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Electron-ion collisions by the R-matrix method with multichannel quantum-defect theory
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Collisions are treated by a method that has been very successful in calculating atomic spectra. Results
of electron collisions with Be+, Mg+, and Ca+ are presented, showing extensive series of double excita-
tion resonances of the collision complex. Convergence of the results to the limit of peripheral collisions,
where the Born approximation holds, is displayed. Cross sections of optically allowed and forbidden ex-
citations are evaluated, including cascade effects and distributions in the scattering angle. The polariza-
tion of emissions from the excited target is calculated successfully.

PACS number(s): 34.10.+x, 34.50.Fa, 34.90.+q

I. INTRODUCTION

Collisions of a projectile (electron, proton, etc.) with a
target (ion, atom, molecule, etc) may have an impact pa-
rameter comparable to, or much larger than, the target
size. These alternative physical circumstances may be ex-
plored by different treatments. In peripheral collisions
(with large impact parameters), the projectile fails to
penetrate the target, thus remaining distinct from it. The
absence of correlations between projectile and target
affords simpler treatments, such as the Born approxima-
tion. A more elaborate treatment is required when pro-
jectile and target intermingle in a single collision complex.
The main contribution of this paper consists of develop-
ing and applying a treatment of the collision complex.
Earlier papers have indicated how to combine separate
treatments [1] of the complex and of peripheral collisions
and also how to sort out corresponding experimental data
[2]. The treatment of peripheral collisions in the
Coulomb-Born approximation has required a lesser effort.

Our treatment of the collision complex formed at short
impact parameters demonstrates its convergence to the
results of a simpler Born approximation for increasing
values of the orbital quantum number [3]. It deals
specifically with electron-ion collisions, but its method
can be extended to collisions of atoms, molecules, and
particles with a similar transition from collision complex
to peripheral processes.

The present treatment of a collision complex combines
the eigenchannel R-matrix approach [4] with the mul-
tichannel quantum-defect theory (MQDT) [5,6] in a
manner that has proved very successful in describing op-
tical spectra of atoms to spectroscopic accuracy [7—10],
but has not been utilized previously for collisions. This
extended application requires separate calculations for a
larger set of orbital momenta and inclusion of a larger set
of channels for each orbital momentum. We have now
applied this approach to low-energy ( 5 13 eV) electron-
ion collisions, where strong correlations between projec-
tile and target electrons occur in a transient collision
complex. The incident electron and the target electrons
to be excited are treated on equal footing, being subjected

to the same potential from the target core.
Electron collisions with monovalent ions

(Be+,Mg+, Ca+) were chosen for this study as counter-
parts to the two-electron spectroscopy of alkaline-earth
elements [7,8]. Extension to multielectron open shells
may proceed in the future together with the spectroscopy
of neutral atoms. Extension of electron —neutral-atom
collisions will similarly fit into MQDT procedures, as
well be discussed in Sec. IV.

This approach affords a systematic and comprehensive
treatment of the prominent and complicated series of
double excitation states of the collision complex. It yields
not only cross-section information but also a rich variety
of valuable and detailed structure information on the col-
lision complex as well as on other processes such as
dielectric recombination. Fragmentary evidence of
double-excitation series had emerged in earlier experi-
ments [11—14] as well as in theoretical calculations by
close coupling [15,16], the diagonalization method [17],
and other familiar procedures [18,19], but MQDT will
prove particularly apt to bring out its extensive details.
A comparison of the performance of our approach with
that of close coupling and other advanced procedure will
be presented in Sec. IV. This paper presents studies of
electron-impact excitation of Be+, Mg+, and Ca+, with
particular emphasis on the first optical resonance transi-
tion in the target ions, namely Be+(2s ~2p),
Mg+(3s ~3p ), and Ca+(4s ~4p).

Evaluation of a collision cross section requires, in prin-
ciple, an infinite number of partial waves. However, no
elaborate treatment is needed for the contributions from
high partial waves (here L )7) for which the projectile
remains peripheral, failing to traverse the target and
hence to correlate with target electrons. These contribu-
tions may, however, be provided adequately by a Born
approximation. An important aspect of this work
displays quantitatively the convergence of the results of
the elaborate treatment to those of the Born approxima-
tion. The Coulomb-Born approximation [20] is actually
adopted in this work to evaluate the high partial waves
because the projectile electron is always under the
inhuence of the Coulomb field from the target ion. This
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convergence has been found to hold within a few percent
in I. )7 for e +Be+, Mg+, and Ca at energies ~ 13 eV.

The MQDT treatment of R matrices for each set
(LS~) provides, in principle, the elastic and inelastic
cross sections for all the transitions between target states
accessible in the energy range studied. It includes the
orientation and alignment parameters observed through
the polarization of optical emissions [21,22]. Experimen-
tal evidence consists mainly of photoemission cross sec-
tions [13,14,23], which include cascade contributions, and
polarizations. These contributions are readily sorted out
from our calculations and unraveled from experiments.

Section II reviews the theory and the calculation ar-
rangements for the noniterative eigenchannel R-matrix
approach with MQDT. The original R-matrix theory of
Wigner and Eisenbud [24] has been widely used to deal
with strong electron correlations in atomic and molecular
physics [18,19]. The eigenchannel R-matrix method is an
alternative approach introduced in atomic theory by
Fano and Lee [4]. A variational noniterative reformula-
tion by Greene of the eigenehannel R-matrix method has
greatly improved its efficiency [25,26]. When combined
with analytical MQDT, it provides a successful descrip-
tion of the complicated atomic spectrum observed,
demonstrated through numerous applications to atomic
and negative ions in the past few years [7—10].

In Sec. III, extensive results are presented and com-
pared with the existing experimental data [11—14,23] as
well as with other theoretical results [15—19]. Notable
discrepancies exist between experimental data and some
earlier theoretical predictions. For instance, there is a
long-standing —15% discrepancy of the experimental
cross section in e +Be+(2s ~2p) [23] as compared to the
theoretical results (even with the most advanced close-
coupling calculation by Mitroy and Norcross [27]). Our
treatment improves the results and shows the series of
double excitation resonance that are not resolved in the
experiment. It proves that correct evaluation of contri-
butions from low partial waves (L ~7) are essential for
obtaining good cross-section results. These contributions
make up more than 90% and —80% of the total cross
sections for low and high portions of the energy range
studied.

The convergence of the results by the R matrix with
MQDT to those by the Coulomb-Born approximation is
displayed quantitatively. Excitation cross sections to
higher levels by electron impact are also sorted out sys-
tematically and their contributions to the observed pho-
toemission cross section by cascade are evaluated. Angu-
lar distributions of the scattered electrons are presented
here, especially near the double excitation energies. Thus
far no such experimental data are available, but our re-
sults may provide useful information for future measure-
ments. Polarizations of the excited target decays are
evaluated and agree well with experiments [13,14,23].

Section IV contains discussions of the comparisons of
our calculations with other advanced procedures (distort-
ed wave, close coupling, diagonalization method, etc.),
focusing on analysis of the physical reasons for their
differences. Further applications accessible within the
frame of the present work are noted, outlining the exten-

sion of the current approach to other processes. Limita-
tions of this treatment are also commented upon.

II. THEORY

A. R-matrix calculation and eigenchannels

The R-matrix method enables one to evaluate observ-
able effects of complicated short-range correlations
among the electrons within a finite space volume V
without analyzing their origin. Outside the surface S of
this reaction volume V, correlations are usually disre-
garded. A noniterative formulation of the eigenchannel
R-matrix method and of its implications for atomic spec-
tra accounting analytically for phenomena external to V
has been discussed in detail by Greene et al. [7—10]. A
later "streamlined" version [28] of this formulation is uti-
lized in the present study.

In this work, where electron collisions with alkaline-
earth-metal ions are studied, the Hamiltonian for the col-
lision system is represented adequately below the two-
electron ionization threshold, in the a.u. form [29],

H =h (r, )+h(r2)+ 1

r&2

In Eq. (1), the incident electron and the valence electron
of the target are treated equivalently. The effective one-
electron Hamiltonian h (r) consists of the electron kinetic
energy —

—,
'V' and of a radial I-dependent potential u&(r)

This u&(r) depicts the net screened nuclear Hartree-Slater
(HS) potential experienced by a valence electron of the
target, complemented by an empirical core-polarization
term [30]:

(2)

The core electrons are assumed to be frozen to the extent
that they determine vl(r) correctly. The screening term
u& (r) in Eq. (2) is evaluated by a standard Hartree-Slater
procedure. The I-dependent cutoff radius r, ] is tuned to
obtain optimum agreement with the known experimental
energy levels of each target ion (Be, Mg+, and Ca )

[31]. For the lowest one or two levels of each l (s, p, d,
and f waves), our values do not differ more than 0.01%
from the experimental spectrum, rising to a few percent
for higher levels.

The radius ro of the reaction volume, within which the
R-matrix calculation is formulated, is determined by
selecting a range of collision energies and the set I e'] of
energy levels of the target ion accessible within that
range. The value of ro is then set by requiring that an
electron in any of these levels has no more than 1% prob-
ability of reaching beyond it; this probability will be
disregarded in the following.

The R-matrix eigenchannel wave functions '0& of the
collision system are eigenstates of the Hamiltonian (1) at
any desired energy E with a constant normal logarithmic
derivative b& over the surface S enclosing the reaction
volume V. A convenient form of the tria1 wave function
+& consists of a linear combination of specified two-
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electron wave functions y& with unknown superposition
coefficients Ck, 'P&=gkCkyk. The search for a station-P — P

ary value of b& leads to a generalized linear eigensystem
[29] that determines the coefficients Cg and the corre-
sponding eigenvalues b&,

r C=bAC, (3)

where

F'kk =2f yk(& H)y—kd& f y—k
V s Bn

u„l(r)+ +Ul(r) s„i u„l(—r) =0 . (6)
1 d l(I +1)

Two types of radial orbitals u„'l(r) and u'l(r) are gen-
erated by solving Eq. (6) within the reaction volume and
imposing alternative boundary conditions on the reaction
surface r =ra. The "closed" type u„'l(r) vanish at ro ex-
actly and the "open" type u„'l(r) do not. Thus the
"closed" type u„'l(r) are orthonormal over the range
r ~ ro but the u„'l(r) are not. A lower value subset of the
eigenvalues s„i of u„'l coincides with the set {e'] of acces-
sible energy levels of the target ion, to within the accura-
cy of disregarding the leakage beyond ro of the set's
eigenfunctions.

The antisymmetrized LS-coupled two-electron basis
functions y& are thus expressed in terms of one-electron
orbitals by [29]

1
~k(rl r2)

2
[f l l (ri fbi +2)u„, l (r2)

+( 1 )L+s+ 1yLs (r f1 ~ )

Xu„ l (r, )],

Akk' I 3 k3 k'd
5

Rapid convergence of the calculation hinges on select-
ing a set of sensible and adequate basis functions y&. We
use antisymmetrized products one-electron orbitals
u„l(r)Yl (0) to construct the two-electron basis func-
tions yk with definite L, S, and parity ~. Eigenstates
(1/ r) u„ (lr) Yl (0) of the single-electron Hamiltonian
h (r) in Eq. (1) have radial orbitals u„l(r) satisfying

V, and serves to describe solutions of Eq. (1) that vanish
on the reaction surface S. Further adding a small num-
ber of "open" yk to the set of yk provides the flexibility to
represent any solution 4&, which allows the escape of one
electron from the reaction volume with a specific loga-
rithmic derivative on the reaction surface S. Alternative
use of the basis sets {yk ] and {yk ] affords the expeditious
"streamlined" procedure introduced by Greene et al.
[28].

As mentioned above, the energy range to be treated
and the channels retained in the R-matrix calculation dic-
tate the radius ro of the reaction volume V. We have uti-
lized the value ro =31 a.u. , beyond which the wave func-
tion is negligible for all (nl) target states accessible in the
energy range treated here. For example, in the energy
range at which e +Be+ is studied, 4d el is the highest ac-
cessible channel retained. The value ra=31 a.u. is thus
roughly the smallest distance beyond which the 4d orbital
of Be+ e8'ectively vanishes. Test results with larger ro
have shown negligible eftects on the final cross sections.

This moderately large value of ro requires a corre-
spondingly large set of orbitals u„'&. We have used 12
"closed" type and 2 additional "open" type radial orbit-
als for each l. Test calculations with larger sets of u„'I
have yielded no appreciable improvement of the final re-
sults.

The LS-coupling scheme has been adopted in our R-
matrix calculation. The number of channels included in
the calculation ranges from 9 to 20 for each set of (ISn).
For instance, the 13 channels used for the L =1, S =1,
and sr= —1 set of e+Be+ are {2sep, 2pes, 2ped, 3sep,
3pes, 3ped, 3dep, 3def, 4sep, 4pes, 4ped, 4dep, 4def J.

B. MQDT parameters

Each eigenchannel wave function 4'& of the R matrix is
expanded into alternative states N, of the residual ion on
the reaction surface S:

qll3=+4, (r„r2)F li(ro) .

The N; themselves are expressed in terms of the surface
harmonics P of Eq. (8) as

4&; (r „r2,A, , 02)

= 1—[P„ l l (r„A„Q )2
where k —= {n„ l „n,2l 2 ,]and

l l( i +1 +2) u l ( i)YI I LM(+1 +2)
+( 1)L+'+'y—„,, (r„n„n, )], (10)

vanishes at r, =ro.
Each basis function yk can thus be labeled as y„ I „ I,

l 1 2 2

where n, l, pertains to closed orbitals only and nial &
refers

to open or closed orbitals. As noted above, the two-
electron basis functions yz will be similarly labeled as yI,
and yk when they do or do not include open orbitals.

The set of "closed" bases yk, allowing neither electron
to reach the reaction surface, spans the reaction volume

(+;IiI'p)s=Fp(ro)= f;(rp)Il3 —g;(ro)JIp,

&l3&+; ling&, =Fg(r—o)=f (ro)I l3 g (rp)J p, . .(12)

with i—:{n»l»l 2.]
Outside the reaction volume V the field is mainly

Coulombic and the wave function of the escaping elec-
tron can be represented [29] as a superposition of regular
and irregular energy-normalized Coulomb wave functions
f and g by projecting 4& onto the state N; on the reaction
surface S:
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E =JI (13)

with diagonalized form

with i and P= 1,2, . . . , X. This approach disregards the
polarization of the target ion by the projectile at r ) ro,
which is negligible as compared to the monopole
Coulomb interaction but may be important in other cir-
cumstances [9]. This polarization can be taken into ac-
count, if desired, by replacing the Coulomb wave func-
tions {f,g] in Eqs. (11) and (12) with solutions of the
combined Coulomb and polarization fields [9]. In Eqs.
(11) and (12), X is the number of channels retained in the
calculation and N, includes both the spin and orbital cou-
plings of the projectile arid the target ions. The angular
parts of the left-hand side of Eqs. (11) and (12) have been
integrated out analytically. The matrix elements I;& and
J,& are determined by Eqs. (11) and (12). They are, in
turn, equivalent to the "short-range" N XN reaction ma-
trix

v; = [2(e,'—E) ] (16')

causing tanmv to diverge periodically as E transverses a
half-integer value of v;.

The leading term of (16), K „,includes some inhuence
of the closed channels, but the most visible e6'ects of the
closed channels are represented by the second term,
specifically by zeros of its denominator. Thereby K'
displays sharp resonances at these zeros, unlike the
smooth variation of K. The explicit analytic form of this
dependence in (16) is a main contribution of the MQDT
treatment.

Each resonance represents the temporary capture of
the incident electron, with formation of a doubly excited
state of the complex. This state may decay by autoioni-
zation, i.e., by escape of the incident electron. On the
other hand, it becomes stabilized by dielectronic recom;
bination if the escape is preceded by fluorescent transi-
tionn to a lower stable level.

K, =g U; tan(m. p ) U ), (14) C. Collision formulas

where p is the quantum defect, tanmp serves as the ei-
genvalue, and U, serves as the eigenvectors of the sym-
metric K matrix. The MQDT parameters {p, U; ] em-
body all the relevant dynamical information generated in
the reaction volume. They generally depend smoothly on
the energy and serve to predict observables such as the
scattering or photoionization cross sections [6—10].

The MQDT subdivides the matrix K into block [5] ma-
trices:

(15)

where K „(K„)represents the coupling among the open
(closed) channels. These submatrices, are, of course,
complemented by open-closed channel interactions,
represented by K „and K „. [A channel i is called
"closed" when the projectile energy E lies below the ener-

gy level e';, thus sufficing to excite this level only if the
projectile is temporarily captured in a double excitation
state. The channel is "open" when E )e';. The notations
(c,o) are standard labels for channels in MQDT, but
should not be confused with the same labels when applied
to basis orbitals as in Eq. (8) here and as in Ref. [29].]

The physical reactance matrix that determines the
scattering observables at r ~~ is then expressed as

K'=K „—K„[tan(harv)+K „] 'K „ (16)

by eliminating all of the closed channels as in Sec. 6.4 of
Ref. [5]. This elimination is equivalent to summing over
contributions from an infinite number of discrete states in
the closed channels. The matrix K' has the same N, XN,
dimensions as E „, where N, is the number of open
channels. The matrix v in Eq. (16) is diagonal in the base
of closed channels with threshold energies I e'I. Each of
its elements depends on the energy E according to the
Rydberg formula

Following standard procedures [5,32], the scattering
matrix S and the transmission matrix T are evaluated in
terms of the reactance matrix K' of (16) derived from the
MQDT parameters {p, U; ],

I+iE'
I—iK'

T=I—S .

Equation (17) is a matrix equation, where I stands for the
identity matrix.

The T matrix element T„L, I „L, I will be abbrevi-"i i ii "f f ff
ated as TI I . Here, l; and I& are the initial and final or-

i f
bital quantum numbers of the projectile, and nIL, and

n&L& are the target quantum numbers before and after
the scattering.

A dimensionless collision strength [5], analogous to the
optical oscillator strength, is defined for each set (I.Svr)
as

0 (i +f)= g —,'(2 I +1)—(2S +1)~T
i f

Ii, l~

(18)

Det
~ U,' (E) isun[ v(E) +p'(E))

~

=0 . (19)

Here, tanmp' and U, are the eigenvalues and eigenvec-

the summation extending over the relevant projectile's
orbitals.

The strength 0 not only provides for evaluating
cross sections, but also contains extensive structure infor-
mation about the collision complex, especially on the rich
resonance spectra resulting from transient capture of the
projectile electron by excited states of the target. Plots of0, as a function of the incident energy, reveal the suc-
cessive onsets of series of double excitation resonances
converging to the excitation thresholds {e'] of the target
ion. These resonances lie at the zeros of the MQDT
determinant [6,23], i.e., at the roots of
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tors of the closed portion K „ofthe K matrix (15), and v;
depends on the threshold energy e; of the ith closed
channel as in Eq. (16a). Furthermore, the evaluation of
an amplitude Z, in terms of I p', U, v; ] as Eq. (7) of Ref.
[8] determines the dominant channel to which a reso-
nance belongs.

The total inelastic cross section for a spin unpolarized
collision results by averaging the squared scattering am-
plitude over the initial magnetic states and summing it
over the final magnetic states of the orbital and spin mo-
menta and by integrating over scattering angles [33,34].
The cross section is thus expressed in terms of the invari-
ant collision strength 0 by

~ao f) LSrr( ~

(2S,. +1)(2L,+1) (20)

Here, —,'k; equals the incident energy and (L;S; ) are the
initial orbital and spin momenta of the target. The sum-
mation over partial waves L ranges, in principle, to
infinity.

The angular distribution of the scattered electron is
also calculated from the transition matrix T of (17). The
differential cross section is obtained, as in (20), by averag-
ing over the initial and summing over the final magnetic
numbers [33,34],

der(8)
dQ

vrao ( 1) f
8(2S;+ 1)(2L;+1)

I I

(
—1) ' ' (2S+ 1)(2L + 1)(2L'+ 1)(2A,+ 1)[I;][If][I,'][If ]

L,S, 7I., I, l~ L

t, lf A, t,' tf X t, L I,
0 0 0 0 0 0

tf L Lf
L' tf

i(a +a —a, —a, )

XRe(e f TLSrrTL Srr+ )P (cosy) (21)

Here, [i]=(21+1)'f and the {ol] indicate the phase shifts generated by long-range interactions, Coulombic [32] in

this case, the 3j and 6j coefficients [35] originate from geometric averages, and Pz(cos8) indicates the usual Legendre

polynomial in the cosine of the scattering angle. The long-range Coulomb phases play an important role in calculating
the differential cross section (21) in contrast to the total cross section (20), which results by integrating (21) over the
scattering angle 0 and considering the symmetries of its coefticients.

The partial cross section for target excitation to a magnetic substate ML is [27]f
~ao2 1

2(2L, +1)(2S;+1)s
(2S+1)

l iat
X g (2L + 1)[I;]i 'e

L, l,.

L;

ML

t; L Lf tf L
TLS~

0 —M M m —M
L~ f

(22)

The Coulomb phase o.
l is also retained here. These par-

r

tial wave cross sections serve to evaluate the polarization
of photons emitted by the excited target; they will be cal-
culated and compared with experimental results in next
section.

D. Coulomb-Born formulas

next section.
We utilize here the Coulomb-Born (CB) treatment

[36,37], which gives the reactance matrix element

K' '(n;L;e, I, , nfLf Eflf).
= —2g (IfLfL~Pq~l;L;L )%g (23)

Evaluating a collision cross section as in Eq. (20) re-
quires, in principle, an infinite number of partial waves.
The high partial waves actually contribute substantially
to optical excitations of the target ions because of the
slow convergence of dipole interactions. In the absence
of strong correlations between projectile and target in
high partial waves, a simpler treatment in the Born ap-
proximation proves adequate, as is documented in the

with an algebraic expression of the angular factor
( lfLfL

~ P~ ~ I,L,L ) [38] and radial factor

&q= J f, I (r)Yq(I )f, ~ (r)dr,

with
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&dr)= „,f,&.,i,(k)k'&.
, L, (k)dk

+r f R„L (g)g 'R„L (g)dg . (25) and

Q ~(i ~f ) = g (2L + 1) I

T(cB)L,~ I2
i f

t, , lf
(27)

Here, R„I and R„L are the radial wave functions off f
the initial and final states of the target and f,&

is the regu-
lar Coulomb wave function. The dipole term (A, = 1 ) con-
tributes most to optical excitations.

The transition matrix T in the Coulomb-Born approxi-
mation is related to K' ' by

(2L;+ 1)

III. RESULTS

&. Collision strength and resonances

(28)

T(cB)
—l—2iz'
I—E.x'CB' (26)

Similarly the relevant collision strength and cross section
are given by

The collision strength QL™(i+f) i—n Eq. (18) serves
mainly to calculate cross sections; however, its study as a
function of energy, similar to that of the familiar optical
oscillator strength, also reveals structure information,

0

I

4p
3s 3p 3d 4s 4d 0

3d
3s 3p

4p
4s 4d

2. 5

0

3

+ )pe
3p 4p

~ 3s 3d 4s 4d

I I
rn

De

5

3p 4p
i3s 3d 4s 4d

0
CA

3

FG

3p I 4p
3d 4s 4d

=I=.= I

nI
!

I II&

10 I

UFO

3p 4p
3s '3d 4s 4d

0
0. 1 0. 2 0. 3 0. 4 0. 5 0. 6

0
0. 1 0. 2 0. 3 0 0. 5 0. 6

~ k; (a.u. )
1 2 —k;(a. u )

1 2

FIG-. 1. Dimensionless collision strengths Q "for Be (2s —+2p ) and several LS~. The small vertical lines indicate the excitation
thresholds c';; the abscissas are incident energies —'k; in a.u. here and in the following figures. Note the dift'erent scales in the plots for
various LSm. Some of the narrow resonances in this and the following figures may utilize insufticient energy mesh points to reAect
their true heights.
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especially the resonance structure of the collision com-
plex. In the present study of electron collisions with
Be+, Mg+, and Ca, these resonances correspond to
double excitation states of the alkaline-earth metals Be,
Mg, and Ca. The collision strengths 0 (i~f) for six
different LS~ of Be (2s ~2p), Mg+(3s ~2p), and
Ca+(4s ~4p) are shown in Figs. 1 —3. The double excita-
tion resonances form prominent infinite series converging
to the excitation thresholds [E'I of the target. The ener-

gy at which a resonance occurs is determined by a root of
the MQDT determinant in Eq. (19). The dominant chan-
nel to which a resonance belongs is identified by studying
its amplitudes Z, I6]. Some of the resonance series have
been identified in Figs. 1 —3; Table I compares our calcu-
lated levels with the observed values of nsEp resonances
in Be and Mg. No experimental data in the present ener-

gy range are available for Ca. The classification of these
resonances is complicated at high energy, especially near
the thresholds, by the numerous channel interactions.
The resonances in each series sharpen as the energy in-
creases, a common feature of Rydberg series.

B. Convergence of collision strengths
to Coulomb-Born results

The evaluation of the total cross section in Eq. (20) ex-
tends over many partial waves. As discussed above, the
high partial waves are amenable to treatment by the
Coulomb-Born approximation. We calculate the reac-
tance matrix E' ' by Eq. (23) and from it the collision
strength 0' ' by Eq. (27) for each set (L~). In order
to show qualitatively the convergence of the Coulomb-
Born approximation to the R-matrix with MQDT, Figs.
4—6 display 0' ' with its counterpart —,'gzQ for
L ~ 7 for Be+(2s ~2p ), Mg+(3s —+3p ), and
Ca+(4s4p). The factor —,

' and the summation over S,
originating from a comparison of Eqs. (20) and (28), elim-
inate the spin dependence of the R-matrix results.

The R-matrix and Coulomb-Born results, after notable
departures at the partial waves, converge to the values of
—,'+zan at L =7. This convergence guarantees that the
contributions from L, ) 7 are provided adequately by the
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=
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FIG. 2. Same as Fig. 1 for Mg+(3s ~3P ).
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TABLE I. DDouble excitation energies (in eV). Ener ies are
~ ~

and Mg(3s )

nergies are relative to the ground states of Be(2s )

States 'P

3$3p
3s4p
3s5p
3s 6p
3$7p
3s8p
3s9p

Be
Expt. '

17.64
18.83

19.81
19.91
19.99

Present work

17.64
18.84
19.50
19.66
19.84
19.93
20.01

States 'P

4s4p
4s 5p
4s6p
4s7p
4s 8p
4s9p

4s 10p

Mg
Expt. b

14.18
15.24
15.61
15.83
15.98
16.06
16.11

Present work

14.17
15.23
15.61
15.83
15.99
16.07
16.10

'References [39] and [40].
References [40] and [41].

Coulomb-Born results. A comparison has also been
made by replacing the Coulomb-Born approximation

convergence is poor owing to inadequacy of the plane-
wave description of the incident electron in the Coulomb
Geld of the target ion.

C. Total inelastic cross section

the Qr

We have calculated the total inelastic cro t'c cross sections or
e Qrst optical resonance excitatio B +, M

' nsin e, g, and
a y summing the collision strengths 0 of the R

matrix with MQDT in Eq. (20) up to L =7. These cross

1.5

Ipo 5d
5s 4d 5p 4f 6s 6p

I I I

3po
5s 4d 5p

5d

!

4f 6s 6p

0. 5

IDe 4d 5p
5d

4f 6s 6p D
5d

4d sp 4f Gs sp

C)

0

CPP

0
C.

3FO 5d
5s 4d 5p 4f 6s 6p

I, (l t!)

0
0. 1 0.15

5p 4f 6s 6p
51

I

0.2 0.25

~ k, (a.u. )

FICx. 3.

1 I

0.35 0. 1 0. 150.3

Same as Fig. 1 for Ca (4s~4p).

0.2 0.25

T~ k (a.u. )

0.3 0.35
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sections, averaged over a Gaussian of width 0.15 eV, are
represented by the curves (a) in Figs. 7 —9 together with
the experimental photoemission cross sections [11—14,23]
indicated by circles with error bars. For these optical ex-
citations of the targets, the high partial waves contribute
substantially as the energy increases. Note particularly
the rises in the end of the L =7 curves in Figs. 4—6. This
contribution has been complemented by evaluating
0' ' for partial waves L up to 20, beyond which they
become negligible in our energy range. Cross sections in-
cluding high-partial-wave contributions are represented
by curves (b) in Figs. 7—9. The contributions by partial
waves (L )7) add only a small fraction at low energy but
-20% to the cross sections by the R matrix with MQDT
at high energy.

The cross sections (b) in Figs. 7 —9 agree well with the
experimental data in the energy range below the thresh-
olds I e'j of target excitations to higher levels. However,
they fall below the experimental Auorescence cross sec-
tions above these thresholds. Matching to the experi-
mental data is achieved by adding the contributions of
optical cascades from higher levels, as described below,
the total being represented by the curves (c).

In the case of e+Ca+, the emission cross sections
o, (4p3/2~4s) and 0, (4p, /2~4s) have been resolved

L=O

0. 5

4 -L=2

0

L —4

o 3

L=6

L=1

L —3

3 Jl

3 — L=5

L=7

0 ~ 5

L=O
I 3

0
0 ' 15 0. 3

o
0. 45 0.15 0. 3

—k (a.u. )
1 2

2 I

0. 45

0. 5 FIG. 5. Same as Fig. 4 for Mg+(3s ~3p ).

4. 5

1.5

CD

0
CA

3. 6

CA

C)

2. 6

L=2

L=4

0

6

L=5
2

2+1
17.6

17.6+1 =0.6308 . (29)

experimentally [13], yielding the statistical ratio of
o', (4p3/2 ~4s)/o, (4p, /z ~4s) -2.0. Furthermore, a
fraction 1/17.6 of the 4p3/2 excitation [42] decays to the
3d metastable state of Ca+. The observed fluorescence
data shown in Fig. 9 pertain to the transition (4p3/2 ~4s)
and are compared with the excitation cross sections
(4s ~4p) multiplied by the factor [16]

D. Excitations to higher levels and cascade effects

1.6

0
0. 1 0.2

I 0
0. 4 0.5 0. 6 F 10. 3

—k (o. U. )
2

2

0.2 0. 3 0. 4 0. 5

—k (a.u. )
1 2

2

0. 6

FIG. 4. Dimensionless Coulomb-Born collision strengths
Q'c ' (dashed lines) and —'gzQLs (solid lines) from the R
matrix with MQDT for Be+(2s —+2p). Note the discrepancies
at low L and the convergence of 0' ' to —'+zan at L =7.

As mentioned in Sec. I, the calculated R matrices of
each set (LSD) contain cross-section information for all
transitions between target states accessible in our energy
range. We have extracted such cross sections for several
optically forbidden and allowed excitations of targets,
specifically o (2s ~3s) and o (2s ~3d) for e +Be
o.( 3s ~3d ) and o ( 3s —+4s ) for e +Mg+, and cr (4s ~5s),
o (4s —+4d), and o (4s ~5p) for e +Ca, all of which con-
tribute to the resonance emission by cascade. These cross
sections, ranging from less than one to a few atomic
units, are generally much smaller than for the first optical
resonance excitation. They also display the prominent
resonances due to double excitations of the collision com-
plex. Transitions requiring quadrupole (or higher mul-
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FIG 8 Same as Fig 7 for Mg (3p 3s) Experiments from
Refs. [11]and [12].
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FIG. 6. Same as Fig. 4 for Ca+ (4s ~4p ).

C4

CA

22

3p
3s 3d

Qp
4s 4d

tipole) interactions receive minor contributions from high
partial waves (I. )7) owing to the rapid convergence of
multipole expansions.

A similar reduction of the higher-L contributions is

also noted for dipole transitions to higher-n levels. This
reduction stems from the lower residual velocity of the
projectile's escape after the collision, as indicated by the
low contributions to the cross sections by with
L =6 and 7. The Coulomb-Born contributions to higher
n are similarly negligible for L )7.

General propensity rules favor excitations to higher
rather than lower angular momenta. Thus we have
f d among quadrupole transitions, o (2s —+ 3d ) to be

+ elec-larger than cr(2s~3s) in e+Be . The projectile e ec-
tron also tends to lose angular momentum, thus reducing
the centrifugal barrier to its escape. Excitations within
th same shell are also favored, e.g.,e

+o(3s3d) )cr(3s~4s) in e+Mg and o'(4s4d)) cr (4s ~5s) in e +Ca+.
These cross sections for dipole and quadrupole transi-

tions have served here to evaluate the cascade eItects but
are not shown for brevity. Figure 10 shows, however, the
example cr(4s~3d) of e+Ca+ with its familiar double
excitation series.

As noted above, the cross sections for excitation of
Auorescence, mainly from the lowest optical resonance

18 E
CD

'o
24

20

5s 4d 5p

C)
CA
CA

E
CD
C)+
Ci

CL
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6
0.1 0. 2 0. 3 0. 4 0. 5

(a)

0. 6

~
k (a.u. )

FIG. 7. Photoemission cross sections of Be (2p ~2s).
Dashed lines are (a) results from the R matrix with MQDT and
(b) results including high partial waves {I.)7) averaged over a
Gaussian of width 0.15 eV; the solid line (c) is the result includ-
ing both high partial waves and cascade effects without Gauss-
ian averages; o, experimental photoemission cross sections o

tj(II~Ic I
~~

(h)

C)
CA
CA

E
CD
CO

C)

Ct

12

8
0. 1 0.15 0.2 0. 25 0. 3

(a)

0. 35

FIG. 9. Same as Fig. 7 for Ca+{4p3&&—+4s). Experiments
from Refs. [13]and [14].
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[43,44] have determined P in terms of the partial cross
section o.M (i ~f) of Eq. (22) for excitation to Zeeman

Lf
levels MLf

Inclusion of the high partial wave contributions by the
Coulomb-Born approximation, in the solid curves, elimi-
nates these deviations.

300(9y —2)(cra —o. , )
P =

12cra+ 24cr )+ (9y —2)(cro —cr t )
(31) IV. DISCUSSION

for Be+(2p ~2s) and

300(o o
—cr ))

P =
5~o+ 7

(32)

for Ca+(4p3/2~4s), respectively.
The parameter y in (31) depends on the hyperfine split-

tings of Be, as discussed by Mitroy and Norcross [27].
Figure 12 represents the calculated polarization P togeth-
er with the experimental data for Be+ (2p ~2s) and
Ca+ (4p 3/z —+ 4s) using y =0.44 as in Ref. [27]. The
dashed curves (a), evaluated with the partial waves
(L &7) from the R matrix with MQDT and averaged
over a Gaussian of width 0.1 5 eV, agree well with the ex-
perimental data at low energy but deviate at high energy.

The present study has demonstrated a noteworthy ap-
plication of the eigenchannel R -matrix treatment of
electron-ion collisions. This treatment of collisions with
short impact parameter, specifically with L ~ 7, yields
good cross sections and reveals details of the double exci-
tation resonances. Its results are then combined with the
appreciable contribution of large impact parameters eval-
uated by the Coulomb-Born approximation. Our results
agree well with experimental results. Specifically, the cal-
culated cross section of Be+(2p ~2s) has been brought
into closer agreement with the experimental data shown
in Ref. [23] than had been achieved previously, predicting
numerous resonances that have not yet been resolved ex-
perimentally. Agreement has also been obtained for
Mg+(3p~3s) and Ca+(4p3/p +4s), with prediction of
similar double excitation series.

24 I I

(a) Be'(2p 2s)

17

~d0
D

3
0. 1 0. 2 00. 3

—k (a, u. )
2

2 I

0 ~ 5 0. 6

40

30

I I

(b) Ca (4p& —4s)
2

d~d
20

Cl

10

0
0. 1 0 ~ 15 0 ~ 2 0.25 0 ~ 3 0 ~ 35

—k. (a.u. )2

FICx. 12. Polarizations of emitted photons from (a)
Be+( 2p ~2s ) and (b) Ca ( 4p 3/2 ~4s ). Dashed lines represent
the R matrix with MQDT calculations averaged over a Gauss-
ian of width O. 1 5 eV; solid lines include contributions from high
partial waves (L ) 7); 0, experimental results of Ref. [23] for
Be+(2p~2s) and Refs. [13]and [14] for Ca (4p3/2~4s).

A. Comparison with previous treatments

Many calculations on electron-ion collisions have been
done by Coulomb-Born approximation, the distorted-
wave approximation, close coupling, the diagonalization
method, and other procedure [18,19,45]. Coulomb-Born
distorted-wave approximation [45—49] give cross sections
generally higher than experimental results and hardly any
resonances, through disregarding the strong correlations
between the projectile and target electrons.

The most advanced close-coupling calculation for
e +Be+(2s ~2p) has been made in Ref. [27]. These cross
sections are closer to the experimental data than any ear-
lier results, but still do not fall within the experimental
error bars. No evidence of double excitation resonances
appears in this reference, but some evidence appears in
the parallel calculation [16] for e +Ca+(4s~4p). This
Ca+ calculation gives reasonable agreement with experi-
mental cross sections.

Lengyel et al. [17] have evaluated the cross sections
for e +Be+(2s~2p) and e +Mg+(3s~3p) by a diago-
nalization method that utilizes a basis set including some
double excitation states of the complex, constructed by a
configuration-interaction method. Inclusion of such
states causes the corresponding resonances to appear.
The resulting cross sections for e +Be+(2s ~ 2p ) are
more than -20% higher than the experimental data but
those for e+Mg+(3s —+3p) agree better with the experi-
mental measurements.

We have complemented here the scarce evidence of
resonant series in previous calculations by utilizing the
full reactance matrix IC' of Eq. (16). The present calcula-
tion contrasts those discussed above by proceeding
throughout the volume V without any reference to the
fragmentation channels external to V, thus acquiring
greater Aexibility and efficiency.
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B. Prospective extensions

Extension of the present work to collisions with
heavier alkaline-earth-metal ions would require explicit
treatment of the fine structure of target excitations. This
structure, disregarded here even though appreciable in
Ca+ experiments, requires a transformation from I.S to
jj coupling previously implemented in spectroscopy stud-
ies [6,22]. Polarization of the target ion at long range
should also be treated [9].

Parallel calculations along the isoelectronic sequences
of alkaline-earth-metal ions would reAect the increasing
inAuence of the ionic charge. Extension to ions with mul-
tielectron open shells hinges on the recent development
of the corresponding calculation of neutral spectra [50].

The mapping of radial correlations [7,29], important
for understanding both the correlation mechanism and
the resulting channel interactions, remains to be investi-
gated systematically in the present application.

Extension to electron collision with neutral atoms is, of
course, of greater interest but will require the construc-
tion of different orbitals for the negative-ion complex in
its various excited states. This extension is accessible
through the R matrix for the negative-ion complex with
replacement of the Coulombic wave functions [f,g] by
wave functions for the field of a neutral but polarizable
target atom [51,52].

C. Accuracy limits from truncations

Practical limits to computational effort impose a limit
to the accuracy of results. This limit has emerged
specifically from the selection of a modest set of channels
in close-coupling treatments. In the present treatment,
too, the selection of channels has set a lower limit to the
radius ro of the R-matrix volume V.

Within this volume the selection of a finite set of orbit-
als renders the basis set incomplete. Its adequacy has
been tested through the convergence of results with in-

creasing the number of orbitals, but a qualitative change
of orbitals might conceivably have proved otherwise.

In the analogous problems of energy-level calculations,
the monotonic decrease of theoretical estimates with in-
creasing basis provides a dependable guidance. A corre-
sponding guidance is afforded in the calculation of eigen-
channel phases which are necessarily lower than their ac-
tual values. Cross-section values, however, depend gen-
erally on the contribution of many eigenchannels. Ac-
cordingly it is generally difficult to derive guidance from
the trend of collision parameters with increasing effort,
even though it has been argued occasionally that exclud-
ing a wave function from a portion of configuration space
would boost a cross section artificially [53].

In the present treatment a restriction has been imposed
by barring both electrons from trespassing the surface S
simultaneously. This limit would be removed when ade-
quate two- (or more-) electron wave functions become
available for the ion's long-range field.

The dependence of the radius ro on the total energy E,
described in Sec. II, might suggest that the R-matrix
volume V would necessarily diverge with increasing ener-
gy. This conclusion, however, is unwarranted because
significant correlations among electrons of eV energy are
necessarily confined to a finite volume. Exploration of
this circumstance in the study of higher-energy collisions
remains undeveloped.
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