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Experimental determination of ground-state correlation efFects in molecular nitrogen
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High-energy (25—28-keV) electron-impact spectroscopy (HEEIS) has been used to measure a relatively
complete Bethe surface for molecular nitrogen. This surface, placed on an absolute scale by Bethe-sum-
rule normalization of the generalized oscillator strength (GOS), has been employed to obtain the x-ray
incoherent scattering factor S(K) as a function of the momentum transfer K by use of a sum rule of the
GOS. Ground-state correlation effects on S(I( ) were obtained by comparing the experimental results
with theory based on a near-Hartree-Fock molecular wave function. The results are compared with re-
cent theoretical calculations of valence-shell correlation effects. lt is argued that x-ray and electron-
scattering experiments offer the most sensitive tests currently available for valence-shell electron-
correlation effects in the ground electronic states of molecules. The results obtained coupled with avail-

able theory suggest that correlation effects on the one-electron density play a dominant role in the deter-
mination of the total correlation energy of the nitrogen molecule.

PACS number(s): 34.80.Gs, 33.90.+h, 35.80.+s

I. INTRODUCTION

The aim of this paper is to demonstrate how very sensi-
tive information on electron-correlation effects in the
ground states of atoms and molecules can be obtained by
experiment. While various spectroscopic and photoion-
ization processes reveal the effects of electron correlation
on the ground-state structure of an atom or molecule the
interpretation of such information involves a detailed
knowledge of the excited state [1]. Hence such experi-
ments do not normally lead to unambiguous information
on the ground state. The so-called (e,2e) experiments
are similar to the photoionization case in this regard.
The orbital momentum density shows little sensitivity to
electron correlation [2] as does the total momentum den-
sity measured in Compton scattering experiments [3].
Shakeup and shakeoff features in (e, 2e ) spectroscopy can
be very sensitive to correlation [4] but again their inter-
pretation involves a knowledge of excited states, which
only complicates the analysis. Certain (y, 2e) and (e, 3e)
angular correlation studies have been proposed [5—11]
which would directly measure the second-order density
matrix in momentum space and could presumably be
very sensitive to ground-state correlation effects. So far
only a few successful experiments of this type have been
carried out [9—11]. This leaves only the classical scatter-
ing approaches initiated in the 1920s [12] which have not
been as successful as originally hoped because of the ex-
perimental difhculties involved in measuring accurate ab-
solute scattered intensities. It has only been possible to
realize the potential of the classical approach with the ad-
vent of modern technology [13]. Recent works have fo-
cused on elastic electron scattering [14], total electron in-

elastic scattering [15], and total, elastic plus inelastic, x-
ray scattering [16]. The elastic scattered intensity can be
related to the Fourier transform of the diagonal one-
electron density matrix or the electron density p(r) [17],
which has been thought to be rather insensitive to elec-
tron correlation [18] but very sensitive to electron bond
formation effects in molecules [19]. The inelastic scatter-
ing, on the other hand, can be employed to obtain the
generalized oscillator strength (GOS), which through
well-known sum rules can be used to calculate the x-ray
incoherent scattering factor [20] which is simply related
to the electron pair correlation function and is, as it has
been shown, a very correlation-sensitive quantity [15].
The connection between these experiments and the vari-
ous charge densities is made by use of first Born type
scattering theories [13,21]. The validity of using the
Born approximation can be subjected to experimental test
and confirmed within the experimental uncertainties in-
volved [14]. In this paper the focus will be on experimen-
tal determination of the x-ray incoherent scattering fac-
tor for molecular nitrogen by use of a sum rule of the
GOS [15].

II. THEORY

The connection between inelastic scattering and the
electron pair correlation function via a sum rule of the
GOS for the case of molecules is not well known [22—24]
and it is therefore worthwhile to present the details here.
For the molecular case the GOS, which is an experimen-
tal observable, is defined for excitations into the continu-
um as [24]
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for discrete excitation processes where K is the momen-
tum transfer and E is the energy loss with both K and E
in Rydberg atomic units. In Eq. (la) the sum over v runs
over all states accessible to excitation with an energy
transfer (loss) E from a projectile electron. The positions
of the M nuclei and N electrons of the target molecule are
given by R„and r;, respectively, with Z„ the atomic
number of the nth nucleus. The sums over n and i will be
omitted for brevity but understood in what follows. The

iK-R„
nonvanishing of the term Z„e " in the molecular case
is the result of the wave-function dependence on the nu-
clear motion.

The sum rules of the GOS are defined generally as

S(I,K)= gE'f(K, E )+ J dEE'
V E

(2)

where E; is the lowest ionization potential and the sum
over v is over all possible discrete excitations. Note that
the energy-loss range must be extended up to infinity and
measurements must be carried out at a constant momen-
tum transfer E. The sum rules of interest to this work
are l =0, called the Bethe sum rule [20], which is used for
normalization of the data to an absolute scale and the

!

1l= —1 sum rule which yields the desired result. The
sums involved for l =0 and —1 can be evaluated exactly
in terms of known constants or ground-state expectation
values as [23,24]

S(O,K)=X+ g Z„/(1836M„) (3)

Equation (4) can be rearranged by adding and subtracting
the term &(I'vRTIIF(K)l I+vRT& where the average is
over the vibrational-rotational-translational (VRT)
motion of the molecule and F(K) is the electronic molec-
ular x-ray coherent scattering factor defined as

F(K)= &q', ie'"" q, &

where +E is the ground-electronic-state Born-Oppen-
heimer wave function [17]. The result, after some alge-
bra, can be written as

with M„ the mass of the nth nucleus in amu's and [22,24]

s( —1,K)=(&+ollz. e'
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Note that Eq. (5) is exact and that the first three terms on
the right of the equal sign are identical to the definition of
the x-ray incoherent factor for atoms [13,20], S(K), ex-
cept that %o is the exact ground-state molecular wave
function and averages over VRT motion are included. If
we invoke the Born-Oppenheimer approximation for %o
in those terms in the square brackets then %o can be re-
placed by the product 4'vRTVE. This reduces the terms
in the brackets, which we denote as S(K )vRT, to

S(K)vRT=&qvRTIIZ„e' " —F(K)I Ie«T&

ground electronic state and the intensity for elastic
scattering obtained using an energy analyzer with infinite
energy resolution [24]. The average over VRT in the last
term on the right represents the weighted sum of elastic
scattering from all initially excited states of the molecule.
If the elastic line, including all important VRT excita-
tions of the ground electronic state, is well separated ex-
perimentally from the electronically excited states and
their VRT excitations /hen we may omit the elastic line
from our analysis and use the atomiclike sum rule

S( —1,K)K =N+ &Vole "IDIO&;~,

"—F(K)
I

q' —
& q'vRTI IF(K ) I'I +vRT & (7)

where S(K)vRT can be recognized as the deference be-
tween the elastic line intensity including averages over all
possible VRT excitations that leave the molecule in its

l

with %'o being the exact ground-state wave function. As-
suming that the VRT motion is separable as
+vRT=+v+z%'T and if +o is replaced by 0 z%'z%'T%'E
then Eq. (7) can be written as [25,26]

s, ( —),)(')r'=(e„e, 1 d()z[s+(e, l~'""'le, ),~) —IF(K)l') +,+„)4m
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where the terms in the square brackets constitute an x-ray incoherent scattering factor for a molecule in a fixed orienta-
tion in space. This result is then averaged over all spatial orientations [25], JdQK, and over the vibrational and
translational motion [24]. The subscript I has been appended to the sum rule to indicate that the elastic line has been
excluded from the analysis. We believe that Eq. (8) is sufficiently accurate to use as a comparison model with the results
of experiment. A similar argument can be made to justify use of the Bethe sum rule for atoms for the molecular case
since the molecular correction is only 0.03 to the atomic value of the sum rule which is 14 in the case of N2.

The connection between Eq. (8) and the electron pair correlation function can be established by carrying out the rota-
tional averaging and by integrating over all electronic coordinates except those for electrons 1 and 2 with the result

SI(K ) =SI(—1,K )K

00 sinKr &z slnKr )2= +vq'v n+ f ~v»)o(v, o) —fdr, p(r, )fdr~(ro) @v@pl
0 Kr )2 Kr 12

(9)

whe«P, (r») is the electron pair correlation function and p(r) is the three-dimensional one-electron density for the
molecule Both these densities depend on the nuclear position vectors R with their directions referred to the principal
axis coordinate system of the molecule [26]. The electron pair correlation function can be defined in terms of the diago-
nal second-order density matrix [17],I (R„,r„rz, r„r2,R„),as

P(r, 2, R„)=r, z f dr2I (R„,r2+r, 2, r2,'r2+r&2, r2, R„) (10)

w»c»s normahzed to N(N —1) with N the number of electrons in the molecule. Note that we have defined p(ri&, R„)
in terms of the Born-Oppenheimer ground-state wave function in keeping with our choice of Eq. (8) as the vehicle for
experimental interpretation. The function P0(r, 2) used in Eq. (9) is just p(r, z, R„) averaged over ail orientations of r,
with respect to the principal axis coordinate system of the molecule with the dependence on R suppressed The elec
«on pair correlation function is the s wave term in a spherical harmonic expansion of p(r, 2, R„) in terms of the orienta-
tion angles of r&2 with respect to the principal axis system and corresponds physically to the radial probability for
finding any two electrons in the molecule separated by a distance ri2. The one-electron density p(r) is the diagonal
one-electron density matrix for the Born-Oppenheimer wave function for the ground electronic state and is normalize
«N=14 [17]. The dependence of p(r) on R„has been omitted and is to be understood. If the transformations
r~~=r& —r, and R=(r, +r, )/2 are made in the last term on the right of Eq. (9) then the quantity SI(K )

—N can be writ-
ten as a Fourier transform of the difference between two-electron pair correlation functions as

sinKr, 2Sl(I') N= 0 v fq vdr& (P (ro)oto »(v&o)) — @ q )vv0 Kr]~

sinKr, 2=f dr12[PO(ri2) PO (r12)]
0 Kr )2

where P0'(r, 2) is a classical electron pair correlation function defined as

r&2
PQ'(ri2)=ri2 f d&, fdRp R+ p

&]2

2

=(2/r&2n) f dK'K' f dQK. ~F(K')~ sinK'ri2 (12)

and the bar over the P's signifies that the pair correlation functions are VT averaged. The quantity in the large
parentheses in Eq. (12) is the x-ray elastic scattering averaged over all rotational excitations [25]. Hence the difference
between the quantum electron pair correlation function for the molecule and its classical counterpart, averaged over the
VT motion in the ground state, can be calculated directly from the experiment by Fourier transformation.

Additional information about the target molecule ground state can be obtained by expanding SI(K ) N in powers of—
K in the limit as K goes to zero and in the limit as K goes to infinity. As K goes to zero [27,28]

lim [SI(K)—N]= N (K /6) f "dr—„[P—D'(r, 2) —PD(r, z)]r,2+O(K )
E—+0 0

K= —N+ [(r ) +(r, r c2so8, )2—(p, p )]+O(K ) (13)
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where (r ) =g+, ( r; ) is the average square radius of
the molecule [29],

(r, r2cos812) = g g (r;.r~ &

which can be combined with Eq. (17) to obtain the result
for h (0) as

max
h (0)= [1—2/(1rK, „)] ' —f dK K '[S(K ) —N ]

&cos8,2) = g g (r; r &

j=1j=1
j=1

(14)

is a two-electron expectation value which should be espe-
cially sensitive to angular correlations between the elec-
trons [30], and p, is the electronic component of the per-
manent dipole moment of the molecule. Note that all ex-
pectation values are VT averaged. We may define an
eff'ective average interelectronic angle ( cos812) as

+4m fdr(p(r) )vT (19)

where E „is sufficiently large so that the first term in
Eq. (17) provides a valid description of the asymptotic be-
havior. Equation (19) assumes that one knows the last
term on the right from another source. If this last term is
insensitive to electron correlation we might expect the
approximate equation

after Krause, Morgan, and Berry [30] who defined a simi-
lar effective correlation angle related to the (p, p2) ex-
pectation value of the target electron's momenta p, and

p2 according to

b.h(0)=[1 2/(m. K—,„)] ' —f dKK bSi(K)

(20)

&Pi P2&
( cos812 ) (15)

, d[Pp(F12)«121
SI(K ) N= —(2/K —

)
7 12 r)2 =0

+O(1/K )

=(2/K ) lim [Pp(r12)/r12]+O(1/K )
r12~0

= (2/K )h (0)+O(1/K ) (17)

where the last result, due to Thakkar and Smith [33], is
valid as long as the ground state of the molecule is nonde-
generate. Equation (17) comes from the cusp condition
for the intracule density, h (r,2 ) =Pp( r, 2 ) /r, 2 [33].
Another relation related to the result of Eq. (17) can be
obtained by integrating S(K ) Nas [27]—
f dg g [SIg() N]= lim [Pp(r,—2)/r, 2]

0 r)2 0

—4~2 f dr(p(r) &vT

=1rh(0) 4n fdr(p(r) —)vT

where ( T ) is the electronic kinetic energy. One can also
obtain (cos812) defined in Eq. (15) from inelastic scatter-
ing experiments. The SI(1,K) sum rule, which depends
critically on accurate determination of the high-energy
loss tail of the GOS, provides such a connection as can be
seen through the relation [20]

lim S (1,K)=S(1)=2 g (p )+ g g (p p„)
K~O j j k

jAk

(16)

where the first term in the large parentheses is the abso-
lute value of the total energy according to the virial
theorem while the second term is the one that carries
electron-correlation information [31].

In the limit as K goes to infinity, SI(K) Ncan be-
written as [32,33]

V, = f dr12PQ(&12)/&12
0

(22)

is the electron-electron repulsive potential energy of the
molecule and

V;,'= f«1f «2& +11IITlp(ri)p(r2)lupi q'T &/r»

dr12PO (r12)/r12 (23)
0

is the classical electron-electron repulsive potential ener-

gy between two molecular charge distributions p(r). All
the foregoing energy quantities are in Rydberg atomic
units. While the quantities introduced in Eqs. (13)—(23)
are of interest they will yield at most only a few experi-
mental numbers as opposed to a detailed measurement of
SI(K ) which might be characterized by as many indepen-
dent measurements as time, patience, and angular resolu-
tion allow. In this paper 25 new values of Si(K) are
presented.

An interesting question is, how do we best display the
sensitivity of experimental values of SI(K)? Two unique
ways suggest themselves [15,24]. Because the electron-
correlation contribution to the total electronic energy of
the system is defined as the difference between the nonre-
lativistic total experimental and Hartree-Pock electronic
energies and since SI(K ) is a linear function of the energy
[this can be deduced from Eq. (21) and the virial
theorem] we may define the correlation eff'ect on it as

to hold where the 6's signify experimental minus
Hartree-Pock (HF) molecular quantities. Equations (13)
and (17) can be employed to fit the momentum transfer
dependence of SI(K) to the appropriate power-series ex-
pansion in powers of K in order to obtain additional
correlation-sensitive information.

The integral of the function Sl(K) Nover m—omen-
tum transfer is also of interest and can be shown to be
proportional to potential energy quantities as [13]

(2/m) f dK[S (K) N]= V„——V;,
' (21)

where
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[b S~(K ) ]„„=[Si(K ) ],„,—[Si(K ) ]Hp (24)

where expt stands for the experimentally determined
function and HF stands for theoretically calculated
va1ues using a Born-Oppenheimer Hartree-Fock molecu-
lar wave function with suitable VRT averaging. Now
that many HF or near-HF wave functions are available
[34,35], Eqs. (11) and (21) should prove to be especially
useful for observing the effects of electron correlation in a
sensitive manner. A second type of comparison is sug-
gested by the fact that the chemical binding energy is
defined by the difference between the total molecular en-

ergy and the sum of the atomic energies. For the reasons
given above, a comparison function for contributions to
Sz(K ) from chemical binding only can be defined as

[b S~(K ) ]ii = [S~(K ) ],„,—g [S„(K) ]c, (25)

where [S„(K) ]c, is an accurate description of the x-ray
incoherent scattering factor for the nth of M atoms in the
molecule. The calculation must be carried out on the
ground electronic state of the atom and the result should
be averaged over all orientations in space. The subscript
CI stands for configuration interaction, which currently
may be the best way to obtain the atomic quantities at the
accuracy level required ()95%%uo of the total correlation
energy). Unfortunately S„(K)ci values of the required
accuracy are not yet available for atoms of primary in-
terest (N, 0, or C). Note that by use of Eqs. (21), (24),
and (25) contributions to the total electronic correlation
energy and binding energy from [Sz(K )],„~, can be readi-

ly estimated as

(21m. ) J dK[b,Sz(K)]„„ii=6.V„(corr,B)
0

—6 V;,'( corr, B )

where b, V„(corr,B) and hV;,'(corr, B) are the correla-
tion (corr) or binding (B) contribution to the total
electron-electron repulsive potential energy and its classi-
cal counterpart, respectively. The use of AV above is
defined in the same way as for b,Sz(K ) in Eq. (24). As an
interesting aside, note that the frequently occurring
difference, V„—V,",, looks very much like the definition

of an exchange or nonclassical (quantum) contribution to
the potential energy. Note also that in scattering space
S(K) N is the varianc—e in the classical electron-electron
elastic scattering amplitude.

In summary, we have pointed out a number of useful
quantities which should provide rigorous checks on the
results of many-body theory. At the same time a number
of constraints on the experimental data have been im-
posed and it is worth keeping these in mind in reading
the next section on experimental details. Specifically
these are described in (1)—(5) below.

(1) The first Born approximation of scattering theory
must provide a valid description of the experiment.

(2) The factorization approximation used to separate
exchange from direct scattering must be valid.

(3) The energy resolution of the spectrometer must be
sufticient to yield accurate values of the sum rules needed.

(4) The data must be collected at or be correctable to
constant momentum transfer E.

(5) The data must be capable of being accurately extra-
polated to infinite energy loss.

In addition to these general constraints a number of
technical problems must be considered and it must be
kept in mind that any theoretical attempt to produce
numbers for comparison with experiment must properly
include the effects of VRT motion on the molecule.

III. EXPERIMENT

The experimental setup is depicted in Fig. 1. It con-
sists of two connecting vacuum chambers, the Iarger of
which we denote as the main or scattering chamber and
the smaller as the energy analyzer chamber. The scatter-
ing chamber is a cylinder of height and radius 60 cm.
The circular end of the cylinder is horizontal to the
ground plane. A telefocus electron gun [36] is mounted
on a turntable inside the chamber and a gas nozzle assem-
bly is mounted on top of it with the effusive gas jet target
axis parallel to the vertical cylinder axis. The electron
beam current is electronically regulated [37]. The elec-
tron beam moves in the horizontal plane and the rotating
table on which it is mounted contains a 35-crn-diameter
hole in its center so that the gas nozzle has an unob-
structed view of the entrance to a cold trap mounted on a
10-in. oil diffusion pump (5300 8/sec pumping speed for
air; 2150 Plsec including the bafBe). The position of the
gas nozzle inlet system can be adjusted from outside the
vacuum system to align the target with respect to the axis
of rotation of the rotating table and the scattering plane.
Target densities have been measured absolutely to an es-
timated accuracy of 10%%uo [38] although another means of
obtaining intensities on an absolute scale is used in this
work. The electron gun has electrostatic detectors which
make it possible to place the electron beam in the hor-
izontal plane passing through the center of rotation of
the table. A special centering advice, that can be with-
drawn from the scattering region and is operated from
outside the vacuum chamber, is used to obtain alignment
of the gas nozzle when the system is under vacuum.
Externally mounted telescopes not shown in Fig. 1 are
used for observation during the alignment. In addition,
the gas inlet nozzle made of Pt, is electrically isolated
from its surroundings and connected to a picoammeter in
order to facilitate the alignment process. Further align-
ment is obtained by measuring the electron current hit-
ting the gas nozzle when it is lowered into the p'ath of the
electron beam. Observation of the right-left symmetry of
the elastic scattering about the apparent zero scattering
angle fixes the final choice of the zero angle.

A Faraday trap is mounted on the turntable for moni-
toring the unscattered beam during an experiment and
can be positioned by use of motors inside the vacuum
chamber. There is another Faraday trap located inside
an extension (also not shown in Fig. 1) attached to the
main chamber at approximately 45 from the energy
analyzer direction. At the same distance from the
scattering center as the analyzer entrance slits there is, in
this Faraday trap arm, a 100-pm acceptance aperture in
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FIG. 1. Schematic diagram of the experiment and its associated data processing electronics. The dotted lines inside the vacuum

chambers represent the trajectories of unscattered (into the Faraday trap) and scattered (into the analyzer) electrons. Acronyms
defined as BEAM DEF. CONT. : beam deQector controller; E.Cx.R.: electron gun regulator (temp. adj. : temperature adjustor; fil.

cur. : filament current); HV: high-voltage power supply (with bias power supplies PS1 and PS2); RES. DIV.: resistor divider; BIAS
VOLT. : detector bias voltage supply; PRE-AMP. : preamplifier; AMP. : amplifier; DISC.: discriminator; RTM: ratemeter; interf.
car. : computer interface cards.

front of the trap. This arm aperture is also supposed to
be in the horizontal plane that contains the main axis of
the collimating slits located at the entrance of the
analyzer chamber. By placing the direct beam into this
arm it is possible to verify and improve the shape and
spatial characteristics of the beam before starting any
data collection. The wehnelt cylinder of the electron gun
can also be moved from outside the vacuum by use of a
motor in order to vary the distance between the inner and
outer wehnelt cups which changes the position of the fo-
cal point of the electron beam. In front of the electron
gun, just after its deflector plates, there is a large circular
Hat plate which is used to monitor the current of elec-
trons that are scattered back towards the gun.

In operation, the electron beam is focused on the en-
trance slits of the analyzer which are 99 cm from the
scattering center. Two pairs of collimating slits are locat-
ed just in front of the analyzer chamber entrance slits
which are 71 cm from the scattering center. All of these
slits may be adjusted from outside the vacuum system
and are used to limit the region of the scattering volume
viewed by the analyzer in order to eliminate extraneous
background and to improve ener'gy resolution. Solid an-
gles of acceptance for the energy analyzer varied from
10 to 10 sr depending on the desired energy resolu-
tion and count rate. A typical background count rate
was less than 1 count/sec.

The analyzer chamber is a cylinder on its side of 30 cm
diameter and 75 cm length. The analyzer itself is of the
Mollenstedt type and a model similar to the one used

here has been described elsewhere [39]. All alignment
procedures for the analyzer can be carried out manually
from outside the vacuum chamber. The energy-loss spec-
trum for a fixed scattering angle is scanned electronically.
Both chambers are lined inside with magnetic shielding
material and the entire apparatus is surrounded by three
pairs of Helmholtz coils. The residual field along the en-
tire path of detected electrons is less than 2 mG.

For the work presented here a 25 —28-keV incident
electron beam with a beam current of 1 —50 pA was used
to collect relatively complete energy-loss spectra from 0
up to 1000 eV over the scattering angle range of
0.6' —4.2' with an energy resolution of 2 —4 eV. The ener-
gy resolution was controlled by the Mollenstedt entrance
slit setting. Gas Aow rates of 13 standard cubic centime-
ters per minute (SCCM) (10' molecules/sec) resulting in
a background scattering chamber pressure of 70—80
pTorr were employed. The energy analyzer chamber was
maintained at 4—5 pTorr. Data were collected under
computer control. As long as the valence and core spec-
tra were well separated the data collection (offset by —9
V in order to include the whole elastic line) was made in
two separate blocks, one for each spectral region. In the
first block measurements were made from 0 up to 240 eV
and in the second block from 398 to 500 eV in steps of 0.4
and 0.6—0.8 eV, respectively. The number of scattering
events at each energy loss were recorded for 1 —2 sec in
the first block and for 3—10 sec in the second block de-
pending on the angle. At the end of each block 6—10 ad-
ditional points were measured at selected energy loss
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values up to 396 eV in the first block and from 500 to
800—1000 eV in the second block. We shall refer to them
as preset count mode points. The density of these sam-
pled points decreased with increasing energy loss in each
case. Each of these points was measured with near 3%
statistical accuracy. The sparsely spaced end points in
the second block were used to extrapolate the GOS to
higher energy-loss values. In Fig. 2 a typical spectral
scan is displayed. As the scattering angle was increased,
the point in the valence block at which the mode for data
collection changes was also increased. At this point, lo-
cated on the high-energy loss side of the Bethe ridge, the
intensity was near 20%%uo of the valence-shell maximum.

In this experiment, detection of scattered electrons was
made with a silicon surface barrier detector. A dead-time
correction was experimentally determined and was rou-
tinely used to correct the collected experimental intensi-
ties I „',(O, E) as

I,„„,( O, E )=I;„",( O, E )[1+rI', „'p, ( O, E ) ] . (27)

The dead time ~ was obtained from a plot of the ratio
Icol, inel /Icol, el versus QI Icol, el Icol, inel where Icol, el

expt expt expt expt expt
refers to the maximum number of counts/sec for the elas-
tic line and I pt

' is the corresponding quantity for the
first prominent inelastic feature observed. Since

e+e~hI =R, (28)

18000

12000-

0

O
O

0)

6000-
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where @=I pt/I pt is the true ratio between intensities
which must be a constant independent of the count rate,
the slope of such a plot is e~ with e being the intercept.
A linear fit of 30 points of R and b,I values, obtained at
incident beam currents from 1.5 up to 60 pA, yielded a
dead-time correction for the detector employed in this ex-
periment of r=(3.04+0.03)X10 sec. Collection of R
and AI values was made at a fixed angle of 0.8 .

After the relative experimental intensities I,„&,(O, E)
were obtained they were converted to a relative GOS by
use of the formula [40]

df (K(E),E)
kin

rel

e
ee

0 '
5

I

30
I

55
I

80 105 130
where

X [I,„,(O, E ) B(O,E )]-
XKKoi(E )/F, „(O,E) (29)

C3
07
Ch

O
C3

120-

Energy Loss (eY)

and

E(1 P)k;[K(—E) E /4c ]-
It;n =

4kf(E)K(E) [1—(E/2c ) (1—p )
i

]

KK,i(E ) = [Eo/(Eo E)j', —

F,„(O,E)=l —[K(E)/kf(E)] +[K(E)/kf(E)]

k; =Eo(1+Eo /4c ),
kf(E)=k, —E[1+(Eo/2c ) (E/4c )], —

K(E ) =k; +kf (E) 2k; kf (E) cos—O .
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FIG. 2. A typical spectrum for N2 at 0=0.8'. The upper
figure shows the valence-shell data block and the lower figure
shows the core spectrum. Note that the sparsely spaced points
at the high-energy-loss end of each figure are points obtained
with 3% statistical accuracy.

In Eq. (29), Ik;„ is a kinematic factor which includes
relativistic corrections for the incident electron of energy
Eo; p is the ratio of the velocity of the incoming electron
to the velocity of light c; 0 is the scattering angle; F,„ is a
correction for exchange scattering assuming the validity
of the factorization approximation (this is just the ratio of
the Mott to Rutherford cross sections for electron-
electron scattering); and the expressions for k;, kf(E),
and K(E) are relativistic. B(O,E) is a background
correction. Measurements which reproduced the 70—80-
pTorr background pressure by moving the nozzle 1 —2
cm out of the scattering center were carried out. In order
to avoid the time consuming collection of background
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data points for each spectral scan, the background was
carefully checked only at a few selected angles ( —1.55,
+1.6, and +2.35'). At these angles the deviations in
b,Sz(K) were less than 4%. It was assumed that B(O,E)
does not make an important error and no attempt was
made to correct for it in this work for other scattering
angles. This does not mean that there are no significant
background errors. It only means that the background
scattering that we are able to artificially produce is small
and has roughly the same shape as the experimental GOS
itself. In fact we discovered that assuming the existence
of a straight line background with zero or negative
nonzero slope yielded a progressively serious correction
with increasing E. It is bothersome to note that the
count rate at E= —9 eV is actually greater than the sig-
nal observed at 1000 eV. Whether this is due to scatter-
ing off the beam trap or from backscattering from the
electron gun which only takes place when the gas jet is in
its experimental location, and hence is localized to the
immediate vicinity of the elastic line, is not known. What
we can say is that the addition of a straight line back-
ground causes an increasing correction to b,S~(K) with

I

increasing K which reduces its values [makes b,Sr(K ) less
negative]. In other words, since AS&(K) is sensitive to
such a background for E ) 1.6 a.u. , our results represent
an upper bound within the uncertainty from other error
sources to be discussed later.

In Eq. (29), K~,&
is the Kollath correction [41] which

corrects the intensity for the fact that the analyzer energy
resolution increases with decreasing kinetic energy of the
detected electron. The exponent value a in the EK,&

ex-
pression was experimentally determined for the Mollen-
stedt analyzer used in this work by measuring the spread
of the elastic line (hE) at different energies E over the
range from E0 =25 down to 24 keV. The exponent value,
a =0.53+0.05, was the slope in the log AE versus
log(ED E) curv—e and it does not agree with the value
proposed in Ref. [41] ( =0.67) due to differences between
the analyzers.

Once the relative GOS was determined the GOS corre-
sponding to the preset count points of the core spectra
were least-squares fitted with theoretical data generated
from the formula [42]

df (K,E) =[N E(E I)'~ A, P][A—, [4(K+q, ) —(q, +A, )]—6A, q, (K+q, )+A, (3q, +A, )]/[3vrK (q, +A, ) ] (30)

where

q, =(E K I+A—, )/2K- ,

P= [2my/[1 —exp( —2my)]]

Xexp [
—2y arctan[A (E I )

' /(k —Kq, ) ]], —

and

with I the ionization potential of the tail electrons, and
X, and A, being the number of electrons contributing to
the tail and the effective charge of the ion observed by the
ejected electron, respectively. We shall refer to Eq. (30)
as the hydrogenic tail. In this work, X, and A, were ad-
justed to give the best least-squares fit to the experimental
preset count points with I fixed at the experimental value
for the most tightly bound orbital of the core.

The use of Eq. (30) as a model for the missing tail re-
quires justification. To do this we fitted numerical data
[43] for the optical oscillator strength for atomic nitrogen
from 600 to 1000 eV and discovered that the hydrogenic
model was capable of predicting the results above 1000
eV up to 14000 eV with three-significant-figure accuracy.
This provides a valid test for N2 at small momentum
transfers since it has been shown that the molecular oscil-
lator strength is virtually identical to twice the atomic
value at these energies [44]. Unfortunately, atomic and
molecular GOS (KAO) theoretical values do not yet exist
for nitrogen. Equation (30) was therefore checked
against theoretical GOS values for atomic hydrogen [43]
over a wide range of E values to make sure that the equa-
tion was correctly programmed.

Once Eq. (30) was least-squares fitted to the experiment

using the experimental K(E) values it was then used to
calculate the missing tail area which was estimated by
numerical integration. In addition, the function AE
was least-squares fitted to the same experimental data
and the value of 3 and b obtained were used to calculate
the missing area by analytical integration. This function
provided an upper bound on the missing area. A lower
bound was established by fitting the function AE to
the last experimental point in the GOS and integrating it
analytically to obtain the missing area. The integration
procedures were checked by use of the theoretical data
for atomic nitrogen where the missing area has been ac-
curately determined. It was found that the hydrogenic
tail model gave excellent agreement with the known value
and was about one-fourth of the difference between the
two bounds from the AE function result. This ratio
was roughly found to be the case for the data at different
E values. Hence we conclude that the hydrogenic model
is the best vehicle we have at present for estimating the
missing area. A subtle point is that of the three models
only the hydrogenic model can furnish an estimate of the
missing area for K as opposed to K(E). Although both
the AE and the hydrogenic models have the correct
asymptotic dependence on E [45] this does not seem to be
an important criteria as witnessed by the fact that the hy-
drogenic model gives an area much closer to that of the
AE model where b is typically found to be around 2.S.

After getting GOS values by means of Eqs. (29), for the
collected points, and (30), for the missing tails, they were
then placed on what can be called a near-absolute scale
which will be justified as follows. Since at this point GOS
values with respect to constant momentum transfer X
were still not available, the use of the Bethe sum rule
S(0,K )=N should not be, at least theoretically, em-
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Because K(E) should be close to K for small E values
(E (300 eV) we performed a first normalization of our
relative GOS distribution by use of the Bethe sum rule
using only the valence-shell block data with an added
AE tail. A sum rule value of 10 was employed which
assumes that variation from 10 due to the omission of ex-
citations to the 1so. states is not strongly K dependent.

The next step involved correcting the data from con-
stant angle to constant momentum transfer which was ac-
complished by use of the truncated McLaurin series ex-
pansion [46]

df(K(E), E) df(K, E)
dE dE

+[K(E) —K ] dE
df (KIE)

dE

where the derivative is evaluated at K(E) and K is the
binary encounter value given by Eq. (31) which greatly
simplifies the expressions for the corrections. This choice
also means that the average energy loss is given as
E =Eosin 9. If K (E) is expanded in a McLaurin series
about E and the approximate result

K(E)2—K =(E—Ecsin 8) l4Eo (33)

is inserted into Eq. (32) and used to evaluate the various
sum rules by interchanging the order of carrying out the
sum and the differentiation with respect to E, we obtain

2.5

~hem 010 ~ ~ ~ '~ ~
2 0

i~~m aan 0 5 &

5

I ~ ~ I ~ I ~~~ II + + + +

ployed yet. Figure 3 shows how K(E) values deviate
from K values defined by the binary encounter approxi-
mation as [13]

X =E sin 8.

S~(I,Eo, 0)=S~(l,K )+ S (l+2,K)dK'

2E— S~(l + 1,K )
d

dK

+E S (l,K)
dK

4EO

(34)

where the subscript p on the sums indicates that they are
carried out only over the experimental data range. Equa-
tion (34) was used to correct the sums from constant 8
values to constant K values. It is assumed that the
derivatives at constant K,K, are approximately the same
as those at constant angle. This assumption was partially
justified by the smallness of the resulting corrections.
Plots of S~(l,K) versus K for /=2, 1, 0, and —1 are
shown in Fig. 4. Polynomials in K were least-squares
fitted to those curves and the required slopes obtained
from the fit by analytic differentiation. Missing tail areas
were added to the resultant constant K corrected values
of the S~(l,K)'s by use of the hydrogenic tail given by
Eq. (30) for each value of K. The sums of interest,
S(O,K) and S( —1,K), were then renormalized by use of
the Bethe sum rule with respect to %= 14.

The assumption of approximating constant EC slopes by
use of slopes at constant 0 is justified by the fact that the
largest corrections are of the order of 1%. In general, the
largest corrections are to the Bethe sum rule increasing
its value. This has the effect of decreasing the value of
SI(K) and hence increasing the effect of correlation. As
a final check on our correction procedure we used Eq.
(32) in the same way as Eq. (34) to estimate the constant
angle to constant K correction at 850 eV energy loss and
compared this with the prediction of the hydrogenic tail
model. The corrections were found to be small. For in-
stance, the corrections [df (K,E ) ldE df (K(E ),E—)I
dE] for the smallest and largest angles were —0.0046
and —0.0061, respectively, compared to —0.000 87 and
0.0012 predicted by the hydrogenic model and amounted
to 4% and 2.5% of df (K,E ) IdE.

Once the sums are corrected to constant K a correction
for the effect of energy resolution is applied as [47]

1.0-
~ g 8I~~QRSSS ~

0 0 0
0 5,~~~ A60 0

00
SI( —1,K)=Sr( —1,K),„,—(x )Sl( —3,K),„,

(x' &S,( 4—K),„„— (35)
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FIG. 3. The variation of K(E) with energy loss at fixed
scattering angles: 0, 0.6'; ~, 1.0'; +, 1.6'; C], 2. 1', , 2.5'. The
difference between the horizontal solid line and the points in
each case constitute the correction [K K(E)]. —

where the (x") are energy moments of the spectrometer
resolution function which we calculate from the elastic
line intensity I(E ),&, since our resolution is always
significantly larger than the natural linewidth, as

(x")= J dE(E —Eo)"I(E),i f dE I(E),i (36)

with the integrations earned out over the width of the
elastic line. Note that the zero of the energy loss scale is
given by
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E,=fdE EI(E)„ fdE I(E)„ (37)

and that the constant angle to constant L correction is
made before the energy resolution correction. This
correction is less than 0.5% in all cases studied and van-
ishes for the S(O,I7) sum.

IV. ERROR ANALYSIS

The errors can be classed as those contributing to the
scattering angle, energy loss, intensity (GOS), and the
sum rules. The errors contributing to the determination
of the scattering angle are the linearity and accuracy of
the angle scale, determination of the zero angle, and mag-
netic field distortions. The angle was determined by read-

ing a steel rule fastened to the circumference of the turn-
table on which the electron gun was mounted. The rule
was obtained from the Bridgeport Milling Machine Co.
and was ruled in 0.1 mm divisions and was read through
a window in the vacuum chamber wall by means of a mi-
croscope. The turntable radius was machined so that 1
cm along the circumference corresponded to 1'. The
scale was calibrated by use of a theodolite and the rela-
tive angular accuracy and linearity were established to be
better than +0.001 over the range of scattering angles
+20'. As mentioned previously the magnetic field was re-
duced below 2 mG so that no correction for magnetic dis-
tortion was found to be necessary. The absolute angle
scale was established by making measurements of the
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FIG. 4. The variation of S~( —1,E ) (a), S~(O,E) (b), S~(1,E) (c), and S~{2,E ) {d) with E for the data sets used in this stud&.
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elastic line intensity at both positive and negative scatter-
ing angles and adjusting the choice of the zero angle until
the sum of the squares of the differences between the two
sides was minimized. Data points on one side were ob-
tained at the same angles as the other side by interpola-
tion. The uncertainty of the zero-angle determination
was estimated to be less than 0.005' so that the overall er-
ror estimate for the scattering angle was taken as
+0.005'.

The energy-loss scale was calibrated by offsetting the
elastic line by use of a calibrated Qoating power supply
biased to the power supply furnishing the accelerating
potential for the electron gun. This was done in steps of
100 V over the range from zero to 1000 V. The centers of
gravity of the lines were then determined and the ap-
parent positions in channel numbers were least-squares
Atted to the actual voltages using a cubic polynomial.
These 6ts were linear to about one part in 10 and estab-
lished the linearity of the energy-loss scale. The absolute
energy-loss scale was then determined from the center of
gravity of the elastic line for each spectral scan. The
resolution of the digital-to-analog converter used to scan
the energy-loss scale was 45 mV with an uncertainty on
the order of 15 pV since we used a 16-bit converter. Con-
sidering that the load regulation accuracy of the Qoating
power supply was 0.0l%%uo as specified by the manufacturer
we decided to take 0.03%%uo as the estimate of the energy-
loss uncertainty.

Because the determination of SI(K ) involves multiply-
ing the intensity by K it is important to consider the er-
ror in the determination of K. In addition to the scatter-
ing angle and energy loss the error in determining the in-
cident energy must also be considered. The accelerating
voltage was monitored by use of a commercial resistance
divider (model HVP-250; Computer Power System, Enc. )

calibrated by the manufacturer to 0.03% at 30 kV. Two
of these dividers were purchased and are periodically
compared to make sure that the calibration has not
changed. We have taken the uncertainty in the accelerat-
ing potential to be +10 V. Using the above uncertainties
and the ranges of E and 0 used in the experiment along
with an incident energy of 25 —28 keV we And that the
main contribution to the error in K comes from the angu-
lar uncertainty. The simple formula AK =2Ep 960
yields an excellent estimate of the error in K .

The errors affecting the GOS are the statistical error
from the total number of events recorded, the variation of
detector efficiency with electron-impact energy, failure of
the Born approximation, failure of the factorization ap-
proximation, the Kollath correction, dead-time correc-
tions, multiple scattering corrections, and density varia-
tions in the scattering volume as viewed by a finite detec-
tor solid angle.

The intensities are measured by repeated scans of the
entire energy-loss spectrum which requires from a few
minutes to several hours per scan depending on the
scattering angle. Each scan is saved in the computer and
the spectrum for each scattering angle consists of the
average of at least six scans. The average scan is then
compared with each individual scan to make sure that
the repeatability of the experiment is within the statistical

uncertainty as determined froID the total number of
counts. The statistical uncertainty of the GOS is better
than 1% near its maximum but since the total number of
counts in a sum rule is extremely large one might assume
the statistical errors in sum rules to be negligible. This is
certainly true for the S( —E,K) sum rule since for con-
stant K it is essentially a straight sum over the intensities
and hence its statistical error is proportional to the
square root of the sum of all counts accumulated in the
sum. Timing uncertainty is assumed to be 1 part in 10
since a 10-kHz clock was used for data collection under
computer control. The error in the Bethe sum rule is
complicated by the fact that the intensities are multiplied
by the energy loss and the error in the energy-loss scale
becomes a factor. A simple model with the correct
asymptotic energy-loss behavior suggests that the dom-
inant error comes from the term proportional to the error
in the energy loss.

Detector efFiciency changes were shown to be negligible
by comparing the total number of counts in the elastic
line at a fixed scattering angle, normalized by dividing by
the incident electron beam current and corrected for the
energy dependence of the elastic cross section [48], for in-
cident electron beams of 28- and 27-keV energies. It is
well known that corrections for backscattering of elec-
trons by Si are extremely constant over a wide range of
impact energies [49]. This error source will be ignored.
Note that the constant detection efficiency over a very
large energy-loss range is what gives the electron-
scattering method an important advantage over photoab-
sorption spectroscopy.

The validity of the Born approximation has been tested
extensively in this energy range by others [14,50] and
found to be valid within the experimental accuracy by
comparing GOS values obtained at different energies as a
function of K. This test also confirms the validity of the
factorization approximation since the exchange scatter-
ing depends strongly on Ep as well as K. Note that the
ratio of the Mott to Rutherford cross sections at the ener-
gies and angles used in this study deviates from unity by
at most 0.5%%uo.

The Kollath correction was discussed in a preceding
section of this paper and is routinely made to the data,
with a maximum 6% correction occurring at the largest
energy-loss value. Error caused by this procedure to the
collected intensities is negligible. Details of its contribu-
tion to the counting errors will be shown in the error
model to be described.

Error from the possibility of intermolecular multiple
scattering has been considered elsewhere for experiments
of this type and incident energy [51] with the conclusion
that, using the experimental conditions employed in this
study, no multiple scattering should contribute within the
accuracy of the experiment.

Dead-time corrections were also routinely made al-
though since all inelastic count rates were less than 10
kHz the magnitude of this correction never exceeded 4%.
Errors in the intensity caused by the detector opening an-
gle and density variations in the scattering volume are
also negligible for the experiments reported here [52].

En analyzing the errors in SI(K ) obtained by use of the
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S(O,K)=a(K IO+pTO)=N (38)

and

sum rules we will neglect errors in all the small correc-
tions that are routinely made as discussed above. In ad-
dition, the error in the numerical integration schemes
used to obtain the sum-rule sums were estimated by ap-
plying them to the integration of a Gaussian peak of 2-eV
full width at half maximum (FWHM) with an energy-loss
spacing of 0.6 eV. The error obtained using a Newton's
rule integration scheme was found to be negligible. The
error in E, the statistical counting errors, the errors in
estimating the tail correction with the hydrogenic model,
and errors in determining scale factors are treated as fol-
lows.

We adopt a simplified version of the relative GOS for
the purpose of error estimation which allows us to write
the S(O,K ) and S( —1,K ) sum rules, respectively, as

the energy loss for the ith channel, F,. is the associated ki-
nematic factor I„;„in Eq. (29) divided by EK, b,E is the
energy spacing between collected points, P is the linear
normalizing constant factor that matches the theoretical
hydrogenic tail to the relative experimental values in the
preset count mode region, a is the normalizing constant
which places the relative GOS on an absolute scale by use
of the Bethe sum rule, N is the number of electrons in the
target molecule, and X is the square of the momentum
transfer. It is necessary to define the energy loss in terms
of channel numbers as

E~ =p(n n)—
where p is the scale factor which converts channel num-
ber to energy, n is the number of the jth channel, and n
is the channel number of the center of the elastic line
which is not necessarily an integer. We will also write
the associated kinematic factor as

S( —1,K)=a(K I +PT )=S(K)IK

where

N
Io= g E;F;N;bE,

N= gFN~ b,E, .

j=1

(39) F) =[Eol(EO E)]'6—=L 6
where LJ is the Kollath correction as in Eq. (29) and 6 is
everything else. We will assume that 6 is without error
and consider only the error involved in the experimental
determination of the Kollath correction. By assuming
that all errors act independently we can write the errors
in S(K) as

bS(K) =
2

(hK )+ &P
BK ap

and

M df
dEq=1 q

E hE'

with the i,j sums being carried out over experimental
data points while the p, q sums involve estimated
(df IdE ) hydrogenic tail values. In these equations N, is
the number of counts per second in the ith channel, E; is

I

I

r

BS ~ p BS
ar, ' ar

BS
8 TQ

AT() +
1/2

(40)

After deriving the expressions for the partial deriva-
tives we arrive at the intermediate result

ES(K)IS(K)=[(EK'/K ) [1+(p/K )(TO/ID —T /I )] +(bIOIIO ) +(bI /I )

+(bp/p)[(p/K )(To/Io —T /I )] +(ETOITO) (pTOIK Io) +(bT /T ) (f3T /K I ) ]'
(41)

where PTo has been neglected in comparison to
EC Io

We have used Eq. (41) to estimate the uncertainties in
S(K) by expanding each individual error term, where
applicable, in terms of the uncertainties upon which it de-
pends. With the exception of P all other quantities de-
pend upon two or more other variables. The approxi-
mate results are

(&IOIIO) =(Aplp) +p (I /Io) bn +8 (ba)

+ g (EJ.F&EE)NJ. /Io,

and

(b,I /I )~=8 (b,a) + g (Fjb,E) N~/I

(43)

(44)

(hK /K ) =4(b,8/sin8) +(b,EO/Eo)

+(8 /2) [(bp/p) +[An/(n n) ]], —

(42)
(45)

with a being the exponent used in the Kollath correction
in Eq. (29). The remaining two terms can be written as

I

(bTO/To ) = (1/TO ) b A,
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TABLE I. A summary of major sources of uncertainty in the x-ray incoherent scattering factor.

Source

Scattering angle, 0
Energy-loss scale, E
Incident energy, Eo
Timing uncertainty
Channel number —energy-loss

conversion factor
Kollath correction. exponent

hE /K (momentum transfer)
hP/P (scaling factor)
Data collection uncertainty:

LDp /Ip [for S(O,K ) sum rule]

b,I /I [for S(—1,K) sum rule]
Hydrogenic tail estimation:
b, Tp/Tp [for S(O,K) sum rule]
5T /T [for S( —1,K ) sum rule]
Overall error

Estimated uncertainty

+0.005'
+0.03% of E

+10 eV
1X10 " sec

0.1%
10%

& 1.8%
&3%

&4% for 0&1.8'
&5% for 0&1.8'

&2% (2.7% at 0=4.1')

& 0.05%
& 1.5%

3—6% (11% at 0=4')

and

(b T /T ) =(1/T ) (46)

where the partial derivatives of the hydrogenic GOS are
evaluated numerically. In the tail corrections we have as-
sumed that there is no error in the energy scale and that
errors all come from the least-squares fit to the preset
count points. Note that the error in P accounts for the
scale match to the data assuming the data are errorless.
We have decided to define

ing the proximity between the last asymptotic and experi-
mental values. For Sz( —3,K), NK calculated values
shown in Table II are considerably below the correspond-
ing sum-rule reported values. In Table III, our extrapo-
lated optical values are compared with other results
[15,51—53] and are found to be in good agreement. Par-
ticularly, SI( —2,0)=a /4 with a the static molecular
polarizability of the target.

In Fig. 5, our experimental values of Sl(K) are com-
pared with the near-Hartree-Fock values of Epstein and
Stewart [34]. The difference function, [ESI(K)]«„,
based on these HF values as a function of X is also in-

(&0/I3) =(&P/P) +(1/X,„) (47)

where (hP/P) on the right of the equal sign is the error
estimate of P from the least-squares fit and X,„ is the to-
tal number of counts in the preset count mode which is
an estimate of the accuracy of the points being fitted.

A summary of major sources of uncertainty in the x-
ray incoherent scattering factor is displayed in Table I.
Error bars shown in the figures are based on these errors.

V. RESULTS
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Some intermediate SI(/, K) sum-rule results obtained
in the calculation of SI(K) are displayed in Table II.
These results serve as checks on the quality and con-
sistency of the data. In this table, the results for the
I = —1, —2, and —3 sum rules obtained through this
work are compared with earlier measurements from our
laboratory by Ketkar and Bonham [15]. New values for
the sum rules are reported, extending the squared
momentum transfer range from 2.3 a.u. (the upper limit
in the paper by Ketkar and Bonham) to near 9.5 a.u. For
K )5.6 a.u. , limiting values for Si(l,K)=%K ' as
K —+ pp [20] are also tabulated. The K range covered in
this work was not enough for the experimental values of
SI( —1,K) to approach the asymptotic limiting values.
This does not seem to be the case for SI( —2,K ) consider-

3
~0

~ gi

%3

0

QQ
Q

QQ QQ
QQ~ Q

K {a.u.}
FIG. 5. The Hartree-Fock values of [Si(K)]H„, ; the ex-

perimental values of [SI(K)],„~„===; and the difference
ESI(K)=[Sr(K)],„„,—[SI(K)]HF as a function of K, HHH.
The horizontal line in the upper right hand corner marks the
asymptotic value in the limit as E~~ (14).
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eluded in Fig. 5 to show how intense the electron-
correlation efFects are on the x-ray incoherent scattering
factor. The asymptotic value for this factor as EC —+00
[S(E')=l4, in the case of Nzj is shown in the upper
right-hand corner. In Fig. 6, the results for [ASI(IC )]„„
are magni6ed and compared with the theoretical results
of Breitenstein, Mayer, and Schweig [35] and the experi-
mental data of Ketkar and Bonham [15] and Zhang,
Ross, and Fink [56]. The solid curve results are based on
a wave function yielding 50—55% of the valence-shell
electron-correlation contribution to the total energy. Vi-
brational averaging is not included since it is not believed
to cause a serious problem [57]. The dotted curve in Fig.
6 represents a scaled set of theoretical values published
by Breitenstein, Mayer, and Schweig [35] which would
give the correct total correlation energy by assuming that
the missing contribution to this total would depend on
the momentum transfer in the same way as the calculated

values do. Our new results are in agreement with the ear-
lier measurements from our laboratory by Ketkar and
Bonham [15]at small K but are higher at larger K mainly
due to improved data correction procedures and to the
discovery that the Kollath correction had been inverted
in the data analysis program. Our results clearly show
that the extrapolated results of Breitenstein, Mayer, and
Schweig [35] are incorrect below %=1.3 a.u. Above 1.3
a.u. the extrapolated results are within our error bars.
The experimental results reported by Zhang, Ross, and
Fink [56] were obtained by subtracting measured elastic
scattering data [56] from total cross-section measure-
ments carried out by Fink and Schmiedekamp [19]. It is
worth mentioning that the correlation effect on the elastic
scattering for N2 determined by these authors was con-
siderably larger than the theoretical results available at
the time by Breitenstein, Mayer, and Schweig [35] and by
Liu, Lie, and Liu [58] which took into consideration 61%

TABLE II. SI(l,E) sum rules for N2 (l= —1, —2, —3).

SI( —1 K) S ( —2,E) SI( 3~E )

X (a.u. )

0.086
0.114
0.171
0.231
0.241
0.356
04
0.599
0.649
0.654
0.867
1.0
1.177
1.294
1.311
1.346

1.433
1.435
1.605
1.833
2.088
2.286
2.340
2.592
2.822
3.094
3.600
4.252
4.884
5.626
6.320
6.791
9.437

This work'

4.47
4.28

4.03

3.89
3.65

3.24

3.00
3.01
2.98
2.79
2.79
2.61
2.40
2.28

2.11
2.03
1.92
1.89
1.76
1.66
1.52
1.43
1.31
1.29
1.01

Ref. [15]"

4.72
4.76
4.75
4.64

4.32

3.79

3.52

3.21

2.62
2.63

(2.49)'
(2.22)
(2.06)
(1.48)

This work'

2.26
2.06

1.78

1.69
1.48

1.19

1.11
1.12
1.11
1.01
1.00
0.919
0.850
0.698

0.653
0.654
0.582
0.495
0.490
0.391
0.377
0.308
0.265
0.250
0.167

Ref. [15]

2.84
2.82
2.76
2.67

2.31

1.81

1.53

1.28

0.82
0.84

(0.442)'
(0.351)
(0.304)
(0.157)

This work'

1.62
1.45

1.20

1.13
0.955

0.705

0.663
0.679
0.669
0.592
0.587
0.527
0.481
0.363

0.349
0.344
0.294
0.241
0.235
0.176
0.174
0.135
0.113
0.106
0.0688

Ref. [15]

2.09
2.08
1.97
1.88

1.62

1.21

0.882

0.760

0.40
0.42

(0.0786)'
(0.0555)
(0.0447)
(0.0167)

'Error estimates (averaged over E range ): &0.2 for SI( —1,E ); &0.02 for SI( —2,E); &0.01 for SI( —3,E ).
"The sum-rule values from Ref. [15]are for K(8) instead of IC.
'The values in parentheses for A & 5.6 a.u. are equal to XE
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TABLE III. Optical sums.

Sum

S(0)
S( —1)
S( —2)
S( —3)

This work'

14.0b

4.85
2.93
2.17

Ref. [15]

14.0b

4.8
2.95
2.2

Ref. [53]

14.0b

4.742
2.93'
2.226

Ref. [54]

13.67
4.61
2.919

Ref. [55]

2.693,2.859

'Uncertainties are the same as those indicated in a footnote in Table II.
Forced to match the theoretical value.

of the correlation energy empirically estimated by Wilson
and Silver [59] by use of a wave function with 169,650
configurations using a Slater function basis. Although in
the K range up to 0.8 a.u. the results from Ref. [56] are in
good agreement with ours, their results lie between the
unscaled and scaled CI curves reported by Breitenstein,
Mayer, and Schweig [35] in the K range that extends
from 0.8 to 2.5 a.u. , with their maximum value located
nearly at 1.45 a.u. Our maximum for the [b,SI(E)]„„
curve occurs at a higher value of K, near 1.7 a.u. It is
also worth noting that their values above E =2.8 a.u. are
in excellent agreement with our results.

As a check on the constant K correction we repeated
our initial ~ormalization of the data using the full
energy-loss range (5—850 eV) with a Bethe-sum-rule
value of 14. The ratio of the normalization factors,
ato/al4, is plotted in Fig. 7 as a function of K. If the
constant angle to constant momentum transfer correction
were large we would expect this ratio to vary strongly as
a function of K since as can be seen from Fig. 3 the
correction is much more serious at small angles than at
large ones. The nearly constant value for this ratio with
K add. s additional evidence supporting a small correction.

In Fig. 8, our results for [b,SI(E)]„„arereproduced
and fitted with a Gaussian-like function

y(K)=(K/C) "exp[ —(K —C) /28 ] (48)

with A = 1.669, B=0.811, and C = 1.099. A lower
bound is also shown in this plot to indicate the experi-
mental limits for b,SI(K) for a straight line background
with zero slope which is scaled to the value of the last ex-
perimental data point.

Equation (48) with the values for A, 8, and C given
above has been used in the calculation of the difference
function

12 ) [ [PO( r12 )]..pt
—[Po"( r I2 )]..p, j

+ I [Po(ri~)]HF —[P(')'(rl2)]HFj (49)

which was obtained by Fourier transformation of the
[bSI(IC)]„„function. A bP(r, 2) versus r, 2 plot for
molecular nitrogen is shown for the Grst time by the dot-
ted line in Fig. 9. The shape of such a curve is similar to
those published by Peixoto, Bunge, and Bonham [60] for
He and Ne atoms by comparing theoretical results of
P(r;~ ) computed with CI and HF wave functions. Also in

0.0
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4.5-
1.25-

-1.0-

~ ge

~ ~

CI
1

5

1.00—

o0 ~ 0 0 0

-1.5
0.75-

-2.0
0 1 2 3 0.50

0

K {a.u.}
FIG. 6. Comparison of ASI(K) as a function of K for various

experiments. HHH, this work;, extrapolated theory of Ref.[35];,theory of Ref. [35]; ===, experimental results from
Ref. [15];+ + +, experimental results from Ref. [56].

K {a.u.}

FIG. 7. The ratio of the absolute scale normalizing constant
for normalization based on the valence shell to normalization
based on the complete spectrum.
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TABLE IV. Global properties of the x-ray incoherent scattering factor.

Property Experimental value Theoretical value

—23.1+0.7'
—0.612+0.02'

1401.5+2
—3.7+1

( r ) r2cos8i2 )
cos8,
Jdr(p(r) )
h(0)
ai (0)'

'( r ) value used was obtained from Ref. [29].
Using Si(K)H„ from Ref. [34].

'Using elastic intensities IxHp from Ref. [34].
dAssumed that fdr b, [ (p(r) ) ] =0.

—19.72'
—0 530'b
101.36'

1405.2

Fig. 9, the difference between the electron pair correla-
tion function and its classical counterpart
[Po(r,2) —Po (r,2)] as a function of r, 2 is also presented
for the erst time. These data were generated by Fourier
transformation of the quantity SI(K)—N. The open cir-
cles represent the experimental pair correlation while the
full circles indicate the HF values. Smoothed [SI(K)],„,
data in the E range from 3 to 38 a.u. obtained through
the relation [SI(K)],„p,

= [ASI(K )]„„+[SI(K)]H„were
used in the Fourier transform. The last three values of
[SI(K)]H„reported in Ref. [34] have been employed in
the preparation of an S(K) Nversus —1/K plot which
was used to estimate [SI(K)]HF values not available for
E &24 a.u. As can be seen, electron-correlation effects,
observable through the experimental results, shift the
second minimum, which characterizes correlation effects
involving valence-shell electrons, to a higher value of r, 2
(=2.2 a.u. ). This is very close to the equilibrium bond
length (r, =2.07 a.u. ) for N2 [61].

In Table IV the global properties derived from SI(K)
are presented. In the determination of (rir2cos8i2) the
value for (r ) =37.2 has been obtained from small-angle
elastic electron-scattering measurements [29]. The quan-
tity cos8, =(r, r2cos8, 2)/(r ) may be taken as the
definition of a correlation angle after Krause, Morgan,
and Berry [30]. When using the experimental values of
Zeiss et al. [53) for ( r ) + ( r, r2) and magnetic suscepti-
bility measurements [29] for (r ) one obtains 8, =129
while using electron-scattering data from Ref. [29] one
obtains 0, = 128, which are in very good agreement with
the value that can be derived from this work (also using
(r ) from Ref. [29]), 8, =128'. Numerical Hartree-Fock
values yield 0, =122' which gives a correlation effect on
the order of 5% in 8, .

Values of h(0) have been obtained by use of Eq. (18).
The last term on the right-hand side in that equation, as-
sumed to be insensitive to correlation effects, which as we

0.0
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FIG. 8. The e6'ect of the possible existence of a constant
background on the ESI(E ) function. , experimental points;

, fitted curve [see Eq. (48) in text]; o o o, assumed constant
background equal to the GOS value at E=850 eV.

FIG. 9. Electron pair correlation difference functions ob-
tained by Fourier transform of Si(K ) —Ã:
[Po(r&2)]HF [Pod(riz)]HF &&O [Po(r&2)] [Po'(r&z)l

[[Po("i2)]expt [Po'(ri2)]exp, }
—[[Po(rt2)]HF

[Po ( 12 ) ]HF}
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TABLE V. Potential energies.

AV„—b, V;,'

hV;,'

AV,„+XV,,'

hV„

hV,„

—27+3—3 eV'
—20.7 eV"
+9.8 eV
—10.8 eV'
—16 eV'

—19+2—2 eV''
—15 eV

—17+2—2 eV'
—11 eVb
—21 eV"'

'Present experiment.
"Reference [3S];estimate from 50—S5 % CI.
'Reference [58];estimate from 61% CI.
Reference [62]; estimate from 88% CI.

show below may be an unwarranted assumption, has been
estimated theoretically by [34,62]

fdr(p(r)') =,fdKiF(K)~'
(2m. )'

f dKK I „(K) (50)

where IHF (K ) values were taken from Epstein and
Stewart [34]. In the determination of h(0) as well as
Ah (0) the integrals over K were performed up to
K,„=4a.u. , covering the whole range indicated in Fig.
8.

In Table V, the various values for potential energy
quantities interpolated from theory and the value ob-
tained in this experiment are given. The correlation ener-
gy estimated as E, = b, V„/2 by use of the virial theorem
and assuming EV,„=O and AV,",=0 would be —12+3 eV
by integrating the area under the Gaussian fit shown in
Fig. 8. However, it is possible by use of the available
theoretical data to estimate the values of both AV,„and

5V,", which lead to a very different picture as to the effect
of the correlation.

A11 of the data in Table V taken together suggest that
3

of the correlation effect on the total energy comes
through the electron-nuclear attraction, a one-electron
quantity, and only about —,

' from reduction of the
electron-electron repulsion energy. However, because of
the weighting by the number of nuclei and the nuclear
charges the correlation effect on the one-electron density
itself is only about —,

' of the effect on the pair correlation
density. The error 3 eV in AV„—AV, ,' is estimated
from the uncertainty of the last data point to which the
1/K tail is matched. The additional —3-eV error esti-
mate is based on the assumption that any background
correction is less than 15%%uo. This work strongly suggests
that assumptions about small correlation effects on one-
electron densities may be unwarranted and must be very
carefully considered for each application. This is special-
ly true for the energy where the effect is amplified by the
nuclear charge.

Note that in Table V the best theoretical estimate of
the correlation energy, —15.0 eV, is from Feller, Boyle,
and Davidson [63] who recovered 86%%uo of the estimated
total correlation energy (88%%uo of the valence) by use of an
extended Gaussian basis set at the self-consistent-field
(SCF) and CI levels.

Values of K(E) and df(K(E), E)/dE from 5.8 to 850
eV obtained through this work have been deposited in the
Physics Auxiliary Publication Service (PAPS) and are
available in microfiche [64].
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