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Theory of' the stopping power of fast mnlticharged ions
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The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along
a classical trajectory are studied. The target electrons are described by the Dirac equation, while the
field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in
the form most convenient for investigation of various characteristics of semiclassical atomic collisions.
The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge,
is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic
hydrogen by fast multiply charged ions. Based on the semiclassical sudden Born approximation, the ion-
ization cross section and the average electronic energy loss of a fast ion in a single collision with an atom
are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.

PACS number(s): 34.50.Bw, 34.50.Fa, 34.10.+x

I. INTRODUCTION

The interest in processes of Coulomb excitation of
atoms originally arose in the study of energy loss of fast
electrons, protons, and e particles in a medium. The ap-
propriate quantum theory has been developed by Bethe
[1].

The problem of dependence of individual transition
probability and energy loss on the impact parameter in
the theory of Coulomb excitation by fast protons has be-
come urgent because of the development of new experi-
mental techniques and a deeper analysis of the channel-
ing effect. However, in the theory dealing with multiply
charged ions the problem of the probability dependence
on the impact parameter is naturally introduced, in con-
trast to the case of protons, because the correct results
are obtained for different trajectories of relative motion
by using different theoretical approaches [2—5].

The two major parameters in the theory of Coulomb
excitation are the ratio of the electron velocity in the tar-
get atom to the velocity of the incident particle.
g=R/mau and the value of g=Ze /ih'U, which for small
impact parameter determines the rate of the electron in-
teraction with a moving force center of charge Z.

For fast-proton and multiply-charged-ion impact,
when v »e /A' and g + 1 the whole range of impact pa-
rameter of interest b &ao(ao=k /me ) can be con-
sidered as follows. Electrons in inner shells of the target
atom (g & 1) are affected by a weak external infiuence be-
cause the q value typical for these electrons in the dipole
area b &ao))a is about s),s=ria/b «1. Therefore the
probabilities of the Coulomb excitation involving these
electrons are obtained using the ordinary perturbation
theory to the lowest order in g. A general approach to
the solution of this problem for outer-shell electrons
(a =ao, g « 1) is given in Refs. [4] and [5]. For small im-
pact parameter (b &ao) the Coulomb excitation of
discrete spectrum states should be described using the
theory of sudden perturbation [6], and in the dipole area

(b ))ao) it should be described by the ordinary theory.
The joining of the results obtained in these two cases
[which can be made more accurate the better the condi-
tion rig«y is satisfied, where y=(1 —v /c )

' is the
Lorentz factor] makes it possible to correctly calculate
the excitation cross section also.

Besides the separate studies of the dipole and nondi-
pole areas in the ionization processes one should also dis-
tinguish the channels involving detachment of fast
(kao ))1) and slow (kao & 1) weakly bound (g« 1) elec-
trons (erik is the momentum of the ejected electron). The
theory of sudden perturbations can be applied in the area
b &ao, up to the values of k corresponding to the condi-
tion Ak (&mv. However, if Ak ~ mv the situation
simplifies otherwise because one can then use a semisud-
den method (for details see Ref. [5]).

II. THE ORDINARY PERTURBATION THEORY

The most appropriate formulation of the semiclassical
theory of Coulomb excitation of an atom in a relativistic
collision is as follows [7]. Atomic electrons are described
by the Dirac equation and the external field produced by
the charged projectile is described by the Lienard-
Wiechert potential (@,A). In the first order in g the am-
plitude of the inelastic transition between the stationary
states ~i) and ~f ) of the unperturbed Hamiltonian is
given by

Mf, =—f dt e'"'(f~0'(t)~i),

P'(t) =4(1—u v/c)

where Q=cof —co;, a=@ y, the y~ being the Dirac ma-
trices. In the case of a straight-line trajectory,
R(t)=b+vt, one obtains for the excitation amplitude
and the cross section after expanding 0'(t) in a Fourier
integral in the coordinates the expressions [7]
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M (b)= f
q

—(0/c )

Xe 'q
p&, (q)d q, (2)

has been used [8] for classical calculations of the stopping
power in a polarized medium. Following [8], I consider a
projectile nucleus of charge Z, with the inherent N elec-
trons distributed around the nucleus with density

~' =f d blM .(b)l'

1 qv —0=4g
[q2 —(0/c) ]

x lp/, (q)l'd'q . (3)

X A,
p(r) = —exp( r/A—, ),

r

where A, is the screening parameter, equal to

X=o 48 '
1 —X/7Z Z'

(8)

In the formulas (2) and (3)

p&;(q) = (f le'i'(I av—/c), 'i )

=—Q &fl~e"'li) .0 (4)

For a straight-line trajectory the excitation amplitude
is calculated by direct summation of the amplitudes of
the excitation by point charge particles (5) with distribu-
tion (8) and (9):

The vector Q=q —Qv/c differs from q because of the
presence of the magnetic interaction term in the operator
f (t). The transverse components of the vectors Q and q
(in the plane of the impact parameter) coincide, but on
the longitudinal direction (along v) Q~~ =q~~ /y .

The expression for p&;(q) is significantly simplified in
the most-important particular cases. For nonrelativistic
velocities and any aZ, (a.=e /Pic is the fine-structure
constant, Z, =ao/a) one obtains

For b =—Qa /u « y the dominant contribution to the am-
plitude and the cross section is made by qa 5 1, for which

iaQJRI, , qa « 1

M&, (q), qa = 1

=M/, (Q)
—= &f I

e '&'Ii ),

The relativistic effects resulting from the closeness of v

to c do not reveal themselves for light targets (i.e., for

f«1) in close (b a) collisions, while for large impact
parameters the magnetic interaction of the electron with
the projectile almost completely cancels the increase of
the role of the retardation in the Coulomb interaction.
The effective strength of the Coulomb interaction in-
creases rapidly with increasing y, a result of the relativis-
tic contraction of the characteristic field range that re-
sults in the broadening of the impact parameter range
where the excitation of the atom occurs nonadiabatically.
But the decreasing of the total interaction caused by the
presence of the magnetic term leads to a situation in
which the excitation cross section depends weakly (loga-
rithmically) on the Lorentz factor.

The theoretical investigations of fast-ion stopping are
basically devoted to the processes involving bare nuclei as
projectiles. The empirical methods of introducing the
effective ion charge depending on the collision velocity
are also used. The comprehensive accounting of electron
screening is usually made only for the lightest atoms,
though multielectron systems are of the greatest interest.
A successful model of projectile bare-nucleus screening

Z —Z—
1+q2X2

The corresponding excitation cross section is

2 3
8 4

e dq Z25 q.v —0
A'u [ 2 —(Q/ )2]2 ~ v

x
I p/, (q) I' . (12)

In the dipole area b))a+A, for small momentum
transfer the projectile ion is completely screened by in-
herent electrons, Z =Z —X. The more complex case
takes place for large momentum transfer. The features of
screening effects in the cross sections of bound-bound and
bound-continuum transitions are discussed in detail in
Ref. [9].

In the dipole area for a small momentum transfer the
total excitation-plus-ionization probability

2
W~ (b

y AU

x y n'I &fir li ) I'
f, i

fbi

X 2%2 ~b +~2 Ab
y ya ' ya

(13)

one can substitute by approximate expression using the
average frequency method

fgQ~AQ: e(A /ma )—,
8';„,i (b )~W;„,t (b ),

(14)

where @=1 is the parameter to be determined. For the
atomic targets with zero dipole momentum in the ground
state

M;, (b)= —' ' f, "q,Z8
fiu q

2 —(II/c)2 ~ v

Xe 'q'"p/;(q) .

All the symbols here have the same meaning, as above,
but effective charge Z has to depend on momentum
transfer:
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2
2

rV,'„„(b)=-', (Z —N)'
U

X [y %',(pe)+Ap(pe)]

(i I
r'/a'Ii )

(15)

(16)

with the corresponding cross section calculated in the
mean frequency approximation

o,„„=4.g'f, 5 q" (1—I(iIe"'Ii) I')d'q .
4

where p=bglay. Since the Bessel function %„(z) for
z &)1 decreases exponentially, the transition amplitudes
have nonvanishing values up to co/'"=vylb. Due to the
condition b ))a for fivy/b «mc, the nonrelativistic

approximation for the final state wave function is correct
for practically every Q. The comparison of the two cal-
culation methods shows that for fixed Lorentz factor y
the value e in (14) is a monotonic function of the parame-
ter p only (see Ref. [9] for details), which mainly takes
values from 0.4 to 0.5. In Ref. [10] the average frequen-
cy method has been extended over the whole impact pa-
rameter range. The average value e was found by com-
parison of the total nonrelativistic cross section of inelas-
tic channels

It is expressed by the Fourier transform (18) at zero fre-
quency:

M/;(b)=(f II(b —s)/bI '"Ii ) . (20)

where the final state wave function is normalized to unity
volume. It will be shown further that the arbitrary tran-
sition amplitude asymptote for b «a (which has been ob-
tained in Refs. [4] and [5]) are of practical interest. The
shaking probabilities do not exceed unity even for q = 1,
that results from the unitarity of the time evolution
operator used in the theory of sudden perturbations.

In the general case beyond the first order of ordinary
perturbation theory, instead of summing up the transition
amplitudes (similar to the accounting for the screening
effects, see Sec. II) the summation should be carried out
in the interaction operator included in the total Hamil-
tonian of the system. In the lowest order of the theory of
sudden perturbations [9],

For example, the Coulomb-ionization differential proba-
bility for a hydrogenlike atom

= "a)
IM(l, ) I2 (21)

d (ka)d Q (2~)

is calculated by use of the amplitude

(k)=a f d r +„' '*(r)I(b —s)/bI '"+,s(r),
(22)

It has been found that @=0.465.
Note that for the straight-line trajectories and bare-

nucleus projectile Fourier transform of the Lienard-
Wiechert potential used in amplitude (1) can be rewritten
in the following form [10]:

M&;(b) = (f Iexp[igp(N/z) ] I
i ),

where

yp(z) = —2g(1 —a v/c)

X '(1 —z)lnI(b —s)/bI

(23)

f"—dt e'"'P'(t)0 Ib —sI+z %p %p (24)

2ig(1 ——a v/c) exp

trav'r

~ 0
UP In the important particular case of the target excita-

tion by nonrelativistic neutral-atom impact

UP
(18) yp(1)= —g %'p ——%'p

b Ib —.
I (25)

The vector s is the projection of the electron radius-
vector r on the impact parameter plane.

III. THE THEORY
OF SUDDEN PERTURBATIONS

In nondipole area b a effective interaction is deter-
mined by q, which for large Z is about unity up to a high
projectile velocity. Here one can use the theory of sud-
den perturbations [6], which is correct if cps=/ is small
and V~ A. The transition amplitude in zeroth order in
CO% 1S

M (b)=t( M)t=(bf exp ——f dt P(t) i) .

(19)

For systematic calculations one should mostly pay at-
tention to the calculation of asymptote

w&;(b) = IM&;(b «a )I

Due to the slow decrease of the Coulomb potential at
large distances, even for b ~a it would be correct to use
the Born approximation at the farthest parts of projectile
trajectory instead of the sudden perturbation theory. To
consider this fact one should return to the general prob-
lern of sudden-perturbation-theory series construction,
the formulation of which is explained in Ref. [6]. Let us
project a differential equation for the time evolution
operator in the interaction representation S(t, t') on the
given initial and final states of the unperturbed system
and sum over the complete set of unperturbed Harniltoni-
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an functions ~s ): bility joining (also the natural one) is the Born probability
renormalization:

X (S~S(t, t )~l )

8'~; (1)
WI;(b) =

1+gI;(1)W~;(b)
(31)

In the problem of Coulomb excitation of atoms a
simplified solution of (26) is physically realizable though
not strictly demonstrable. In this solution the difference
Ef —E, is replaced with some mean value

Ef E ~AD AQf independently of the intermediate
states and determined only by the energies of initial and
final states E, and E& [11]. The joining of the results for
different parts of the trajectory can be successfully
fulfilled by exponential operator [11—14]

cosset
)P'i;(1)= {fexp ——J dt,. ()t ((t) ()

(27)

One should take cosQt in Eq. (27) for even
I;+m;+if +Plf and sinQt otherwise, where l; and lf are
orbitals and m; and mf are magnetic quantum numbers
of initial and final eigenstates, respectively.

For the appropriate asymptote

wI, (b)= WI;(b «a)

1 1
g/, (1)=

wI;(1) w/t(b)
(32)

The renormalized probabilities W&;(b) are equal to those
calculated by sudden perturbation theory for b ((a. This
boundary condition leads to the expressions for probabili-
ties, which are correct in the whole range of impact pa-
rameter. The appropriate cross sections are

o.I;= f d b W/;(b) . (33)

Using the exponential asymptotes (28)—(30) in the re-
normalization method (31)—(33) is of the most interest for
calculation of collision processes involving multicharged
ions. In the estimation of the Coulomb-excitation cross
sections they allo~ one to advance to the middle energy
range, where the "suddenness" condition gradually
ceases to hold and one can scarcely expect success.

The probability-joining procedure can be applied not
only to partial probabilities of bound-bound transitions
but also to the ionization probability. The simplest
method is as follows. By a method like (13) and (14) one
can find in the exponential approximation (27)

in the case of screened projectile (27) yields

w&;(b) =
~ (f~(1+50)exp(i@0)~i )

cos(Qr v/u )

sin(Qr v/v )

(28)

2

)P,'„e(b)=1—
{i exp ——I decce(()t)V(t) i)

(34)

X (Z —X)%0 +%%'o (29)

2le 2 b.s cos( Ql"v/v )
Q

A'u vs sin(Qr v/v )

X (Z —X)%, +K%, (30)

where

[I+(Q)(,/u) ]'~
AA,

The first term in matrix element (28) is responsible for
S~S,P' ' transitions and the second one for
S~P' —",D' —"transitions.

IV. NORMALIZED PROBABILITIES
AND CROSS SECTIONS

The unitary semiclassical theory of Coulomb excitation
of atoms by multiply-charged-ion impact is based on join-
ing the inelastic channel probabilities W&;(b) calculated
for small impact parameters in the framework of the sud-
den perturbation method with the Born probabilities
W&,.(b), which are relevant in the dipole area up to high
projectile charges. The most convenient method of proba-

Uo=e /A . (35)

The functions F (z) and G (z) are displayed in [12].
The probabilities for shaking allowed transitions, the

ionization cross sections o.;,„and o.; „and also the
Glauber cross sections cr;,„[18]are given in [12]. It
should be noticed that the inequality o.;,„)o.;,„, ob-

B
tained in [12] for very small 21 and very high velocities of
multicharged ions, has no physical cause. It stands to
reason that in this case the shaking forbidden channels of
S—+P' —",D'—"transitions should be taken into con-
sideration during the estimation of ionization probability

where A'Q=efi mao. The ionization probability W,',„(b)
can be obtained from W';„„(b)by subtraction of the prob-
abilities of inelastic bound-bound channels. One can esti-
mate the probabilities of the transitions to states with
n =5,6, 7, . . . from the asymptotes 8 ~s- n . The
ionization probability w;,„(b) is used for the joining with

W;,„(b) (see, for example Fig. 1). The methods of calcu-
lation of W; „(1)are discussed in Refs. [15]—[17]. Still
the probabilities and cross sections can be obtained from
Eqs. (2) and (3). It is interesting that the scaling relation
for the probabilities W;,„(b) occurs [12]. This relation
can be presented as follows:

exp[ —(uo/u)G(b lao)]
W;,„(b)= W;,„(0) F b/a()
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FIG. 2. Renormalization coeScients N(Z, U) in average ener-

gy loss for a multicharged-ion-atom collision.

The average electronic energy loss of a fast mul-
ticharged ion in a single collision with an atom is

bE(b)= g iriQW~;(b) .
f

(38)

FIG. 1. Born ( ———) and sudden Born ( ) ionization
probabilities for a multicharged-ion —atom collision.

iu,',„(b). Such an account proves the more exact scaling
for the whole nonrelativistic specific energy range:

It can be considered separately for low (l) and high (h)
excitations. For low excitation the energy loss b,E&(b)
should be calculated by the method as stated above. To
avoid the complicated calculations one can solve this
problem in the following manner. Dettmann [19] has re-
ported the mean frequency estimation of the energy loss
for low excitation b,E&(b) for fast protons. For the col-
lision with a fast multiply charged ion an analogous es-
timation gives

b,E, = fd'b b, ,E( )1=%AD f d'b W,'„„(b) . (39)
B

o;,„=f (Z, u)o;,„=
L[,g~

L (il ) = 1+0.076g+0. 32' —0.033'

(36)

(37)

The energy loss for high excitations,

b,E„=fd b b,E„(b),

At the projectile energies E =0.5 —50 MeV/amu and
0~F1~2.5 the function L(g) reproduces the calculated
ionization cross sections with an accuracy to 5%.

27TZ e 2mv y
hAE ln

V
2

C2
(41)

may be estimated by the standard method of quantum
electrodynamics (see, e.g., [20]):

r

V. NORMALIZED ENERGY LOSS

According to Bethe [1], who derived the stopping
power in the first-order Born approximation, the energy
loss of a charge partical penetrating matter is proportion-
al to the square of its charge. This approximation breaks
down over the range g ~ 1. It is the purpose of this sec-
tion to investigate the renormalization effects in energy
loss due to the unitarity of the exponential operator in
Eqs. (27) and (34). For distinguishing this eg'ect it is
sufBcient to consider the particular case of the nonrela-
tivistic bare-multicharged-ion energy loss.

where I is of the order of a few times
~

ih'co; ~.

The nonrelativistic average energy loss per collision for
the excitation of atomic hydrogen by a fast multicharged
fully stripped ion is

bE=bEi+bEi, =N(Z, u) ln, U
2

n (42)

where Io =0.S5me /A . At the projectile energies
E =0.625, 2.5, and10 MeV/amu the functions N(Z, u)
are displayed in Fig. 2.

In the first order of ordinary perturbation theory (i.e.,
for small values of q)
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N(Z, v)=1, bE=bEB„h, . (43)

It is very important that the scaling relation for the
N(Z, v) occurs. For O~g~2. 5 as the projectile energy
ranging from E =0.5 to 50 MeV/amu this scaling rela-
tion may be presented as follows:

exp[ —( vo/v)(0. 2g+ 0.05vP ) ]
N (Z, v) = Y(ri) =

1+0.013'+0.097' —0.025'
(44)

where vo =e /A. The function Y(g) reproduces the aver-
age energy loss within an accuracy of 5~o.
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