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Resonance structure in the electron-impact excitation of Ca+ below the 5s threshold
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Detailed calculations of energies and widths of Ca autoionizing states and the related resonance struc-
ture in electron-impact excitation of the 4s-4p transition in Ca are performed using the diagonalization
method. This method is divided into two steps: a three-state (4s, 3d, 4p ) close-coupling calculation of
cross sections and extensive configuration-interaction calculations of wave functions of autoionizing
states. Both steps take into account the correlations related to one- and two-body core-polarization po-
tentials. The results of calculations of energies, oscillator strengths, and autoionizing widths of doubly
excited states of Ca are in better agreement with the experimental data than any other calculation. Rich
resonance structure is predicted by theory at incident electron energies below the 5s threshold. The
present results support the general pattern of the measurements of Frontov [Opt. Spectrosc 9, .460
(1985)], although there are some discrepancies in the details, particularly the existence of the high and
broad resonance at that threshold. A detailed comparison with the previous resonance calculations by
Mitroy et al. [Phys. Rev. A 38, 3339 (1988)] is carried out.

PACS numberI, 's): 34.80.Kw

I. INTRODUCTION

The development of experimental techniques in recent
years has rendered the detailed study of scattering cross
sections of electrons by positive ions and particularly
their resonance structure increasingly practicable. This
structure is caused by the capture of an incident electron
by the excited-ion target into short-lived autoionizing
states (AIS's), the further Auger decay of which leads to a
sharp variation in the scattering cross section. In recent
years great attention has been paid to the study of reso-
nance structure in the scattering cross section, because
the latter is a source of information on the structure of
atoms. It allows one to carry out a more careful selection
of theoretical models for describing the scattering pro-
cesses. In applications, resonances often lead to a notice-
able increase of the corresponding velocities of reactions.

The experimental study of the resonance structure in
ion cross sections is a difficult task, because highly mono-
chromatic electron beams are needed. For this reason
the number of such investigations is limited. The ions of
alkaline-earth metals make convenient vehicles for carry-
ing out precise investigations using monoenergetic beams
of electrons of small intensity. Indeed, for these ions the
spectral transitions from the lower levels fall into the con-
veniently visible spectral region. Moreover, the excita-
tion cross sections for lower levels are comparatively high
( —10 ' cm ). That is why as far back as the 1970's a
number of laboratories had carried out experimental in-
vestigations of excitation cross sections for different tran-
sitions in the ions of alkaline-earth metals. In particular,
thorough measurements of the 4s-4p excitation cross sec-
tion in Ca+ were carried out by Taylor and Dunn [1],
whose results were later confirmed by the measurements
of Zapesochnyi et al. [2]. In addition, Zapesochnyi et al.
also published cross-section data for exciting 5s and 4d
levels from the ground state, which were important for

estimating the population of the 4p level by cascading.
The most interesting result of these measurements is the
considerable discrepancy in the near-threshold region be-
tween experiment and calculation for the 4s-4p transi-
tion. For example, the difference between experiment
and the most exact calculations at that time, in the close-
coupling method (CCM) by Burke and Moores [3],
reaches about 35%%uo. Nevertheless this has not stimulated
further interest in the theoretical study of this transition,
and until recently only Coulomb-Born and distorted-
wave [4-6] calculations were carried out and agreement
with experimental data was reached only for high ener-
gies of the projectile electron.

Only very recently, in attempts to explain the experi-
mental data, have more rigorous methods been applied.
With the aim of accounting for contributions from cas-
cading, Msezane [7] carried out close-coupling calcula-
tions of three (3CC) and six (6CC) low-lying states using
an exact target wave function. However, these calcula-
tions did not noticeably improve agreement with experi-
ment. Moreover, a 6CC expansion gives even bigger
cross sections than the 3CC expansion. At the same time
Mitroy et al. [8] carried out detailed calculations of exci-
tation cross sections for Ca+; their most exact model—
6CC calculations with exact semiempirical Hartree-Pock
(HF) target wave functions —agrees better with experi-
mental data than any of the previous calculations. This,
up to now, has been the only work in which resonance
structure has been included. However, if cascading from
5s, 4d, and 5d levels is taken into account, then the 6CC
cross-section excitation exceeds the experimental data by
20%%uo [9].

Unfortunately, the very interesting experimental work
of Frontov [10] turned out to be outside the scope of the
above-mentioned theoretical investigations. Frontov
resolved the resonance structure in the 4s-4p excitation
cross section of Ca+ by using more monoenergetic elec-
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tron beams (BE=0.15 eV in the near-threshold region).
This method revealed unexpectedly high resonance
peaks, and the measured near-threshold excitation cross
section considerably exceeded both the previous experi-
mental measurements [1,2] and the calculations of Mitroy
et al. [8], especially near threshold.

In the present work, the calculations using the diago-
nalization method (DM) were carried out with the aim of
interpreting the measured resonance structure of the ex-
citation cross section for the 4s-4p transition in Ca+.
The method was proposed by Balashov et al. [11]for the
study of the resonance photoionization of atoms, and
later it was successfully used for the description of reso-
nance structure in electron collision cross sections with
"one-electron" targets like He+ [12], Be+ and Mg [13],
and light alkaline-metal atoms [14]. One advantage of
this method is the possibility of a detailed investigation of
resonance structure. Below, in Sec. II, the properties of
the DM are outlined, in Sec. III the bound-state wave
functions of Ca+ are described, in Sec. IV results on the
nonresonant excitation cross section are presented, and in
Sec. V the results for AIS parameters are given. The re-
sults of our calculations of resonance structure for the
4s-4p transition are presented in Sec. VI, where we also
compare them with other work. In this paper atomic
units are used.

II. DIAGQNALIZATIQN METHOD

culations. A more detailed description of the DM can be
found in other initial work [11—13,15].

Electron scattering on an X-electron atomic target is
reduced to the solving of the Schrodinger equation

(H E)% (I Xixiv+i)=0 (2.1)

(2.2)

with appropriate boundary conditions. The collision
wave function %(I X,xiv+, ) presents a fully antisym-
metrized wave function of the system "target plus projec-
tive electron, " where X = (xi, . . . , xiv), x, =(r, , o; ) with
spatial (r;) and spin (o;) coordinates of the electron i,
and I is a complete set of quantum numbers of the
(N + 1)-electron system. A nonrelativistic Hamiltonian
H has been used.

As in the close-coupling method, the total wave func-
tion of the system in the DM is presented by way of ex-
pansion on wave functions of the target. But in the DM,
in this expansion only those terms that correspond to the
open channels are retained, whereas closed channels and
electron capture are accounted for by AIS wave func-
tions, which are usually multycon6gurational functions
satisfying the condition

%'e describe only the main features of our variant of
the diagonalization method that directly concern our cal-

I

Then the initial expansion of the collision wave function
in the diagonalization approach has the form

IV+1 +rr'
%(IX,x~+, )=(N+1) ' g ( —1) +'+~+4(I"X,r cr ) + QC„4„(Ix„.. . , x„+,)

p=1 r p p

+ y A."X,(rx„.. . , x„„), (2.3)

where the summation over I is carried out over open
channels exclusively. As in the conventional CCM, a set
of single-configurational so-called correlational functions
4(x i, . . . , x&+i ) is added in the expansion. These func-
tions compensate for the usual orthogonality condition
for radial wave functions of the projectile electron
Frr. (r ) with the atomic orbitals of the target P„&(r). The
functions Err. (r) and coefficients A„" and C are the un-
known quantities in the problem.

The calculation of the functions y is usually based on
the configuration-interaction (CI) method, in which the
functions g are constructed as linear combinations of
single-configuration (N+1)-electron wave functions, and
configuration-mixing coefficients are found from the con-
dition (2.2). In isolation, the functions y and their
eigenenergies E may be seen as wave functions and ener-
gies of AIS's in approximation. In the DM they are then
coupled to the open channels in first-order perturbation
theory, which gives rise to an energy shift of the AIS's
and to a finite lifetime for these states.

Let us note that expansion (2.3) incorporates the closed
channels only approximately, since the functions g de-

crease exponentially with respect to all the variables,
while the functions Err. in the CCM may decrease far
more slowly; e.g. , in a power-law fashion. For this
reason, probably, the polarization of the ion by the in-
cident electron is incorporated in a slightly poorer way
by expansion (2.3) than in the CCM.

On the other hand, the DM yields more accurate pa-
rameters of the autoionizing states, since one can easily
extend the wave-function basis, from which the y are
constructed. We shall see an example of this situation in
what follows.

Applying the variational principle mentioned above to
the function (2.3) (both the function Err and the
coefficients A" and C„are to be varied), we find the fol-
lowing system of coupled algebraic-integro-difFerential
equations for determining these quantities (replacing the
channel indices I,I" by the indices i,j, etc.):

g+, P'",+ g CJ V,'„+g A~V, + g mi P„ i fbi i =0,

(2.4)
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g (H„E—5q )CJ, + g f V,'„F dr"+ g W„' AJ =0, it follows from relations between the K and T matrix that

(e„E—)AJ + g f U „F 'dr+ g W„' Ci =0,
(2.5)

(2.6)

where

1

dr'
l;(l;+1) 2Z+ +K;,5; + V;.+8';

r r

(2.7)

(U„lFO)

E—c„+a„'
~„=—(U„IGI U„),

(2.10)

(2.11)

( U„lF')
FJ(r)=F&(r)+ g g f dr'G, '(r, r')U „(r')

E—g„+5„
(2.12)

The "diagonalizational" assumption is the only essential
simplification in our approach compared to Feshbach's
method, because the direct coupling of the open and
closed channels is accounted for exactly in the framework
of the chosen basis for this set of channels, and only the
coupling of different autoionizing levels through open
channels is not involved.

Asymptotic solutions of (2.12) yield the IC matrix, and

V; is the direct interaction potential of the colliding elec-
tron with the target, while 8," is the corresponding ex-
change potential. The functions U;„, V'.„depend on the
particular atom or ion chosen and they are matrix ele-
ments of the Coulomb interaction between the functions
N„and the target wave functions. Explicit expressions
for these potentials are given, e.g., by Smith and Morgan
[16].

To solve the system (2.4)—(2.7), we make a first assump-
tion; namely, we neglect the interaction of AIS's with the
states described by correlation functions 4„, i.e., we put
S"=0. This seems to be completely justified, since 8" is
a matrix element of the Coulomb interelectron interac-
tion between the states, the wave functions of which
weakly overlap. Then Eqs. (2.5) and (2.6) decouple (it
should be noted that indirect coupling of these equations
remains due to the functions of the continuum F; ). Solu-
tions of Eqs. (2.4)—(2.7) can be found in the form

F; (r)=F, (r) gg f .dr'G; —(r, r')U' (r')AJ, (2.8)
v J

where F, is a regular solution of the system (2.4)—(2.7)
without the right-hand part, and G; (r, r') is a corre-
sponding Green matrix. If one substitutes (2.8) in (2.5)
and makes the main "diag onalization'* assumption,
neglecting off-diagonal elements,

f dr dr'U;„(r)G; (r, r')U;„(r'), vip (2.9)

one obtains the expressions for A„and I';. at once,

T =T"+2i g(a a . ) E —e —6+—Il
1J EJ P& PJ 2

p, v

(2.13)

I &„=2(a&,a ), b~„=(a~,K a„),
e,„=(e,—Z„)5,„, E,„=En

(2.15)

(2.16)

The quantities 6 give the shift of the resonant energies
c,„due to the interaction of the discrete states y„with the
adjacent continuum. The total width of the resonance is

l„=yr„,, r„,=2la„, l', (2.17)

where I „; is the partial width of resonance p due to de-
cay into channel i.

Thus the DM is quite a bit less laborious in comparison
to the CCM for solving resonance scattering problems for
slow electrons by atoms and ions. In practice it is divided
into a number of simpler successive steps: solution of the
CCM system only for open channels at a small number of
projectile electron energies; calculation of the wave func-
tions of AIS's and their parameters; and, finally, calcula-
tion of the resonance scattering cross section. An appli-
cation of this method to the 4s-4p transition in Ca+ is
presented in the following sections.

III. CA+ BOUND-STATE WAVE FUNCTIONS

Calculations of scattering processes crucially depend
upon the quality of target wave functions. In spite of the
simple one-electron character of the Ca+ wave function,
the usual one-configuration HF calculations lead to con-
siderable errors, which is a consequence of the large di-
pole polarizability of the Ca + core. Because it is con-
venient to have the same set of one-particle radial orbitals
for all considered states (both bound and AIS), we have
chosen target wave functions of the frozen-core type with
a serniernpirical polarization potential. First, core wave
functions are obtained in the HF approximation. These
functions are not changed in all further calculations.
Then, wave functions of the valence electron are calculat-
ed with the use of the modified one-electron Hamiltonian,

where T," are matrix elements of nonresonant scattering,
and the second term describes resonance scattering. It is
the generalization of the Breit-%'igner formula to the
multichannel case. The possibility of explicitly singling
out this resonance part is an important advantage of the
DM. The quantities T, as well as the quantities o;„;,6„,
and I „are expressed in terms of the solutions I'; of the
system (2.4)—(2.7) without its right-hand side, i.e., the
solution of the system of CCM equations neglecting
closed channels. Quantities appearing in (2.13) have the
following form (in our notation greek indices mark AIS's,
latin indices the channels; in addition, at each fixed p, a„
is a vector whose dimension is equal to the number of
open channels)

a„=(1 iE ) —'yq, (y„);=g f dr F, (r)U„(r. ),
J

(2.14)
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a'"=0""+Vpol (3.1)

where H is Hartree-Fock Hamiltonian for the valence
electron, and Vp, &

is the model potential, which takes into
account the polarization of the core by the outer electron.
The latter is chosen in the form initially adopted by Nor-
cross and Seaton [17],

CXg

V„,~(r, I ) = —
4

1 —exp
r

G

Pl
(3.2)

Here o,& is the dipole polarizability of the core of 3.16ao
[18],p& are the adjustable parameters that depend on the
orbital momentum of the valence electron I. These pa-
rameters were chosen in such a way that ionization ener-
gies of valence electrons reproduce experimental values
(averaged over fine-structure levels). One obtains values
for pI of 1.545ao, 1.S797ao, 1.8633ao, and 1.633ao for
I =0, 1, 2, and 3.

For HF calculations we have modified the MCHF-77

program [19] in order to account for the polarization of
the core. The values obtained differ slightly from those of
Mitroy et al. [8], because they use analytical HF wave
functions and frozen-core orbitals obtained from
Ca+(3p 4s), instead of Ca +(3p ) in the present work.
We note that the crude value a& =3.45ao [20] in our pre-
vious work [9] had led to a considerable difference in
value for PI, but in the final results for the scattering
cross section this made only a slight difFerence in the
fourth digit, which is comparable with calculational er-
rors. We conclude that the polarization potential Vp
depends only weakly on the chosen value o.&. In an at-
tempt to estimate the accuracy of our target wave func-
tions, we present in Table I the experimental and theoret-
ical ionization energies for low-lying states of Ca ob-
tained in difFerent approximations. Fully self-consistent
and frozen-core HF ionization energies are good in all
cases, except for 3d, probably because 3d orbitals
penetrate deeply into the atomic core. For the same
reason the 3d orbital is much more sensitive to the polar-
ized core potential, and that leads to an anomalously
large value of p2. We may conclude that, in general, the
frozen-core approximation is justified, and that it is un-
likely to lead to large errors in the scattering calculations.
As seen in Table I the ionization energies with sem-

EL' r6
1 —exp

r p'. .

1/2

(3.3)

The corresponding modification for the velocity form is

Dv(nl +n 'l')—
1,d l'(l'+1) l(1+1) + qo—

"
E dr 2r 2

(3.4)

where hE is the transition energy; y' and y" are the cor-
responding derivatives on r; p=(p+p')/2; and in ex-

iempirical valence orbitals are in agreement with experi-
ment to within 1%, which is much better than the uncer-
tainty in HF calculations of 5%. Good agreement is ob-
tained also with the analogous calculations of Mitroy et
al. [8]. Differences for 5s binding energy have already
been explained by the frozen-core choice. The largest
discrepancy with experiment occurs for 4d orbitals and is
caused by the behavior of 3d orbitals and anomalously
large p2 values. It should also be noted that binding ener-
gies for high-lying valence orbitals (up to n = 14) are
equally good, indicating that the chosen model for
describing core polarization effects for all valence orbitals
may also be adequate in the case of continuum orbitals.

The polarization potential model is widely used at
present (Laughlin and Victor [22]). It aims at simulating
correlation and, to some degree, relativistic effects, for
core—valence-shell interaction. Oscillator strengths are
particularly sensitive to the accuracy of valence orbital
wave functions. In Table II we compare oscillator
strengths calculated in the HF approximation with those
calculated in a core-polarization potential approach and
with experimental data. The oscillator strengths are
presented in the length form fL and in the velocity form
fv.

At high core polarizability, the inhuence of indirect ra-
diative effects is large and may be accounted for by a
modification of the radial part of the dipole operator,
proposed by Bersuker [23] on the basis of the core model,
as the dielectric sphere with polarizability o.z,

DL (nl ~n'I') =y(r )

TABLE I. Theoretical and experimental binding energies (in rydbergs) for the low-lying valence
states of Ca+.

State

4s
3d
4p
Ss
4d
Sp
4f

Related
core

0.831 318
0.688 196
0.618 748
0.385 714
0.339084
0.313020
0.250 354

Fixed 3p
core

0.830082
0.666 160
0.618 549
0.385 630
0.338 379
0.312 997
0.250 354

Fixed 4s
core+ V„,& '

0.872 556
0.747 836
0.641 642
0.396064
0.350 302
0.320 132
0.252 376

Fixed 3p
core+ V~,]

0.872 555
0.747 836
0.641 641
0.396 791
0.350 345
0.320 170
0.252 376

Expt. '
0.872 556
0.747 835
0.641 640
0.397 175
0.354 492
0.320460
0.252 376

'Reference [8].
Reference [21].
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TABLE II. Absorption oscillator strengths for transitions among the low-lying valence states of
Ca+.

Ab initio HF' HF+ Vp, ]

Transition

4s-4p

4s-5p
4p-5s
Ss-5p
3d-4p
3d-Sp
4p-4d
4d-5p

1.092

&10 4

0.173
1.516
0.049
0.0001
0.865
0.165

1.032

0.0001
0.165
1.479
0.0065
0.0005
0.800
0.129

0.960

0.0017
0.179
1.486
0.067
0.0004
0.867
0.176

0.912

0.0025
0.173
1.464
0.031
&10 "
0.822
0.150

0.961

0.0019
0.179
1.477
0.066
0.0004
0.869
0.176

1.100

&10
0.173
1.520
0.07S
0.0009
0.899
0.178

Expt.

0.99+0.03'
1.05+0 09

0.18+0.02

0.053+0.006'

Q 87+0 Q9

'Reference [8].
Using unmodified dipole operator.

'Reference [24].
dReference [25].

pression (3.3) the same cutoff factor, which agrees with
the corresponding factor for V,&, is chosen.

Table II shows that a polarization potential consider-
ably improves the accuracy of the oscillator strengths in
length form compared with HF values, especially for
3d-4p transitions. In the case of 4s-4p transitions this
effect is not so obvious because of competing changes in
AE, whereas the radial dipole elements change consider-
ably. On the other hand, the dipole matrix elements in
velocity form change insignificantly and the correspond-
ing oscillator strengths are in worse agreement with ex-
perimental data, i.e., the use of a polarized core potential
improves the wave functions for valence electrons mainly
at large distances from the nucleus, just in the region that
is the most significant for electron-ion scattering. Table
II also shows very good agreement with the results of Mi-
troy et al. [8], despite the fact that a difFerent frozen core
was used. In order to investigate the direct effect of core
polarization expressed by modification (3.3), in Table II
fL values are also presented for calculations without
that modification. As is seen, in most cases this direct
effect predominates over the indirect effect of core polar-
ization in oscillator strengths. In general, comparison of
the ionization energies and oscillator strengths with ex-
perimental data indicates the high accuracy of calculated
wave functions of the target.

I'd.i(ri rz)=

p6
2X 1 —exp p'. .

(4.l)

our program ATEQNs. This program is based on the
method of Fano [27], uses the algorithmic approach of
Burke [28] and Hibbert [29], and is highly automated.
Calculations within the framework of the CCM were car-
ried out for all partial waves with L ~12 with full ex-
change. The contributions of the partial cross sections
with L ) 12 were evaluated in the Coulomb-Born approx-
imation.

Core polarization (3.2) by the projectile electrons was
also included in the close-coupling equations, using the
same parameters p& as those for the bound states, with
the exception of pz, the anomalously large value of which
is associated with strong penetration of 3d orbitals into
the core field. By contrast, a projectile orbital does not
penetrate the core. Following the work of Mitroy et al.
[8], the value 1.7049 for the parameter p2 was therefore
used, which was obtained by adjusting the binding energy
of 4d orbital, since this orbital penetrates the core much
less. The system of close-coupling equations also con-
tains the so-called dielectronic polarization potential

1/2
adr&. r2 r

&

1 —exp2 2 —6

1/2

IV. CALCULATION OF NONRKSONANT SCATTERING

Wave functions of nonresonant scattering F;. and the
corresponding transition matrices T;., for application of
the DM, were calculated within the framework of the
CCM, using the program IMFAcT [26]. In these calcula-
tions only open channels have been considered, and in
close-coupling expansion only three states of ion s
(4s, 3d, and 4p) have been included. The sum over
correlational functions N„ in expansion (2.3) contains all
functions necessary for accounting for orthogonality.
The angular coeKcients, which specify the concrete type
of potential in (2.4)—(2.7), were obtained with the help of

where p=(p, +pz)/2. This potential is included to ac-
count for the inAuence of mutual polarization of the core
by valence and projectile electrons.

In Fig. 1 we compare calculated excitation cross sec-
tions for the emission line 4p3/p 4s, /z in Ca with previ-
ous results. The calculated cross sections were multiplied
by a factor of (0.946)—', which takes into account both the
spin-orbit splitting of the 4p level and the branching fac-
tor by radiative decay. In Fig. 1 we did not show excita-
tion cross sections obtained to first order of perturbation
theory, since all these cross sections largely overestimate
the cross section in our energy range.
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FIG. 1. Comparison of close-coupling calculations of cross
sections for electron-impact excitation of the Ca+ level:
3CC, present results; ~ ~, 3CC model, Burke and Moores
(1968); ———., 3CC and 6CC models, Msezane (1988);———,3CC and 6CC models, Mitroy et al. (1988) (without
resonance structure).

V. CALCULATION OF PARAMETERS
OF AUTOIONIZING STATES

We also applied the frozen-core approximation for cal-
culating the wave functions y„and the energies c„of

According to Fig. 1, our calculations agree with the
3CC calculation of Ref. [8], which uses the same approxi-
mation. Moreover, good agreement is obtained not only
for total excitation cross sections of the 4s-4p transitions,
but also for all partial waves up to I.=12. Insignificant
differences at threshold are caused by the indicated
differences in the target wave functions. From Fig. 1 it
follows that all calculations with core polarization give
cross sections that are much smaller than those without;
and as discussed later, agreement with experiment im-
proves considerably. Thus, in the case of Ca+ (and also
as is shown in Ref. [9] for other heavy alkaline-earth ions)
for obtaining the exact cross sections the necessary condi-
tion is the inclusion of core polarization; for example, in
a simple form (3.2).

One qualitative difference between two available 6CC
calculations should be noted. Figure 1 shows that the
6CC excitation cross section for the 4s-4p transition
around the ionization threshold of the Ca ion without
core polarization [7] is 10—15% higher than the corre-
sponding 3CC cross section. On the other hand, the 6CC
cross section with core polarization [8] is 10—15%%uo lower
than the corresponding 3CC cross section. Different tar-
get wave functions may be the cause. However, we could
not verify this assumption because our computers are too
small for 6CC calculations.

AIS s along with the configuration-interaction method in
order to obtain full consistency with the calculations for
the nonresonant part of the scattering process. In this
approximation a complete wave function of the atom is
expanded over the basis functions in which only orbitals
of valence electrons change,

~LS
p

i =
I nl, n'l'I

C; 4; (core, nln 'I') . (5.1)

Calculations have been carried out in I.S coupling, which
is quite applicable in the case of Ca. The set of one-
particle valence-electron orbitals, of which the basis func-
tions in expansion (5.1) were built, was obtained in the
same manner as in the target case: from HF calculations
of corresponding states having a single ion with a frozen
core and with the use of a polarized potential with the
same parameters p&. This set includes up to 50 orbitals
with quantum numbers n ~14 and 1~3, and was not
changed in the process of all ca1culations. Thus our ap-
proximations reduce the calculation of AIS's of Ca to the
simpler analogous case of the two-electron system.

The energies c„and corresponding expansion
coefficients C; were obtained by diagonalizing the corn-
plete nonrelativistic Hamiltonian on that basis, account-
ing for dielectronic polarization. The basis dimension
varied within 50—60 functions and it was sufficient for sta-
bilization of 6—8 lower states of each Rydberg series of
AIS's. The set of functions in each basis was chosen
in such a way as to match analogous calculations in
the 6CC approximation. That is, states with
4snl, Ssnl, 4dnl, and 5pnl configurations were always in-
cluded, and even higher-lying configurations were includ-
ed when the dimension of the basis allowed. Taking a
sufficiently large set of one-particle orbitals, we can quite
exactly describe the correlation between valence elec-
trons, but the correlation between core and valence elec-
trons still remains unaccounted for. In Ca the core is
rnultielectronic and therefore such a correlation is impor-
tant. In order to avoid certain shortcomings of the
frozen-core approximation, its total energy was taken as
the matching point, and the excitation energies of AIS s
relative to the ground states of Ca + and Ca+ were calcu-
lated using experimental ionization energies (11.872 and
6.113 eV for Ca and Ca, respectively).

The above-described method of calculation of the
AIS's is an extended variant of the restricted diagonaliza-
tion method, which was introduced by Lipsky and
Russek [30] to calculate the AIS's of He-like ions. How-
ever, it is difficult to apply this method when the overlap
AIS series converge to different thresholds. These
difficulties arise from nonphysical levels, which are sensi-
tive to the choice of basis and usually located above the
corresponding excitation threshold of the ion. They orig-
inate in the finiteness of the basis, which does not allow
for a correct description of high-lying orbitals nl of the
outer valence electron in the screened-core field. In the
simplest case of the term '5 of Ca, three series of 4sns,
3dnd, and 4pnp overlap and strongly interact, and it is
necessary to consider them simultaneously. But it cannot
be done directly because the nonphysical levels of the
4sns series are located in the region of the 3dnd and 4pnp
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TABLE III. Excitation energies and ground-state absorption oscillator strengths of the P states in Ca below the 4s threshold.

Energies (eV) fc, fv (&00)

Level

4s4p
4s 5p
4s6p
3d4p
4s 7p
4s 8p
4s 9p

Present

2.956
4.571
5.192
5.478
5.652
5.773
5 ~ 856

Theory
Ref. [32]

3.053
4.606
5.238
5.542
5.710
5.815
5.883

Expt.
Ref. [33]

2.932
4.554
5.167
5.447
5.632
5.762
5.850

Present

173-162
0.12-0.03
2.99—2.90
5.54—5.09
3.78—3.09
1.54—1 ~ 32
0.71—0.59

Theory
Ref. [32]

189-182
1.74—1.51
0.16-0.18
0.80—0.77
1.10—1.04
1.12-1.04
1.02-0.93

Ref. [34]

182
0.85
1.82
4.89
4.09
2.90

Expt.
Ref. [35]

175
0.09
4.1

6.6
3.2
1.2
0.55

series. These levels have a number of characteristic pecu-
liarities: corresponding eigenfunctions are made up of
rather large lower components, there is no dominant
component, and on increasing the basis dimension the
composition of the eigenfunctions and the associated
eigenenergies change at random and do not converge to
any fixed value. So these levels (e.g. , of 4sns series) will
interact chaotically with the levels of higher series (e.g.,
3dnd or 4pnp ), which will lead to considerable errors for
the latter. If the excitation thresholds of different series
coincide or differ much in energy, as for He-like ions,
then the nonphysical levels cause no trouble.

The nonphysical levels can be excluded by a two-step
diagonalization. In a first step we diagonalize subma-
trices associated with one series. Then a new basis is
built, excluding levels with "positive" energies. For
lower levels of the series, the result obtained then con-
verges rapidly and does not depend further upon the basis
dimension. However, Robaux [31], analyzing details on
energy and oscillator strengths for some transitions in Ca,
found that the interaction with the continuum is account-
ed for by a "hidden" way due to nonphysical states in the
restricted diagonalization method. Therefore we have
tried drop as few nonphysical states as possible, the AIS's
among different thresholds were considered separately
and only those nonphysical levels that fall into the con-

sidered region of energies were excluded. This increases
the size of the calculations insignificantly but allows one
to obtain more rigorous results.

The accuracy of obtained AIS parameters is illustrated
in Tables III and IV comparing calculated energies, oscil-
lator strengths, and widths of the 'P series of Ca with ex-
periment. According to Table III, the energies of lower
states of the series are accurate to within 0.01—0.03 eV,
which is also typical for the accuracy of the AIS energies
in Table IV. The largest error of the energy and other
AIS parameters is encountered in the so-called perturber
levels, which belong to higher-lying AIS series but lie in
the same energy region as the levels of the observed
series, e.g., the 3d4p and 4p5s levels of Ca, which greatly
perturbs the 4snp and 3dnp series. For such levels strong
configuration mixing is characteristic, they diffuse over
series, and their parameters are most sensitive to the
method and details of the calculation. As Table III
shows, our oscillator-strength calculations are in good
agreement with experimental data, and for lower states
better results are obtained in the length form fz, while
for highly excited states they are obtained in the velocity
form fv [all values were calculated with the help of
modified dipole operators (3.3) and (3.4)]. Besides, the
calculations reflect the local maximum in the series,
placed on the excited level 4d4p. At present it is the

TABLE IV. Excitation energies and autoionization widths of the P states in Ca below the 3d threshold.

Energies (eV) Widths (meV)

Level

3d 5p
3d 6p
3d 7p
3d 8p
3d 9p
3d 10p

4p 5s

3d4f
3d5j
3d6f
3d7f
3d8f

Present

6.604
7.038
7.342
7.471
7.556
7.614

7.166

6.938
7.248
7.427
7.529
7.596

Theory
Ref. [37]

6.633
7.080
7.415
7.502
7.575
7.624

7.300

6.960
7.260
7.427
7.527
7.593

Expt.
Ref. [38]

6.583
7.024
7.339
7.476
7.559
7.617

7.186

6.936
7.254
7.424
7.528
7.595

Present

70.2
5.6

50.9
23.2
14.1
10.1

139

0.004
2.8
1.4
1.1
0.8

Theory
Ref. [37]

84.6
6.7

39.9
31.5
28.2
20.7

13.2

0.1

0.3
2.4
0.7
0.6

Ref. [39]

76.2
8.6

34.1

19.8
12.4
9.9

71.0

3.4

Expt.
Ref. [40]

62.9
6.3
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most exact theoretical calculation.
In the work of Froese-Fischer and Hansen [32] oscilla-

tor strengths are obtained within the framework of the
many-configuration HF method, also in a frozen-core ap-
proximation, but without polarization. These calcula-
tions provide much less accurate results for the values of
oscillator strengths and their distribution over a series.
The difference between these data and our data charac-
terizes the importance of core polarization in the case of
Ca. However, in this case it is important alamo to account
for the dependence on the orbital momentum of the
valence electron. This is illustrated by comparison with
the results of Victor, Stewart, and Laughlin [34], where
only one variational parameter in expression (3.1) was
used. As a result, although oscillator strengths im-
proved, they still greatly differed from experimental
values. This is associated with the "dip" of the 3d orbital
in Ca+ and its strong dependence on details in screening.
We also note that ab initio calculations of 4s -4s4p 'P os-
cillator strengths by Glass [36] with a full account of the
correlation between core and valence electrons give
values fL = 1.97, f&=1.76. This is much worse than our
present calculations and it indicates that at present the
usage of semiempirical core potential is more suitable.

More sensitive to correlation corrections are the au-
toionizing widths. Comparison with experimental data in
Table IV shows that our method yields a satisfactory ac-
curacy for the widths in the 'J' series, except for the per-
turber level 4p5s. Its width is very sensitive to the
configuration-mixing parameter, which in turn strongly
depends on the details of calculating the strong interac-
tion of the 4p5s state with the 3dnp series; e.g., on basis
size, adjustable parameters in V &, and on handling the
nonphysical states. Our method is somewhat unstable for
calculating the width of such states. Scott et al. [37]
computed the AIS 'P series of Ca using the R-matrix ap-
proach, which allows for configuration mixing and direct
inclusion of core polarization. These calculations are
much more laborious but do not lead to a considerable
improvement in comparison with our calculations, and in
some cases give even worse results. For example, the
width of the 4p5s state is five times narrower than the ex-
perimental value. On a balance we expect our widths to
be uncertain within a factor of 2.

In Table V we present the AIS parameters for Ca
below the 5s threshold that were used in calculations of
the resonance excitation cross section for the 4s-4p tran-
sition by the DM. Here only AIS's with total terms' S, ' P, ' D, and ' F were considered. No data for
direct comparison of obtained parameters exist, as far as
we know, though their accuracy can be assessed in analo-

gy with our discussion of the P series. In Table V posi-
tions and full widths of the AIS's along with relative
widths m, are given, which are defined as

XI i (5.2)

Because the orbital momentum I; of the electron scat-
tered in channel i cannot be observed (only the target
state can be) the values w,. are more useful than the par-

tial widths I
&
. Comparison of the values w, shows that it

is impossible to associate any dominant decay channel
with most AIS's. It is possible only to note some prefer-
ence of decay channels connected with the 4p level. In
Table V the coefficients C, of the dominant basis function
in a multicontiguration expansion (5.1) are presented, on
the basis of which the classification of AIS's was carried
out. As most values of C, are not sufficiently large, it is
evident that in these cases the classification in terms of
configurations is only for the sake of convenience.

VI. RESONANCE STRUCTURE

The scattering and AIS parameters calculated in previ-
ous chapters yield the resonance structure in the 4s-4p
cross section of Ca+ within the DM according to Eq.
(2.13). Such calculations were carried out in the energy
region from the 4p excitation threshold (0.231 Ry) up to
the nearest 5s level (0.475 Ry). Resonance contributions
were accounted for in all partial waves for L =0, 1,2, 3.
It should be noted that in practical applications the fol-
lowing equation is often used instead of relation (2.13):

(6.1)

which may be obtained, assuming that neighboring reso-
nances do not overlap, which is true for weakly interact-
ing resonances. However, the control calculations have
shown that for Ca+ these two expressions give very
different results in a number of cases, i.e., the assumption
is not justified, and therefore we have used expression
(2.13). Although the DM eliminates the AIS interaction
through the continuum, this interaction is partially ac-
counted for in Eq. (2.13) to the extent, for example, to
which different scattering channels in the unitarized
distorted-wave method couple in comparison with the
CCM.

For (2.13) one needs the energy dependence upon all
the quantities in (2.14)—(2.16). But unlike (2.13) with its
explicit strong energy dependence in the vicinity of reso-
nances they vary only very slowly with energy. Hence all
parameters in (2.14)—(2.16) were calculated at five equidis-
tantly spaced energies, as mentioned above, interpolating
them when calculating the resonance structure of the ex-
citation cross section on the fine-energy mesh of 0.001
eV. It shows the main advantage of the DM in compar-
ison with the CCM where it is necessary to perform
cumbersome calculations in every energy point.

The resonance excitation cross section of the transition
4s, &2-4p&&z in Ca is shown in Fig. 2. In Fig. 2 only
well-resolved resonances are shown. It follows from Fig.
2 that resonances lead to considerable changes in the
near-threshold region of cross sections. The resonance
structure differs greatly from that of the 6CC calculations
[8], where only broad resonances are seen, due likely to
the relatively large energy mesh (0.01 Ry). Good agree-
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TABLE V. Energies, total and partial widths and configuration mixing parameters of autoionizing states in Ca below the 5s
threshold.

Level

Ss2 1S

5sSp P
5s4d D
Ss4d 'D
5s5p 'P
4d5p F
4d''D
4d 'S
5s6s S
4dSp 'F
Ss6s S
4d5p P
4d5p P
Ss5d 'D
Ss5d 'D
Ss6p P
Ss4f 'I'
5s4f 'I'
Sp2 1D

5s6p P
Ss7s S
Ss7s 'S
4d6s D
4d6s 'D
5s5f 'I'
5s7p P
5s5f 'I'
5s66 D
5s7p P
5s6d 'D
4d4f 'F
5s8s S
4d6p P
Ss8s 'S
4d5d 'S
5p6s P
4d5d 'D
5s6f 'F
5s6f' F
5s8p P
4d4f 'F
Ss7d D
5s8p 'P
5s7d 'D
5p 'S
5s9s S
4d6p F
5s9s 'S
5s7f 'F
5s9p P
4d Sd. 'D
559p 'P
5s8d D
5s8d 1D

Ss7f 'F
4dSd S
Ss10s S
Ss8f 'F
4d4f 'P

E (eV)

3.689
4.276
4.336
4.394
4.611
4.948
4.971
4.984
5.110
5.118
5.255
S.280
5.340
5.431
5.437
S.454
5.513
5.651
5.664
5.666
5.711
5.754
5.799
5.819
5.836
5.854
5.876
5.882
S.887
5.922
5.961
5.980
5.982
S.998
5.998
6.013
6.026
6.042
6.048
6.055
6.063
6.063
6.069
6.069
6.075
6.130
6.137
6.141
6.158
6.171
6.171
6.174
6.177
6.183
6.195
6.217
6.223
6.233
6.223

6 (meV)

63.7
31.7
75.1

231.0
35.4
72.1

123.0
134.0

3.5
121.0
64.1

82.8
51.2
58.8
13.2
17.7
7.9

38.4
68.2
91.1
18.2
32.1

7.7
4.5
4.5
4.6
8.4

16.7
29.7
51.6
23.1

0.5
6.3

41.0
2.2

16.7
1.5
9.3

15.4
3.1

5.5
F 1
4.7

14.8
187.0

0.7
3.8
3.6
6.3
2.6

23.1

1.5
2.5

26.8
2.8
6.3
O.S

6.5
41.3

4sEI (%)

41.3
4.1

19.3
16.9
19.5
0.1

0.7
4.0

15.3
6.6

25.4
9.4

12.3
18.9
31.8
11.9
33.4
5.0
0.8

15.7
18.7
31.8

5.6
5.6

49.7
12.0
17.1
28.2
20.2
22.3
0.9

41.9
1.1

15.9
0.1

9.6
4.1

13.8
5.2
6.3
2.2

34.4
30.9
32.4

1.6
17.9
2.7

66.0
14.5
5.4
3.5

35.1

38.2
6.3

12.7
44. 1

20.8
9.7
7.5

3dEI (%)

52.1

30.9
19.2
8.2

24.6
37.0
53.0
41.5
0.6

35.5
41.5
34.2
30.5
9.5

15.2
32.2
13.5
28.1

22. 1

32.9
0.5

30.5
31.8
13.1
40.5
33.8
12.3
28.7
34.3
11.2
34.6
6.3

32.5
26.6
17.4
36.5
28.4
40.9
29.2
34.4
41.0
21.4
26.9
11.5
25.6
0.4

49.3
9.5

42.3
36.1

68.0
27.9
19.1
28.0
29.0

5.7
0.4

40.7
29.5

4pEI (%)

6.6
65.0
61.5
74.9
55.9
62.9
46.3
54.5
84.1

57.9
33.1
56.4
57.2
71.6
53.0
55.9
53.1

66.9
77.2
51.4
80.8
37.7
62.6
81.3
9.8

54.2
70.6
43.1

45.5
66.5
64.5
51.8
56.7
57.5
82.5
53.9
67.5
45.3
65.6
59.3
56.8
44.3
42.2
56.1

72.6
81.7
48.0
24.5
43.2
58.5
28.5
37.0
42.7
65.7
58.3
50.2
78.8
49.6
63.0

C (%)

87.8
84.9
84.2
77.7
71.3
76.5
77.8
61.8
93.7
52.5
89.0
80.2
24.4
92.5
92.4
91.6
81.5
61.3
56.1

62.3
97.4
95.1

71.5
41.3
78.5
97.1

75.6
80.8
83.9
43.9
60.4
88.3
50.0
91.2
71.0
39.7
88.9
83.2
73.7
98.1

41.2
97.7
84.0
97.1

32.8
99.2
39.6
89.6
92.0
95.9
59.5
94.4
99.1
66.6
72.7
65.7
99.5
91.6
23.0
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TABLE V. (Continued).

Level E (ev) G (meV) 4sEl (%%uo) 3dEl (%) 4pEl (%) c (%)

5s10p 'P
Ss 10p P
5s9p D
5s9d 'D
5ssf 'F
Ss 10s 5
4d4f 'P
5s9f 'F
5p6s P
5s9f 'F
4d6p 'F
4d7s D
4d6p 'P
4d7s 'D
4d5f 'F

6.237
6.245
6.250
6.251
6.253
6.261
6.263
6.296
6.322
6.329
6.365
6.373
6.374
6.387
6.421

8.5
0.4
1.4
4.3
3.8
7.2

10.3
12.5
2.2
7.7

11.1
8.6

14.0
26.3
23.3

8.0
42.0
40.0
28.6
16.1
0.6

11.7
6.4
0.9

17.8
9.0

13.4
26.0
17.9
0.9

31.5
27.7
17.1
7.4

18.0
21.7
27.2
35.2
25.9
15.9
15.3
33.3
29.3
10.3
16.7

60.5
30.3
42.9
64.0
65.9
77.7
61.2
58.4
68.5
66.3
75.7
53.3
50.7
71.8
82.4

67.4
9S.4
99.4
99.1

90.1

27.4
30.3
77.4
23.4
89.7
26.3
89.0
30.5
85.3
76.2

ment with the 6CC calculations was obtained only in the
region of the first maximum due to resonances with 5s5p
and Ss4d configurations (see Table V). One of the reasons
for this discrepancy is the difFerence of background cross
sections in the DM and 6CC calculations, as mentioned
above. The largest diIterences are observed in the region
above 5 eV, where according to the current resonance
structure calculations a broad 4d5p 'I' resonance dom-
inates, but the 6CC calculations show a destructive dip.
A similar situation is observed also in the region of the
5s6d and 5s7d resonances at energies between 5.8 and 5.9
eV. A more detailed analysis of the reasons for this
disagreement with 6CC calculations needs to examine the
partial cross sections.

In Fig. 3 the calculations are compared with experi-
mental data, where the 4s$/2 4p3/2 excitation cross sec-
tion is shown folded with the spread of a beam with a
half-width of 0.15 eV for our calculations and with a
half-width of 0.3 eV for the 6CC calculations. These

CD

~ ~, ~

Ca 4s -4p

half-widths are characteristic in the near-threshold region
for experimental measurements of Refs. [1] and [2]. Such
folding greatly reduces the average swing of resonances
in excitation cross sections, which lies within the error of
the experiments. Though in these experiments some faint
structure is observed, experimental errors do not allow
one to interpret it unambiguously. In the more elaborate
and precise measurements of Frontov [10] this resonance
structure is clearly resolved and a near-threshold cross
section greatly difFers from the previous experiments.
Somewhat doubtful is the rather large absolute value of
the excitation cross section obtained by Frontov in the
near-threshold region, as it considerably exceeds not only
our and the 6CC calculations, but also earlier measure-
ments, even by taking into account their errors. The ex-
perimentally measured resonance structure [10] agrees
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FIG. 2. Resonance structure in the excitation cross section of
the Ca+ 4p3/2 states: present results, DM model;———6CC results, Mitroy et al. (1988); ——.—., present re-
sults, nonresonant 3CC model.
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FIG. 3. Comparison of the theoretical excitation cross sec-
tion of the Ca+ 4p3/2 state convoluted over the energy resolu-
tion function with experimental data: —,present results,
convoluted with an energy resolution width of 0.15 eV; ———,
6CC results of Mitroy et al., convoluted with a width of 0.3 eV.
The experimental data of Refs. [1,2, 10] are depicted as X, o,
and 0, respectively; . - . , digital processing of the experimen-
tal data of Frontov (1985).
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qualitatively with current calculations and 6CC calcula-
tions only in the region above 4 eV. According to our
calculations, as shown in Table V, there is only one reso-
nance Ss 'S in the threshold region, which could not lead
to such a sharp resonance structure because of the weak-
ness of the 'S partial wave. Nor do calculations by Mi-
troy et al. [8] confirm the existence of a dominant max-
imum at the 4s-4p excitation threshold. This maximum
is not the result of AIS inhuence but is caused perhaps by
a sharp increase of the direct nonresonance excitation
cross section in a threshold, decreasing as energy goes up.
Such behavior is probably due to the interaction of the
projectile electron with the core. This maximum is seen
also, though it is less noticeable, in scattering by Mg+
[41], and is very clearly seen in the case of scattering by
Sr+ [42] and Ba+ [43], i.e., it is enhanced with an in-
crease of the core.

obtain the detailed characteristics of the process of
scattering and AIS's. These characteristics may then be
used for calculating other scattering processes, e.g. , pho-
toionization of the Ca atom.

These calculations and those of Mitroy et al. [8] and
Zatsarinny [9] completely resolve the large discrepancy
between theoretical and experimental resonant excitation
cross sections of heavy alkaline-earth ions in the near-
threshold region that are caused by core polarization.
Nevertheless, considerable difhculties remain in modeling
the resonance structure in experimental measurements by
Frontov [10]; details of the interaction of the projectile
electron with a many-electron core are not described fully
adequately within the model of simple semiempirical po-
larization core potential. It would be desirable to carry
out further investigations that are both theoretical and
experimental.
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We have calculated the 4s-4p excitation cross sections
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