averaging of Eqs. (55) and (56), the
absorption cross section, defined by Eq. (34), becomes

X
Pl i

o. „(co)= Re[(A+i y ) 'iX,"X,"],
3Ac

(57) where

(58)
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&i" = &~, IIP~ IIJ, &*+~,
J,q

me, m, m a

(1)ee J, 1 J
« J m, J m l[p, (0)]*U, (o, —~)IJ,m„J m, &&,„,

(59)

1
X2 =& IIP'all g& 2J +1 1 J

J, , q

me, mg, mi

( —1) ' J, 1 Jg
—m, qc mg

[P', (0)], U~(
I

(60)

y=n
I Im, m

m, m

J,
m +m

I—m, q, m

1 Jg J, 1 J
&S,m,'IS'IJ, m, & &S,m,'ISIJ, m, &*

e~c mg
(61}

where n =N / V is the number density of per turbers.
The states J, and Jg are, respectively, the excited and ini-
tial states of the transition considered. The states J,. and
J represent arbitrary states, respectively, before and
after the dipole-inducing collision. The element
& J, ~~pz (~Js & is the reduced matrix element of Pz after ap-

plication of the Wigner-Eckart theorem. ( ) indicates

the 3-j symbol [20]. The subscript q, denotes a spherical
component of the effective dipole moment. The average
is now, after the angular average, a collisional average
over velocity, impact parameter and time of closest ap-
proach [14]:

&,„=f du 4~u co(v) f db 2rtb f v dto
0 0 00

(62)

Equation (61) is the usual expression for the line-shape
function [19,23]. In order to obtain Eq. (61), the average
over the time of closest approach has been taken, so that

[ ' ' ' ],= f du4vru w( )uf db 2vrb . (63)
a 0

The S matrix is defined as

VI. ABSORPTION COEFFICIENT

—Ace/k T (65)

There is, or course, the possibility of stimulated emis-
sion, as well as of absorption. In principle, the analysis of
Secs. III—V can be repeated for the stimulated emission
process. However, because of the inclusion of J-changing
collisions and classical trajectories in the present treat-
ment, the relationship between the cross sections for the
two radiative processes described by detailed balance can-
not be strictly obtained. When inelastic collisions occur,
there is not a unique trajectory. For the absorption spec-
trum, in general, the change in trajectory due to inelastic
effects will be small in the region where the interactions
are important and we expect the classical trajectory to be
a reasonable approximation. Quantum calculations are
straightforward but obviously more tedious. For a cri-
tique of the problems of incorporating detailed balance in
classical calculations of induced line shapes, the reader is
referred to the work of Frommhold and his collaborators
[24]. We shall take the detailed balance result to pertain,
and write the cross section for stimulated emission as

S= 0, ( 0D, —co ) . (64}
The absorption coefficient a(co) is

The real and imaginary parts of y give, respectively, the
width and shift of the spectral line. By restricting the J
elements of y to J, and Jg in Sec. IV, we have assumed
that the lines are isolated. The tetradic matrix X(co) [Eq.
(52)], which should in principle be inverted, is now diago-
nal and I /X(co), is simply the inverse of the diagonal ele-
ments.

a(co) =n~ [o.„(co) crF(co)], — (66)

where the number density of radiators is now taken as

Finally,
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( )= (l — " '" )R (~+ l )
' I(J III +IIJ, &I'2J +l3Ac 2J +1

+t~, & J, IIP~IIJ, &*

Ji,q

me, m, mi

( —l)'
1 J

((J,m„Jgm, l U,'( ~,0)[P,', (0)],

X U,'(0, — )IJ,.m, ,J,m, ».„ 1

l

+in
J,q

me, m, ma~

J, 1 J
((J' m, J m l[P, (0)]*U, (0, —oo )IJ,m„J~m~ &&,„

x & J, IIPtt IIJg & 2J + l &J J,

+ln
J,q

me, m, ma

1 J
((J m, J m l[P, (0)]*U, (0, —~)IJ,m„J m

J,-, q

m, m m.

(
—l)'

1 J
((J,m„Jgm I U, ( oo, 0)[p, (0)]

X U, (0, —~ ) I J;m;, J;m; &&,„XJJ
1

l
(67)

VII. DISCUSSION

A. Inelastic collisions, J and m mixing

The expression (67) is rather general, including possible
efFects due to J and m mixing. The erst term describes
purely allowed transitions between states J and J, . The
second and third terms involve interference between al-
lowed and induced transitions. In the second term, the
radiator starts in an arbitrary state J; at t = —Oo and the
system propagates to t=0, while the radiator possibly un-
dergoes J or m mixing. At t=0, there is a dipole interac-

I

tion, in general, between two intermediate Jm states of
the radiator. The system then propagates to the end of
the collision, with the radiator again possibly experienc-
ing J and m mixing. At t =+ 0O (end of the collision),
there remains a coherence between J,m, and J m . The
radiator dipole interacts with the light field at some later
time to leave the radiator in the J, state. This history of
the system is perhaps more clearly seen if the tetradic ele-
ment appearing in the second term is written, after a
translation of the time origin from 0 to to and with the
specific inclusion of the complete sets of intermediate
states, as

« J,m, J,m, IU,'(~,0)[p', (0)], U,'(0, —~)IJ,m, ,J;m, &&

e
' "' ""'

« J,m„Jgm&l U, (00 ta)l J3m3, J,m, »& J3m31[P, (to)]q IJzmz &

ml, m2, m3

X ((J2m2, J,m, I U, (to, —Oo )IJ m;, J m; » . (68)

Similarly, in the third term, the radiator dipole initially creates an eg coherence and the system propagates to t=O,
with the radiator possibly suffering J and m mixing. At t=O, the effective dipole operator acts, leaving the radiator in
the arbitrary state J . The tetradic element in this term may be written as

((J m, J m l[p, (0)]*U, (0, —oo)IJ,m„J m

= ge " ' '(J&m&l[P(ta)] IJ m &*((J&m„J m IU(to —oo)IJm„J m
Jl
ml

(69)
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In Eqs. (68) and (69), the time to represents the time be-
tween the radiative event and the time of closest ap-
proach. This time is of the order of the duration of a col-
lision for intracollisional absorption to occur. Thus, if
the difference between the frequency co, and co32 or co& is
great compared to ~, ', the exponential oscillates rapidly
and the contribution to the absorption coeKcient of the
transition J2 to J3 or J, to J is not large. J mixing,
however, becomes important if (co,~ co32—)r, ~ 1 or if
(co,g

—co, )r, ~ 1, as can be the case for the rotational
spectrum of HD at 295 K.

The fourth term in Eq. (67) describes induced transi-
tions occurring in successive collisions. The effective or
induced dipole operator acts once in each collision. This
term is not zero since in each collision the dipole moment
induced has a component in the direction of the allowed
dipole and hence successive collisions are correlated.
Thus the line shape is controlled by the time between col-
lisions, rather than the duration of a collision. As a re-
sult, the spectral feature is modulated by X(co) and is of
similar width to the allowed line. Herman and co-
workers [6,22,25] have emphasized the importance of this
term in accounting for the total intensity of the narrow
spectral features in the infrared spectrum of HD.

B. Elastic collisions; m mixing only

If we take U, (t, t') to be diagonal in J, then only elastic
collisions can occur and the following simplifications in
the formalism result. From Eqs. (59) and (60),

X,"=(p'+n p )

and

1
2 PR PPI 2J + 1

J J

where

and

p&= g ( —1) '

m, m

—m, q, m

X f dtoe
' 'g"(J,m, IO, (00, to)

X[@,(to)] 0, (~, to)IJ m ), ,

r =x'+~X"

we get from Eqs. (58) and (66),

with 0, being the Hilbert space evolution operator.
Taking pz to be real, writing pz as

t t =

Ingle'=

Is r I(~'+t~")
and f as

(70)

(71)

(72)

(73)

(74)

(75)

I

a(co)= n~(1 —e " ~"
) [@~+26'n @zip&. I+(b, ' b" )n pt]—

2(b, —y")„,('",p lp I+~'~" „Ip I )
r rr 2 2 1 8

(y')'+ ( &—y" ) 2J +1 (76)

This equation is the sum of a Lorentzian and a disper-
sion pro61e and as such is of the same form as that ob-
tained by Herman, Tipping, and Poll [6] in their pioneer-
ing theory of the interference effect. They assumed that
the evolution operator U(t, t') is diagonal in both J and
m and therefore only elastic non-m-changing collisions
are included in their treatment. Their expression for the
absorption coefFicient can then be written in terms of the
mean induced dipole moment. In our Eq. (76), m-
changing collisions are permitted and the phase factor in
Eq. (74) associated with the induced dipole moment in-
cludes the effects of propagation. Moreover, we see no
simple relationship between the mean induced dipole mo-
ment and Eq. (74). The phase factor b, '+id, " in Eq. (74)
is not identical to that of Herman, Tippings and Poll [6],
although in both treatments 6' and 6" are constrained to
remain between +1 and —1.

C. Rotational level mixing

There have been attempts to include inelastic collisions
in the analysis by rotational level mixing effects through
the anisotropic part of the intermolecular potential
[26,27]. In their approach to the problem, Tabisz and
Nelson [26] assume there is no propagation and that U is
diagonal. The leading anisotropic term in the interaction
between a HD molecule and an inert gas atom is of the
form P&(cos 8). Only contributions from the anisotropic
overlap that are part of the pair-induced dipole moment
are found to contribute to the rotational level mixing, and
the effect of this mixing on the magnitude of the calculat-
ed interference is small [4,26,27].

The present formalism includes propagation. If b,E is
the energy difference between the states coupled by V,'
and the evolution operator is expanded in time, under the
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assumption that b.Er, ))1 (which in general is not true),
then

U,'(t, 0)=1+I dt'e' ' "V'(r')

V;(0) + ~ ~ ~

( b,E/iii)
('77)

VIII. SUMMARY

A theory has been described which gives an expression
for the spectral line shape due to the interference between
allowed and collision-induced transitions in pure molecu-
lar spectra. It includes eA'ects due to J and I mixing, as

The leading term in the expansion of U, beyond the diag-
onal term is of the same form as the first-order time-
independent perturbation theory result used by Tabisz
and Nelson [26] to describe rotational level mixing.
Therefore, the present analysis contains earlier attempts
at including inelastic collisions. It goes further, however.
Because the full propagator U, is used and inelastic tran-
sitions may occur at times during the collision other than
when the dipole operator acts, several components of the
induced dipole moment may participate in the optical
transition. In particular, the strong isotropic overlap in-
duced dipole component, which alone cannot connect the
initial and final states involved in the AJ=1 transitions
[R (J) lines], may play a role and the magnitude of the in-
terference e6'ect calculated by the present theory may
difFer markedly from earlier e6'orts.

well as a contribution from successive collisions. The
only fundamental approximation is the binary collision
approximation. The formalism remains the same without
the classical trajectory approximation. Calculations are
now underway in which the theory is applied to HD-He
and HD-Ar systems. The results and their physical im-
plications will be reported in a future paper.
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APPENDIX

To approach the problem from first principles, the full
Hamiltonian given by Eq. (3) is used in the equation of
motion (1). The operators LR„and LPF, associated with

HRF and HpF, are expressed in a manner analogous to
Eq. (16). Equation (1) is transformed to the interaction
picture and the projection operators Eqs. (19)—(22) are
applied to give an equation of motion for Pp(t) of the
same form as Eq. (27). The spectrum is found by the
methods of Sec. III, starting from Eq. (29). The required
portion of the equation of motion for Pp(r), which is in
first order in E0 is

Pp (r)=NPV (r)I U (r, r')V (t')Pp (r')dr'+PLR„(t)Pp (t)

+NPLIP„(t) f U'(r, t')VI(r')Pp'(t')dt'+NPVI(t) f U'(t, t')Ll»(t')Ppl(t')dt'

+NPV'(r) f dr' I dr, U'(r, t, )[LIR„(r,)+Ll»(t, )]U'(t„t')V'(r')Pp'(r') . (Al)
0

The binary collision approximation has been made in writing Eq. (Al). V is the full interaction potential between
the radiator and a single perturber. U (t, t') is the single-particle collisional propagator. The term PL P„Pp vanishes as
I'p is diagonal in perturber states and L PF is ofF-diagonal in those states.

The derivation of the effective interaction V, and the effective dipole 8, proceeds in the same way as in Alber and
Cooper [9]. Basically, it is a procedure that [by formally integrating by parts the equation for U (t, t')] eliminates the
fast time variations due to the virtual transitions in the perturber. The contribution of these rapidly varying terms to
the spectrum is smaller than the retained terms by a factor b. /(E, E~ ) where e, a—nd g, are the ground and excited

states of the perturber and E is their energy.
In this manner we have shown that one obtains from Eq. (Al) the same spectrum as in Eq. (51) with D, and V,

defined in terms of the perturber dipole B„and V by the following expressions:

&gi l&p lei & & ~~ ei I ~IPiig i & & &iigi I ~IPii ei & & ei l&p lgi &

«~iigi Yii~ i l~ IPiigi Yii+i &&
= g

e& PR g I oR e I 0'R g l PR e l

(A2)

«~Rgl I Rgl I V, lyRgl ~Rg\ &&

=1
I

0!R,e I

&~&gi I VI~Rel & &~Rel I VI) ~gi &

E +E —E, —E,
5

~R R
VR gl aR e

(A3)
E +E —E, —E R~R

a eR I
e,R
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The difference here from the treatment of Alber and
Cooper [9] is that we allow P', to couple a whole mani-
fold of radiator states instead of just the degenerate ones.
Also it is interesting to note that only the second term
of Eq. (A2) is obtained if the RWA is made on the
perturber-light field interactions. This would be an in-
correct procedure for this case, which is far from reso-
nance with the perturber states.

It is seen in Eq. (A2) that 8, results from an allowed

transition occurring in the perturber during an interac-
tion between the perturber and the radiator. Thus 8,
may be considered as involving the dipole moment in-
duced in the pair. In subsequent corn utations with the
formalism developed in this paper, , and P', will be
identified with empirical, semiempirical, or calculated ex-
pressions, which apply in the adiabatic or quasistatic lim-
it.
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