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The transition amplitude for the inelastic scattering of a photon from a system of bound charged parti-
cles, with a single charge ejected, behaves at low-energy end of the scattered-photon spectrum as the in-
verse of the energy and is proportional to the on-shell matrix element corresponding to the process in
which the soft photon is absent. The next term in the expansion in powers of the energy of the soft pho-
ton is derived here, and is expressed in terms of the same single-photon absorption amplitude. The
correction takes the form of first-order momentum shifts in the arguments of the absorption amplitude;
they enter in such a way as to leave this amplitude on the energy shell. This result is precisely what
would be expected by analogy with Low’s theorem [Phys. Rev. 110, 974 (1958)] on spontaneous brems-
strahlung. A nonrelativistic version of the theorem on bound-state Compton scattering is obtained
through an asymptotic analysis of the configuration-space matrix element for this process, with the effect
of a long-range Coulomb tail accounted for. Relativistic versions are derived as well, appropriate to par-
ticles of zero spin, and with spin effects included, based on the same type of gauge-invariance argument
employed by Low. Analogous results are obtained from an external-field formulation in the weak-field
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limit.

PACS number(s): 32.80.Cy, 32.80.Fb, 03.80.+r

I. INTRODUCTION

An exact analytic calculation of the cross section for
nonrelativistic Compton-type inelastic scattering of pho-
tons by electrons bound in the ground state of a hydro-
genlike atom was performed some years ago by Gavrila
[1]. One of the results of this calculation was a
verification that (as expected on general grounds) the
transition amplitude behaves for low energies of the scat-
tered photon as the inverse of the energy and is propor-
tional to the matrix element in which the soft photon is
absent—in the case considered the radiationless process
is that of photoionization. Numerical computations [2]
appropriate to a wider class of potentials (as required for
the interpretation of several recent experiments [3]) have
confirmed this infrared behavior. For potentials of finite
range, such as that experienced by an electron originally
bound to a neutral atom, one would expect that the next
term in the expansion, of zeroth order in the energy of
the scattered photon, could be determined as well, in
terms of the physical (on-shell) photodetachment ampli-
tude. This expectation is based on the analogy with the
single-photon bremsstrahlung process and the very gen-
eral type of argument used by Low [4] in his derivation of
a soft-photon approximation for radiation accompanying
the scattering of a charged particle by a neutral particle.
If the target atom is neutral the ejected electron moves in
a Coulomb potential asymptotically. This results in a
modification of the soft-photon energy dependence and
here too one can anticipate the form of this modification
since the analogous low-frequency approximation for
bremsstrahlung in a potential with a long-range Coulomb
tail has been derived [S5]. Here we derive two versions of
the soft-photon approximation for bound-state Compton
scattering. One approach, closely related to the treat-
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ment of the bremsstrahlung problem employed in Ref.
[5], is based on an asymptotic evaluation of the nonrela-
tivistic configuration-space matrix element. The in-
clusion of long-range Coulomb effects is straightforward
in this method since the modification of the asymptotic
form of the continuum-wave function in the presence of a
Coulomb tail is known. The second derivation is more in
line with Low’s approach, in that it makes use of gauge
invariance in the context of a relativistic formulation,
with long-range Coulomb effects ignored.

It may be of interest to point out the relationship be-
tween the treatment of this problem in terms of inelastic
photon scattering and an alternative picture based on an
analysis of photodetachment in the presence of a low-
frequency external field. The connection can be made by
taking the weak-field limit of the low-frequency approxi-
mation obtained [6] (nonrelativistically) for the external-
field problem. A relativistic version of this connection is
derived in Sec. IV, below.

II. NONRELATIVISTIC TREATMENT

We consider the scattering of a photon from an atomic
system, initially in state |¢) with energy E,, leading to
the ejection of an electron into the continuum state
|p'™’) characterized by the energy E,, asymptotic
momentum p, and incoming-wave boundary conditions.
The frequency, momentum, and polarization of the in-
cident and scattered photons are represented as w,k,A;,
and w,,k,,A,, respectively. The matrix element for this
process, in lowest nonvanishing order of perturbation
theory, may be expressed, in units with =1, as

7283 ©1991 The American Physical Society



7284

LEONARD ROSENBERG AND FEI ZHOU

I®

T(p,wyky, A1, ky, A1) ={p' 71 (@), —kp, A))Go(Eg+ 0 ) (@, k1, A1) )
+(p' (@}, k1, A)Go(Eg— )1 (@;, —kyp, A,) )

et

2

2mc?
Cl)]a)zV

2mc

The Green’s function Gy(E ) for the atomic system in the
absence of the field satisfies the resolvent equation

along with outgoing-wave boundary conditions. To keep
notation reasonably condensed we have introduced, in
Eq. (2.1), the interaction operator

1/2

¢ A-Pexp(ik-R),

Iok,A)=———
mc

2mc

ol (2.3)

where V is the quantization volume. P and R represent
the momentum and position operators, respectively, of
the electron. (For simplicity we assume that only a single
electron is active.) The energy conservation condition is
Eyto,=E,+o,.

We now make the substitution

P:_lm[R,Ho]

in Eq. (2.1). The action of the Hamiltonian is taken into
account with the aid of Eq. (2.2) along with the eigenval-
ue equations

(Ho—E,)l¢)=0, (Hy—E,)lp'™")=0.

(2.4)

(2.5)

After some algebra one finds that Eq. (2.1) may be put in
the alternative form

T=(p' " [I(@; —kp,A,)Go(Eo+ oI, ki, A )|¢)
+<P(_)|T(a)1:k1ykl)GO(EO_“’Z)T(C‘)Z’ —kyA)le)

(2.6)
The transformed interaction operator is defined as
172
2
T(w,k,A)= __e |2mc”
mc | oV
X (—im ) we*RA-R+A-R[Hy,e®R]) . 2.7

Note that the last term in Eq. (2.1), arising from the 42
contribution to the interaction, has canceled in the pas-
sage to Eq. (2.6). It should also be noted that a similar
transformation can be performed on the single-photon
bound-free and free-free transition amplitudes. Thus the
amplitude for ionization with the absorption of a single
photon is given by

t(p;w,k,A)=(p' 7 |I(w,k,A)|¢)={(p' |T(w,k,A)|¢) ,
(2.8)

with E,=E;+w; the second form is obtained from the
first by making the replacement (2.4) and using the
Schrédinger equations (2.5).

Equation (2.6) provides a convenient starting point for
the derivation of a low-frequency approximation in which

A {p ) expli(k,—k,)-R]|$) .

(2.1)

[

terms of order w, and higher are ignored. We begin by
observing that the second term in Eq. (2.6) makes no con-
tribution to such an approximation since it is proportion-
al to the soft-photon frequency, with a coefficient in the
form of an integral that is finite in the zero-frequency lim-
it. Indeed, a divergence in that limit could only arise
from the asymptotic domain in the six-dimensional
configuration space. The presence of the bound-state
wave function ¢(r’) ensures convergence in three of these
variables. Convergence in the remaining variables is
guaranteed by the fact that the Green’s function
(r|Gy(Ey—w,)|r’') decays exponentially in r since the
energy E,—w, lies below the ionization threshold. An
extension of this type of analysis is useful in evaluating
the first term in Eq. (2.6) to the required accuracy. The
integral appearing there is singular in the limit ©,—0,
and the singular contribution may be determined by in-
serting the asymptotic forms of both the Green’s function
and of the final-state continuum-wave function {p'~’|r)
for r — . Assuming for the moment that the potential
is of short range, the integral of interest will contain
terms behaving as (w,) "% and (w,) . To correctly evalu-
ate these contributions one must include the first fwo
terms in the asymptotic expansions of both the wave
function and Green’s function. The effect of a Coulomb
tail is simply to modify the asymptotic behavior of the
two functions in a known manner, with the result that
terms appear that depend logarithmically on the frequen-
cy and are explicitly calculable. The integral to be evalu-
ated by this asymptotic procedure is of the form that ap-
pears as part of the bremsstrahlung matrix element. We
will therefore be able to make use of an earlier derivation
of a soft-photon approximation for nonrelativistic
Coulomb bremsstrahlung [5], and this simplifies the
present task considerably.

We suppose that the potential experienced by the elec-
tron at great distances is of the form V(r)~Ze?/r. The
partial-wave continuum function for scattering in such a
potential may be expressed as a superposition of
incoming- and outgoing-wave components; the first two
terms in the asymptotic expansions of each of these com-
ponents are known [7]. The asymptotic form of the
Green’s function for each partial wave is then deter-
mined, and a formal summation over partial waves leads
to the form

lim (r|Gy(Ey|r')=— -i—:_i (2m)3%r ~leiar(2gr) "
r—> 00
n __L2+n2 (=)ot
X 1+2qr 2iar (q'7Ir') .
(2.9)
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Here n=2Ze?m /q is the Sommerfeld parameter, q is a
vector in the direction of r, with ¢2/2m =w,+p?/2m,
and L=R XP is the angular momentum.

The asymptotic form of the final-state wave function
may be determined in a similar way. Actually, it is only
the incoming-wave component that is required here since
the component behaving as an outgoing wave at infinity
gives rise to an integral that is not singular in the zero-
frequency limit and may therefore be ignored according
to the calculational procedure outlined above. [Near
singularities arise when the integrand is very slowly vary-
ing at infinity and this requires a near cancellation of ex-
ponential phase factors. For this to occur the outgoing
wave shown in Eq. (2.9) must be combined with an in-
coming wave.] The incoming wave behaves asymptoti-
cally as

lim {p'7|r),, =(27r)_3/2£7fie_ip’(2pr)i"'
r—o pr
n' , L?>+n"?
X8(Q,— Q) [1— 24 T
(€, P) 2pr 2ipr

(2.10)

with n'=Ze?m /p. The presence of the two-dimensional
6 function simplifies the evaluation of the matrix element;
the angular integration may be carried out immediately,
fixing the direction of r to lie along the vector p.

The evaluation of the integral appearing in the first
term of Eq. (2.6) is facilitated by the introduction of a
multipole expansion for the interaction operator
I(w,, —k,,A,), with only the electric-dipole, magnetic-
dipole, and electric-quadrupole terms retained; omission
of higher-order multipoles is justified since they give rise
to corrections of order (v /c)?. In this approximation the
interaction operator becomes

172
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How,—k,A)=

iTew}\,-R—i-ikXA-
+ -2 o(k-R)A-R) ] . @11
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Radial integrations extend over a domain r > r,, with ro
taken to be large enough to justify the neglect of the
short-range component of the scattering potential in the
construction of the asymptotic solutions shown in Egs.
(2.9) and (2.10). In practice we may extend the integra-
tion down to the origin since the contribution from the
domain r <r, is nonsingular in the zero-frequency limit
and, as explained above, such contributions are of higher
order than those to be retained in the low-frequency ap-
proximation. All of the radial integrals which appear
may then be evaluated in terms of the I'" function. For
example, one of the integrals [8] is of the form

S 7 e 2gr T pryTdr = —itq—p)] 'B(p,q) ,

(2.12)
with
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B(p,q)=e " In=nln2 lp=ql L
2q q
XT(1—i(n—n")) . (2.13)

Since at this point the details of the calculation are identi-
cal to those summarized in Ref. [5], we do not enter into
them here. We state the final result, for the case of linear
polarization where the expression takes on a relatively
simple form, as

T(p, w5, ky Ay; 0,1k, A )

e [2me? 1/2
T
=—— B(p,q)(1+in'p: 2
me | o,V (p,g)1+in'p-k,/p*?)
Ap
wz'—k2°p/m t(ps,w]kl,i\.l)
+0(w,; Inw,) . (2.14)

Here ¢ is the photoionization amplitude defined in Eq.
(2.8), and g =p,, with the shifted momentum p, given by
ma,—k,p
=p+k,tA,———— 2.15
Ps=PTKy T4, A, p ( )
The relation (p,)?*/2m =p?/2m +w,, correct to first or-
der, places the ¢ matrix on the energy shell. The factor
B(p,q) contains modifications associated with the
Coulomb tail. Thus for a short-range potential the ap-
proximation contains terms of order (®,)” ! and (®,)°
whereas the low-frequency limit of the approximation
(2.14) includes, in addition, terms of order lnw, and
@, In’w,. The form of Eq. (2.14) in the zero-frequency
limit is consistent with that obtained by Gavrila [1], in
the same limit, for the pure Coulomb potential.

III. RELATIVISTIC TREATMENT

A. Spin-zero particles

To account for relativistic effects one could modify the
calculation of Sec. II through the use of (single-electron)
relativistic wave functions and propagators. Here we de-
scribe a quite different procedure, introduced by Low [4]
in a slightly different connection, based on the very gen-
eral considerations of gauge invariance and analyticity.
We first consider the inelastic scattering of a photon of
4-momentum k; and polarization A; from a composite
system of spin zero, mass m, and charge e, with initial
momentum ¢,. This system dissociates into a spin-zero
“electron” of mass m, charge e, and momentum p, along
with a neutral, spin-zero particle of momentum g, and
mass m,. (Spin effects are treated in Sec. III B.) In the
process a soft photon of momentum k, and polarization
A, is emitted. The conditions A,-k,=A;-k; =0 are as-
sumed to hold, and each particle is taken to be on its
mass shell. (Here a-b=ayb,—a-b.) We denote the am-
plitude for this inelastic photon scattering process as
A,M and we wish to relate it to the on-shell amplitude
t(p,q2;91,k{,A ) for the process in which no soft photon
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is radiated. During the course of the derivation we will
treat this amplitude as a function of the scalar variables

=(g,—q1)% &=k, E=Arq .

In this way the mass-shell constraints on the momentum
variables are easily accounted for.

Let M, represent the contribution to M in which the
soft photon has been emitted either before or after the
dissociation process, so that it contains the correct singu-
lar behavior in the zero-frequency limit. This leaves
some freedom in the manner in which it is continued
away from the singularity. The most convenient choice
[9] is to express M, in terms of the on-shell matrix

t(v,m,&',€&) as
_ (2p+ky)
“ 2p-k,

v=p-q; M

tivtkyqy,n, & +Aiky,E)

(v,m+2( )k, E— Aok )(2q1—k2)
_t s —_— . . , — . —_———
v,n UL’ SRALY) 1752 2q,k,

(3.1)

We introduce a series expansion of the 7 matrix about
k,=0, discarding terms that contribute to M to first or-
der in k,. We then add a term M,, independent of k,,
chosen in such a way that gauge invariance, in the form
ky (M,+M,)=0, is satisfied. It follows [4] that the
remainder R =M — M, — M, is of order k,. With deriva-
tives of the ¢ matrix evaluated at k, =0, this construction
provides us with the soft-photon approximation

(2p+k,) (2g,—k,) ,
= - t 1S »
M,+M, ks 245, (v,n,8",8)
g,k ot g,k at
+ — —_—— -2 -
pp-k2 q2 v ql‘h‘kz q; an
Arky ot q Ayky ot _@i+ at
pky, 3 Tlqk, 98 TV |9E  dg
(3.2)

This result may be expressed in a more compact form in
terms of the shifted momenta

P 'kz ql 'k2
ps=p Tk, kzp-kz’ 915 — 49 kz"')‘qu.kz :
Each of these momenta is on its mass shell to first order
in the soft-photon energy. Reverting to the original nota-
tion in which the ¢ matrix is written in terms of the mo-
menta rather than the scalar variables, but with the un-
derstanding that it is actually defined by the values of
these scalar variables, we have, assuming the polarization
vectors to be real,

(3.3)

PA,
. +M,)=—=t
Ay (M, +M,) o

—t(p’qz;‘hs’kl’kl)

(pyql;ql’kl’)\[)
IR

—_—. (3.4)
gk

(The second term accounts for radiation by the recoiling
target.) The correspondence between this result and the
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approximation (2.14), appropriate to the case where there
is no Coulomb tail, is easily established by taking the
nonrelativistic limit of the expression shown in Eq. (3.4),
adopting the Coulomb gauge, and working in the labora-
tory reference frame with target recoil ignored.

B. Spin-1 charged particles

We now consider the case in which the charged parti-
cles have spin 1. Following the procedure established
above we begin by identifying the component of the tran-
sition amplitude containing the infrared singularity as
M,=w(p)y(g+¥K,—m )_IF(V+k2'QZ’n’§’+}"1'k2»§)

Xu(g)+m(p)Flv,n+2(g,—q1)ky,§,E—Ay°ky)
X (g, —K,—m) yulqy) . (3.5)

Here we use the notation [10] =1y -p, where v is the 4
vector of Dirac matrices, and (setting ¢ =1) we have in-
troduced spinors satisfying

W(p)p—m)=0, (¢,—m,)u(g,)=0. (3.6)

The photodissociation amplitude has been expressed as

Hp,g2;91,K1,A1)

=m(p)F(p-q,,(qg,—q,)%p g Aulgy) . (3.7)

To the singular contribution shown in Eq. (3.5) we add
the amplitude

_ _, OF , |OF  OF
Mb_w(p) q2 av }\’1 aé— aé«l
oF
2y —ar)g - |ulan) (3.8)
With the aid of the relations
T(p)k,(p—¥K,—m) '=w(p),
(3.9)

(41—-k‘2—m1)_1k‘2u(q1)=—u(q1) 8

one readily verifies that gauge invariance, in the form
k,-(M,+M,)=0, is satisfied by the approximate ampli-
tude M, + M,; it follows that the remainder is of first or-
derin k,.

The soft-photon approximation is conveniently ex-
pressed in terms of the shifted momenta introduced in
Eq. (3.3). Further simplification is obtained by rationaliz-
ing the propagators in Eq. (3.5) and using the Dirac equa-
tion to write

ﬂ+k2+m _p‘}\.z _

XK,
= 7] —_
2p-k, pk,

2p-A,

] . (3.10)

We may now make the identification

XK,

1+
2p-A,

w(p) =w(p,) , (3.11)

since both spinors satisfy the same Dirac equation—the
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first of Egs. (3.6)—and, by virtue of the relation
A,k, =0, the same normalization condition. Similarly,
we have

41_k2+m1Xu(q = |1— KX, ulq )‘11'7L2
2q,°k, g ! 2g;-A, ! q,°k,
q:1Ay
=u(q) s (3.12)
7 q:°k,
where we used
X
2h2
— — =0, 3.13
(fs—my) |1 24, u(g,)=0 (3.13)

and the equality of normalizations to establish the second
equality in Eq. (3.12). In this notation the soft-photon
approximation takes on the same form as that shown in
Eq. (3.4) for the spin-zero case, with the dissociation am-
plitude reinterpreted according to the defining relation
(3.7).

IV. EXTERNAL-FIELD APPROACH

A variational method has been applied [6] to the study
of a bound-free transition in an external (classical) field
consisting of two components, one weak and of frequency
well above that required for ionization, and the other in-
tense and of low frequency. Here we outline a relativistic
extension of that method and show that the variational
approximation reduces, in the weak-coupling limit of the
low-frequency field, to the soft-photon approximation ob-
tained above for the bound-state Compton amplitude.
This is the expected result since the effect of the intense
field on the ejected electron is accounted for by a distort-
ed (Volkov [11]) wave which may be thought of as arising
from the summation of the perturbation expansion of the
propagator of the electron in the field. The result pro-
vides a connection between spontaneous and stimulated
radiative processes which may be of some interest and for
this reason we have included the following alternative
derivation of the soft-photon approximation.

Consider a Dirac electron described by the Hamiltoni-
an

H=a(—iV—eA)+Bm+V, (4.1)

with the potential ¥ assumed here to be of short range for
simplicity. The 4-vector potential (in the Coulomb
gauge) is (0, A) with

A(x)= A cos(kx)+ A,cos(k,x), (4.2)

where the subscripts 1 and 2 refer, respectively, to the
high- and low-frequency fields, and x is the 4 vector (¢,r).
The electron makes a transition from an initial (field-free)
bound state ¢(r) with energy E to a final state u;,_’(r)
with momentum p and energy E,. A variational expres-
sion for the S matrix element for this transition is given
by
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sei [ @t (w001 [ H—i [olx) . @.3)

The trial functions are chosen in close analogy with the
functions introduced in Ref. [6]. Thus we take

Wo(x )= exp(—iEyt +ie A-r)p(r) . (4.4)

In the approximation that terms of second order in 4,
and of first order in w, are ignored we find that, with
7=k, X,

H—i2

a1 W,(x)=exp(—iEyt+ie A, rcosT)

X[—e(w;—a-ky) A rsink;-x ]o(r) .
4.5)

Since the weak-field amplitude A, enters linearly in this
expression the effect of this field may be ignored in the
construction of the final-state trial function. This func-
tion is chosen as a relativistic generalization [12] of that
introduced some time ago by Kroll and Watson [13] in
their (nonvariational) treatment of scattering in a low-
frequency field. It has the form

W7 (x)= exp[ —iE,t +ie AyrcosT—i®(x)]u ().

(4.6)
Here we have defined the shifted momentum
p(r)=p—e A,cost+k,I, , 4.7)
with
I(r)= Zklz.p[——2ep-Azcos7'+e2A%cos2(T)] . (4.8)
The phase function in Eq. (4.6) is
®(x)= [, ()d7 +kyrl, (7). 4.9)

The term in Eq. (4.8) that is quadratic in the vector po-
tential will be ignored since it contributes to two-photon
processes (and to the ponderomotive level shift) and we
are ultimately concerned with the transition in which a
single soft photon is emitted in the weak-coupling limit.
With this simplification the phase function reduces to

®(x )= —p(sint+Kk, rcosr) , (4.10)
with
ep-A,
=—, (4.11)
P Pk,
and the shifted momentum becomes p(7)=p

—e A,cosT—k,pcosT. An examination of the formal
expression for the error in the variational approximation
shows that with the above choice of trial functions it is of
first order in w,. (An estimate of the coefficient of w, in
this error term can be obtained following the procedure
of Ref. [6]; however, this is unnecessary for our present
purposes and we shall not pursue it further.)
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The scalar product k,-r may be treated as a quantity of
first order since it appears in the convergent spatial in-
tegral shown in Eq. (4.3). Accordingly, we may replace
the factor sint+k,-r cost in Eq. (4.10) by sinw,t. Similar
reasoning allows us to replace the shifted momentum
p(7) by p(w,t). In calculating the time integral in Eq.
(4.3) we encounter terms corresponding to both the ab-
sorption and emission of a photon of frequency ;. Since
we are interested in the former term we may replace
sink,-x by (i /2)exp(—ik,-x). The variational approxi-
mation then becomes

SEifjo dtexp[i(E,—Ey—w;)t]

Xexp(—ip sinw,t )D(p(w,t)) , (4.12)

where (with notation altered to avoid confusion with the
time variable t)

D(p)zfdr[u;—’(r)]*%(wl—a-kl)AI.rexp(ikl-rm(r)

(4.13)

represents the (off-shell) photodetachment amplitude. [It
is a simple matter to identify this amplitude with the ma-
trix element of the interaction —ea- A, exp(ik;-r) that
arises in standard first-order perturbation theory.] The
time integration in Eq. (4.12) may be carried out by first
introducing the expansions, valid in the weak-coupling
limit,

exp(—ipsinw,t)=1—ipsinw,t , (4.14a)

D(p(wyt))=D(p)+(—e Ay—k,p)cosw,t-V,D(p) .
(4.14b)

Since we are interested in the emission of a soft photon
we may make the replacements

. . 1 .
cosw,t — 1 expiwyt, sinw,t— 2 expiw,t .
Gathering terms of the appropriate order we arrive at the
soft-photon approximation [14]

. ep-A,
Sf—"’_=—ZWIS(EP—EO—G)I‘FCDZ)WD(pS) .. (4.15)
The shifted momentum is
-k
p.=p-+k,+ A, 2 (4.16)

p-A, ’

which places the photodetachment amplitude D on the
energy sheil. The result shown in Eq. (4.15) provides the
sought-for relationship between the external-field treat-
ment of the bound-state Compton process and that ob-
tained earlier in terms of the standard photon scattering
picture. A nonrelativistic version of this relationship fol-
lows from the weak-field limit of the low-frequency ap-
proximtion given in Eq. (2.22) of Ref. [6].

V. DISCUSSION

The soft-photon approximation, first derived by Low
[4] for bremsstrahlung and then extended by others to

LEONARD ROSENBERG AND FEI ZHOU 44

treat a number of different processes involving low-
frequency radiation, provides an accurate representation
of the transition amplitude, in analytic form. It is essen-
tially model independent, requiring as input the physical
amplitude for the transition taking place with no soft-
photon emission. The fact that only the on-shell ampli-
tude is required is rather remarkable since it is not only
the dominant, nearly singular, term in the low-frequency
expansion that is obtained but the next term as well.
While applicable to only a limited portion of the spec-
trum, its predictions can provide useful reference points
for more extensive calculations based on specific models
[1,2].

We have outlined three quite different methods for the
development of soft-photon approximations for inelastic
photon scattering from bound electrons, each with its
own advantages and limitations. In the procedure of Sec.
IT the calculation was reduced to the evaluation of an in-
tegral of the same form that arises in the analysis of low-
frequency bremsstrahlung. This enables us to make use
of a method developed earlier for treatment of that pro-
cess [5], based on the fact that for small energy transfer
to the field the main contribution to the integral comes
from the asymptotic domain of configuration space. This
method has the advantage that long-range Coulomb
effects can be accounted for by introducing the known
Coulomb modifications of the asymptotic forms of the
continuum wave function and Green’s function. In Sec.
III a variant of Low’s treatment of bremsstrahlung, based
on gauge invariance and analyticity in the context of a
relativistic formulation, was applied to the photon
scattering problem. While otherwise impressive in its
generality, the method cannot be applied to the ioniza-
tion of a neutral target; the analyticity assumption breaks
down in such cases as evidenced by the appearance of
terms in the low-frequency approximation derived in Sec.
II (see also Ref. [1]) which depend logarithmically on the
frequency. A third method, described in Sec. IV, is based
on the assumption that the spontaneous emission process
of interest here may be obtained from the amplitude for
ionization in the presence of an external low-frequency
field by taking the weak-field limit. This turns out to be
the case, as seen by comparison of the result with those
derived earlier, in Secs. II and III, from the photon
scattering picture. A variational procedure, a relativistic
extension of a method described in much greater detail
elsewhere [6], was used to derive the low-frequency ap-
proximation for ionization in the presence of an external
field. We remark, in conclusion, that the different tech-
niques used here in the derivation of the soft-photon ap-
proximation are united by the concept of gauge invari-
ance. This concept is used most directly in Low’s method
as applied in Sec. III. It should be noted, however, that
an essential feature of each of the other two calculations
is a transformation of the electron-field interaction from
the “velocity” gauge to the “length” gauge, and this is
justified, ultimately, by the invariance of the theory under
such transformations.
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