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Algebraic-eikonal approach to the electron-molecule-collision process:
Vibrational excitation and quadrupole interaction
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The vibrational excitation mechanism has been included in the algebraic-eikonal approach to the
electron —polar-molecule collision process. A dipole operator that can induce vibrational transitions has
been used, and a technique for the evaluation of the matrix elements required for the calculation of the
scattering amplitude in the Glauber approximation has been developed. In addition to the long-range
dipole interaction, the quadrupole interaction has been included in the same framework in order to im-
prove the potential description of the collision process. Numerical calculations are shown for electron-
induced rotational-vibrational excitation through the dipole and dipole-plus-quadrupole interactions.

PACS number(s}: 34.80.Gs

I. INTRODUCTION

Among the variety of processes that occur in an
electron-molecule collision, the rotational and vibrational
excitation of polar molecules by the scattered electrons
plays a fundamental role. Because of its possible applica-
tion in a variety of fields, many theoretical studies [1—5]
have been devoted to its understanding.

Following the development of computational methods,
ab initio calculations became feasible in the past several
years and much effort has been put in the inclusion of
various types of interactions into the calculations of
scattering cross section, at least for simple molecules. In
the standard ab initio techniques, both the scattering pro-
cess and the molecular dynamic problems are treated
starting from first principles. However, in the case of
electron energies of several electron volts and of strong
dipolar targets, the channel coupling between the rota-
tional and vibrational degrees of freedom, even in the adi-
abatic approximation, can be a prohibitive problem from
the computational point of view, particularly for polya-
tomic molecular targets.

On the other hand, perturbative methods such as the
Born approximation, or the diit'ractive theories (Glauber
approximation), even though restricted in their range of
applicability, provide very simple, closed-form expres-
sions for the calculation of scattering cross sections.
Moreover, they can be used as starting points on which
more elaborated approaches can be developed [5].

Recently, some attention has been gained by a novel
approach to the calculation of the differential cross sec-
tion within the Glauber approximation: the algebraic-
eikonal approach [6]. This method makes use of an alge-
braic description of the molecular rovibrational degrees
of freedom, the vibron model [7,8], in conjunction with
the Glauber diffractive theory in the adiabatic approxi-
mation. This theory, originally developed for the calcula-
tion of the scattering cross section of protons by de-
formed nuclei [9], has been applied so far to the calcula-
tion of rotational excitation of diatomic [10,11]and linear
triatomic [12] polar molecules.

In the algebraic-eikonal approach, the description of
molecular degrees of freedom, and of the interaction to a
certain extent, using algebraic techniques, allows for a
treatment of the rotational and vibrational coupling
without recurring to the standard coupled-channels cal-
culation.

More recently [13], the algebraic-eikonal approach has
been used in conjunction with close-coupling calculations
in order to include the effect of the short-range interac-
tions. In this approach, the hybrid approach, long-range
dipole interaction, responsible for the scattering at for-
ward angles, has been accounted for by the algebraic-
eikonal technique whereas the short-range interaction has
been included through full close-coupling calculations.

However, the vibrational excitation process was left
out up to now from the algebraic-eikonal formalism, ex-
cept for a first-order perturbation theory proposed in Ref.
[10],where the possible vibrational excitation mechanism
was introduced asuming a so-called broken O(4) symme-
try in the description of the diatomic target. This ap-
proach leads to vibrational excitation cross sections
several orders of magnitude smaller than the vibrational-
ly elastic one and, moreover, the calculation of dipole
transition moments using this approach lead to infrared
intensities at variance with experimental values [14].

In this work we will follow a different line. We will
remain within the O(4) dynamical symmetry of the vibron
model and we will make use of a difFerent dipole operator
which can induce vibrational transitions unlike the dipole
operator first proposed in Ref. [6]. This transition opera-
tor has been recently introduced [15] and successfully ap-
plied [15—17] to the calculation of infrared transition in-
tensities in diatomic as well as in several polyatomic mol-
ecules.

In addition to the vibrational excitation, we will also
include the quadrupole interaction in the same algebraic-
eikonal framework in order to improve the potential
description of the collision process.

After a general introduction of the basic quantities of
the Glauber approximation in Sec. II, we will introduce
the dipole transition operator and show a technique to
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calculate analytically the matrix elements required for
the evaluation of the scattering amplitude in Sec. III. In
Sec. III E we will include the quadrupole interaction in
the model and give a technique to approximate the
scattering amplitude. In Sec. IV we will give an illustra-
tive example of the proposed methodology for calculation
of the scattering cross section, and finally give the con-
clusions.

II. GENERAL FORMULATION

In the Glauber approximation, the scattering ampli-
tude for a collision process in which the electron momen-
tum transferred from an initial wave vector k to the final
one k' is q=k —k' and the molecule goes from an initial
state i to a final state f is given by

(q)= Jd be'q (f~ 1 e'r'—'~i ),2~
(2.1)

X YqM(Q, )dQ, , (2.2)

where the spherical harmonics YJM(Q, ) are taken as
molecular eigenfunctions.

In Eq. (2.2), the dependence on the molecular symme-
try axis orientation Q, is shown explicitly in both the
molecular eigenfunctions as well as in the eikonal phase
y(b, Q, ).

The exphcit form of the eikonal phase acquired by the
electron, while interacting with the molecule, depends on
the interaction potential. In fact the eikonal phase is
defined by

y(b, Q, )= —
z f V(r, Q, )dz, (2.3)

where m, is the electron mass and r is the position vector
of the electron as measured from the center of mass of
the molecule.

In general, the interaction potential can be written as
' 1/2

V(r, Q, )= g v~(r)
4m

2A, +1

Xg( —1) Yg „(Q,)Yg „(Q,), (2.4)

where Q, defines the orientation of r and the functions
vz(r) depend only on the magnitude of r.

As an example, for the dipole interaction we have
(A, = 1)

1/2
4m eD

v, (r) =—
1 (2.5)

where b is the vector lying on the plane through the ori-
gin perpendicular to the z axis, chosen to be in the direc-
tion of the incident electron wave vector k=kz.

For the rotational excitation of a polar molecule from
an initial state with total angular momentum J and third
component M to a final state with J' and M', the matrix
elements appearing in Eq. (2.1) are explicitly given by

(foal e'r' —'ii ) = J Y~.~.(Q, )(1—e
' '

)

v, (r)=— 4m

3

eD

r +R
(2.6)

where R, is the dipole cuto6'radius.
The problem of calculating the scattering amplitude in

the Glauber approximation for rotational excitation has
been solved so far in the assumption that the molecular
eigenfunctions are spherical harmonics in the case of di-
pole interaction [18] and for the more general case
A, =0, 1,2 [19].

A number of complications arise when trying to extend
this kind of approach to vibrational excitation process.
In order to keep the problem manageable, usually the as-
sumptions are made that: (i) the molecular vibrational
and rotational degrees of freedom are decoupled and (ii)
the interaction potential is expanded in power series of
the internuclear distance R around the equilibrium posi-
tion R„

BV(r, Q„R)
V(r, Q„R)=V(r, Q„R =R, )+

BR

X(R —R, )+ .

(2.7)

Within these approximations, the problem has been
solved so far only for the case in which

iy(b, 0, )
1 —e

' * = —iy(b, Q, ), (2.8)

that is, in the first Born approximation (FBA).
For the allowed rotational transitions J'=J+1~J, the

FBA cross section is given by the well-known relation
P0]

do 4 k'
2 J& 1

dQ 3 k 2J+1
where q =k +k —2kk'cos(0) and J& =max(J', J).

When the expansion (2.7) is adopted, this relation holds
for the general transition v'J'~vJ if D is replaced by the
matrix elements (v'J'~BivJ) of the dipole operator 8
between the vibrational states v' and v.

In order to extend to rovibrational transition the gen-
eral expression for the Glauber amplitude (2.1), we will
adopt the algebraic-eikonal approach which allows for a
unified description of the molecular rovibrational degrees
of freedom and at the mean time for a general dipole in-
teraction, bypassing therefore the commonly adopted ap-
proximations described above.

III. THE ALGEBRAIC APPROACH

A. The vibron model

In the algebraic approach, the molecular operators are
replaced by the elements of a Lie algebra. The realization
of this algebra is made through the use of creation and
annihilation operators for two types of vibrons, called o.

where D is the dipole moment of the molecule and e the
electron charge. Eventually, v&(r) can be cutoff' [ dipole-
cutoff (DCO) models] in order to remove the singularity
atr =0,

1/2
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and m vibrons. Products of these operators, which trans-
form as spherical tensors, are the elements of the algebra.

It has been proposed [7] that the appropriate algebra
which describes the rotation-vibration degrees of freedom
of a diatomic molecular bound is the U(4) algebra. It
hasd 4 =16 elements. However, only a subset of these
elements is needed to describe the spectrum accurately.
They are the elements of the O(4) algebra in the chain
U(4)DO(4)DO(3) and therefore the molecular states are
referred to as 0(4) states.

The operators that we will use here are

(3.1a)

(3.1b)

(3.1c)

(3.1d)

where the creation and annihilation operators for o. and
vibrons are used explicitly. A detailed account of

definitions and properties of these operators can be found
in Refs. [8,21].

The algebraic Hamiltonian is of the type

has selection rules EU =0 and AJ =+1.
An appropriate operator that can describe accurately

infrared intensities has been recently suggested [15] to be
of type

k=0
(3.6)

The summation in this expression is very quickly conver-
gent indeed and only very few terms are su%cient to
reproduce the experimental intensities [15—17].

A, k&The factor e in Eq. (3.6) breaks the selection rules
AU =0 making the dipole operator capable of inducing vi-
brational transitions. This, in turn, modifies the interac-
tion potential. The dependence of the interaction poten-
tial on the internuclear distance, Eq. (2.7), is achieved in
the algebraic formalism through the presence of the
operator & in Eq. (3.6). In fact, it has been suggested
[22] that the operator & might be asssociated with the
bond length in a diatomic molecule.

In order to make the calculation of the matrix elements
feasible for obtaining the transition rates in a certain ac-
curacy, we will retain here only two terms in the expan-
sion (3.6),

H=h + AD.D+BJ.J (3.2)
T„=doD„+d, ,'(e D„+—De ) =0„+E„. (3.7)

with ho, A, and B constants. This Hamiltonian has
analytical eigenvalues that can be arranged into the form

E(u, J)=ho —4A (%+2)(u+ —,
'

)

+4A (u+ ,') +(8 —A—)J(J+1), (3.3)

where X is the total number of vibrons, to be determined
together with ho, A, and B from the molecular constants.
We have

T, =ho, co, = —4A (%+2), co,y, = —4A,
(3.4)

B,=B —3 .

When calculating the scattering amplitude in this frame-
work we have to proceed as follows: (i) replace the
molecular eigenfunctions, usually spherical harmonics,
by the algebraic eigenstates; (ii) replace the F& (0) in the
interaction potential by the appropriate algebraic opera-
tors; (iii) replace the dependence on the internuclear dis-
tance in Eq. (2.7) in order to allow for vibrational transi-
tions; (iv) calculate the relative matrix elements.

The basis for this procedure [except for point (iii)] has
been developed for the calculation of rotational excitation
cross sections of diatomic [6] and triatomic [12] mole-
cules by the long-range dipole interaction potential.

B. Transition operator for vibrational excitation

A dipole operator of type

T„=doD„ (3.5)

has been previously used [6]. The constant do is &xed by
the condition (u'=OJ'= I~~T~~u

=J=0) =D (dipole mo-
ment). When the O(4) eigenstates are used, this operator

In this case, in addition to the total number of vibrons X,
there are three constants do, d&, and A, to be determined
from the experimental dipole moment and infrared inten-
sities. The matrix elements of the operator f'„ in Eq.
(3.7) can be calculated analytically and their expressions
are given in Appendix A.

C. Matrix elements for the scattering amplitude

We will use now the operator in Eq. (3.7) for the calcu-
lation of the scattering amplitude in the Glauber approxi-
mation. The dipole interaction potential, expressed in
terms of algebraic operators, is

1/2
4m

V&(r, &)=v, (r) y(&).y (3.&)

where we have generally indicated with & the algebraic
variables. The corresponding eikonal phase is expressed
as follows:

yD(b, a)=g, (b)b T, (3.9)

em, b
A' k (r +R )r

g, (b) = dz (3.10)

X(u'J'mie ' ~uJm ), (3.11)

and r =(b +z )'
The matrix elements of the exponential function in Eq.

(2.1) have the property [6]

(u'J'M'~e ~uJM )
I= e g dM ~ [m. /2]dM~ [vr/2]
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where d"„'[~/2] are the Wigner d functions [23] and f'o
is the p=0 component of the operator defined in Eq.
(3.7).

For the case Po=doBo=Go the matrix elements are
given by [10]

e ' ' —1+iii(Go+Eo) —
—,'ri (Go+go) +

=1+iriCo —
—,'ri G o+iriPo

(3.14)

&v'J'm le'"" ' 'lvJm &

iq, (b)(Z~ —m)Xe (3.12)

where co=—X —2v and the (. . . . . . l. . . ) are Clebsch-
Gordan coefticients.

Essentially, the inclusion of vibrational excitation is re-
duced to the calculation of the matrix elements

The first three terms in the last expression are well ap-
proximated by e " '. Now consideriqC

e ~P +X' e -(1+iiiC )X' +2 (1+iii@ )

=to+ iriGo~o+~o+'i)~o Go

=2ko+i ri( Colo+ SoGo ) .

Therefore

I'iii(e 2o+Xoe )=i iigo ——' ii (Gogo+@'oGo)
&v'J'm le'"' 'lvJm & (3.13)

for the general opeator 2'„—o of Eq. (3.7).
One way to solve the problem is to calculate these ma-

trix elements numerically, that is, find a basis diagonaliz-
ing the operator F„o, calculate the matrix elements ofe, and then rotate back to the O(4) basis.

iqf0

Another way to proceed is to consider the second term
in Eq. (3.7) as a correction to the leading first term. Then

)17(Cp+Pp) l7/Cp ) l7)'Cp + + i pCp8

(3.15)

The matrix elements of the first term-in Eq. (3.15) were
given above in Eq. (3.12). The calculation of the matrix
elements of the second term requires some algebra. The
results are

2J+3

(3.16a)

and

2J'+ 1

v 2J'+1 (3.16b)

The last term in Eq. (3.15) is in i) and can be neglected in
practical cases since ri « 1 (see below), though the calcu-
lation of its matrix elements do not present any difhculty.

We can therefore evaluate analytically all the matrix
elements required for the calculation of the scattering
amplitude.

In order to check the validity of the approximation
given in Eq. (3.14), we have performed a number of calcu-
lations and found a very good agreement between the re-
sults obtained through a numerical diagonalization and
those obtained using the analytical expressions (3.12),
(3.16a), and (3.16b).

As an example, in Table I we report the values of the
matrix elements, Eq. (3.13), for the initial state v =0,
J =0, and the final states U'=0, 1,2„J'=0,1,2, and
m =0 as a function of the impact parameter b (column 1).
The parameters used in these calculations are those given
below in Table II for the HF molecule.

D. Scattering amplitude and difterential cross section

In order to calculate the scattering amplitude Eq. (2.1),
we will make use of the expansion

e"' =pi J (qb)e
iA(Pb —P )

(3.17)

In column 2 we report the values of il, (b), Eq. (3.10),
calculated at E, =6 eV. In columns 3 and 4, the real and
imaginary parts of the matrix elements calculated using
Eqs. (3.15), (3.16a), and (3.16b) are given, respectively. In
columns S and 6 the same quantities are shown as calcu-
lated using the numerical diagonalization technique.

Due to the good agreement obtained using the exact
(numerical) technique as compared with the analytical
one, we will adopt the approximation of Eq. (3.14) in all
the subsequent calculations.
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TABLE I. Comparison of the analytical and numerical matrix element calculations of Eq. {3.13).
See the text (Sec. III C) for the explanation of the entries in this table. (x [y]=x X 1(Y).

b( 3) g, (b) Re

Analytical Numerical

Im

u'=0, J'=0+—v =0, J=O
0.01
0.10
1.00

10.00
100.00

1000.00

0.1155
0.5687
0.5398
0.0626
0.0063
0.0006

0.993 19
0.838 46
0.854 14
0.998 00
0.999 98
0.10000[1]

0.0
0.0
0.0
0.0
0.0
0.0

0.992 62
0.830 11
0.846 15
0.997 83
0.99998
0.10000[1]

0.0
0.0
0.0
0.0
0.0
0.0

u'=0, J'= 1~v =0, J=0
0.01
0.10
1.00

10.00
100.00

1000.00

0.0
0.0
0.0
0.0
0.0
0.0

0.121 04
0.550 80
0.527 23
0.657 61[—1]
0.659 31[—2]
0.659 33[—3]

0.0
0.0
0.0
O.O

0.0
0.0

0.120 89
0.536 05
0.514 39
0.657 38[—1]
0.659 31[—2]
0.659 33[—3]

v'=0, J'=2~v
0.01
0.10
1.00

10.00
100.00

1000.00

=0, J=0
—0.605 62[ —2]—0.142 28
—0.128 61
—0.178 11[—2]—0.178 76[ —4]
—0.178 76[ —6]

0.0
0.0
0.0
0.0
0.0
0.0

—0.655 87[ —2]
—0.147 69
—0.13406
—0.193 15[—2]—0.19396[—4]
—0.193 97[—6]

0.0
0.0
0.0
0.0
0.0
0.0

0.01
0.10
1.00

10.00
100.00

1000.00

0.1155
0.5687
0.5398
0.0626
0.0063
0.0006

v'=1, J'=0~v =0, J=O
—0.95004[ —3]
—0.197 81[—1]
—0.181 07[ —1]—0.280 42[ —3 ]—0.281 87[ —5]
—0.281 88[ —7]

0.0
0.0
0.0
0.0
0.0
0.0

—0.743 34[ —3]—0.164 39[—1]
—0.149 51[—1]—0.21902[ —3 ]—0.220 00[ —5]—0.220 10[—7]

0.0
0.0
0.0
0.0
0.0
0.0

u'=1, J'=1~v =0, J=0
0.01
0.10
1.00

10.00
100.00

1000.00

0.0
0.0
0.0
0.0
0.0
0.0

0.643 82[ —2]
0.187 00[ —1]
0.189 22[ —1]
0.353 76[ —2]
0.356 32[—3]
0.356 34[—4]

0.0
0.0
0.0
0.0
0.0
0.0

0.648 68[ —2]
0.237 08[ —1]
0.232 70[ —1]
0.354 54[ —2]
0.356 32[ —3]
0.356 34[ —4]

u'=1, J'=2~v
0.01
0.10
1.00

10.00
100.00

1000.00

=0, J=O
—0.842 13[—3]—0.163 56[ —1]
—0.15090[—1]—0.249 04[ —3]—0.250 52[ —5]—0.250 54[ —7]

0.0
0.0
0.0
0.0
0.0
0.0

—0.659 61[—3]—0.14008[—1]
—0.127 97[—1]
—0.194 57[ —3 ]—0.195 53[ —5]—0.195 54[ —7]

0.0
0.0
0.0
0.0
0.0
0.0

u'=2, J'=0~v =0, J=—0
0.01
0.10
1.00

10.00
100.00

1000.00

0.1155
0.5687
0.5398
0.0626
0.0063
0.0006

0.11937[—3]
0.251 99[—2]
0.230 31[—2]
0.352 21[—4]
0.353 98[—6]
0.353 99[—8]

0.0
0.0
0.0
0.0
0.0
0.0

0.670 82[ —4]
0.159 30[—2]
0.143 82[ —2]
0.197 23 [ —4]
0.19793[—6]
0.19793[—8]

0.0
0.0
0.0
0.0
0.0
0.0
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TABLE I. (Continued).

b ( A) r])(b) Re

Analytical

Im Re

Numerical

Im

v'=2, J'=1~v =0, J=0
0.01
0.10
1.00

10.00
100.00

1000.00

0.0
0.0
0.0
0.0
0.0
0.0

—0.864 52[ —3]
—0.269 70[ —2]—0.270 14[—2]—0.474 31[—3]—0.477 45[ —4]—0.477 48[ —5]

0.0
0.0
0.0
0.0
0.0
0.0

—0.875 42[ —3]—0.385 25[ —2]—0.370 16[—2]—0.47605[ —3]—0.477 46[ —4]—0.477 48[ —5]

v'=2, J'=2~v =0, J =0
0.01
0.10
1.00

10.00
100.00

1000.00

0.105 68[ —3]
0.209 57[ —2]
0.192 89[—2]
0.312 36[—4]
0.314 15[—6]
0.314 61[—8]

0.0
0.0
0.0
0.0
0.0
0.0

0.595 14[—4]
0.14005[—2]
0.126 57[ —2]
0.175 02[ —4]
0.175 66[ —6]
0.175 66[ —8]

0.0
0.0
0.0
0.0
0.0
0.0

where Jz(x) are Bessel functions of integer order.
Then, after integrating over azumithal orientation of b

we obtain, for an initial state i =(uJM) and a final state
f =(u'J'M'),

+f, '(q)=iki' ' J b db J,~, , (qb)

X 5f; —g d~.m [m/2]dM~ [m'/2]

X (u'J'm ~e
' ' vJm )

i'&(b)f'0

( uJ'~ Ju~B)= g ~F&~(q)~' .2J+1 M, M k
(3.19)

We note here that for given M', M, the exponential factor
i (M —M')P

e ' in Eq. (3.18) does not e6'ect the calculation of
the scattering cross section, making it essentially depen-
dent only on ~q~ or on the scattering angle B. Also, it is
easy to verify that for large b, using the approximation in
Eq. (2.8), the expression (3.18) leads to the FBA value Eq.
(2.9). Therefore, as it should be, in the limit of small
scattering angle the Glauber amplitude in the algebraic
approach converges to the FBA result.

i (M —M')P
Xe q (3.18)

The scattering cross section for a transition v'J'~vJ is
obtained by summing up over all the 6nal M' and averag-
ing over M,

E. The quadrupole interaction

The quadrupole interaction potential is given by
' 1/2

TABLE II. Parameters used in the calculations of the
e +HF and e +HC1 differential cross sections.

V~(r, Q, ) =v~(r )
4m

(
—1) Y~ (Q, )Y~ (Q, ),

(3.20)

HF HC1 with
1V

ho (cm ')
3 (cm ')
8 (cm ')
D {D)
5D'
5D
Q (10 esu cm2)
8QG

do (D)
di (D)

R2(A)

44
0.0

—22.475
—1.515

1.826
0.054

—0.007
2.36

—0.136
0.052 5

—0.003 34
0.056 9
0.5
0.1

55
0.0

—13.19
—2.597

1.109
0.064

—0.007
3.8

—0.124
0.027 9

—0.002 45
0.043 1

0.5
0.1

(u'=2, J'= 1 Ilk llu =O,J =0)(u'=O, J'= lllkll =O,J=0)-'.
'(u'=1, J'=2IIQllu =O,J =0)(u'=O, J'=2ffQ[[u =O,J=0)

v~(r) =—
5

1/2

p 3
(3.21)

where Q is the quadrupole moment of the molecule.
From this potential the eikonal phase can be easily
rewritten into the form

m, eQ

g 2I Q2+R 2gp(b) = (3.23)

where, in analogy with the dipole case, R2 is a quadru-

g&(b, Q&) =gz(b)Q [ Y2z(Qs)e + Y2 2(Q&)e ],

(3.22)

with
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—2ig b)g(b, a)=gz(b)qo(Qze '+Q e (3.24)

where the operator Q has been defined in Eq. (3.1d) and
the constant q0 is fixed in order to have

& U =»'=2ll~oQ IIV
=J =o & =Q

(quadrupole moment).
When the quadrupole interaction is included, the

eikonal phase is given as

y(b, &)=yD(b, a)+yg(b, a) . (3.25)

In order to calculate the matrix elements of e'+' ' ', we
will make the assumption that

L XQ

(3.26)

The derivation of this expression follows the one given
above in Eqs. (3.14) and (3.15). The calculation of the
matrix elements of this operator is rather technical and is
given in Appendix B.

The inclusion of quadrupole interaction introduces an
additional term to the scattering amplitude Eq. (3.18),
namely

FI, (q) =F&,(q)+Fg(q),
where

(3.27)

FP(q) = i'™-MlIS dbJM ~(q~)e'

X O'J'M' e gQ 1

pole cutoff radius.
In terms of algebraic operators, we will express the

eikonal phase as

ergy E, =20 eV. The parameters used are given in Table
II. The Hamiltonian constants of Eq. (3.4) are derived
from molecular constants [24]. The whole set of parame-
ters is given, namely h0, A, 8, and X, even though only
the total number of vibrons, N plays an important role in
the calculation of all the matrix elements given above.
The dipole and quadrupole moments are from Ref. [24]
and the constants d0, d „and k are derived according to
Ref. [15]. The dipole cutoff radii have been arbitrarily set
to the values given in Table II. This limitation is com-
mon to all the DCO models and is the main drawback of
the phenomenological approaches as compared with the
more sophisticated ab initio calculations.

The differential cross section for the various rotational
transitions in e +HF and in e +HC1 collisions are
given in Figs. 1 and 2, respectively, for the vibrational
elastic channel.

In Figs. 3 and 4, and 5 and 6, the same quantities are
shown for the excitation of the first and the second vibra-
tional bands through the long-range dipole interaction.
The FBA results, calculated using the same dipole matrix
elements (see Table II), as those resulting from our calcu-
lations made with the operator in Eq. (3.7), are also
shown in the figures for comparison. One can realize
that, as should be expected, the FBA and the algebraic-
eikonal calculations approach a common value at very
small scattering angle. However, due to the higher-order
approximation, the algebraic-eikonal approach leads to
different selection rules for the excitation of the various
rotational states, more realistic if compared to the simple
FBA. This was already evident from the calculations of
Ref. [18],made with the Crlauber approximation.

It can be noted from Figs. 3—6 that, as comapred with
the vibrationally elastic channel, the excitation of the
J' =2 states contributes differently to the difFerential
cross section. In fact at large angles, the excitation of

+y&(b)e l
UJM )

Xe 'd P~, (3.28)

where the calculation of the integral in drab can be per-
formed analytically and the result is given in Appendix B.
It can be noted from Eq. (3.28) that the calculation of the
scattering amplitude is reduced to the calculation of a
single integral over the impact parameter b.

At this point, the differential cross section can be cal-
culated with Eq. (3.19), replacing F&;(q) with F&;(q).

IV. A NUMERICAL EXAMPLE

~R
C&

2=
I

0

Q 'o

~~~ \

1-0

2-0

In order to check the formulation proposed in the
preceding section we will show the calculation of the
scattering cross section for electron collision with two di-
atomic targets. These are supposed to be schematic cal-
culations even though, in order to have a realistic set of
parameters to use in the computation, two actual mole-
cules, HF and HC1, have been chosen as molecular tar-
gets.

The differential cross section for the e +HF and
e +HC1 scattering has been calculated at a collision en-

3-0

I I I I I I I

20 40 60 80 100 120 140 160 180

Scattering angle (deg)

FIG. 1. e++HF differential cross section for the vibrational
elastic scattering at E, =20 eV. The various rotational contri-
butions are shown separately. X denotes the cross section
summed over the rotational states J'.
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FIG. 2. e +HC1 differential cross section for the vibrational
elastic scattering at E, =20 eV. The various rotational contri-
butions are shown separately. X denotes the cross section
summed over the rotational states J'.

FIG. 4. e +HC1 differential cross section for excitation of
the v' = 1 vibrational band at E, =20 eV. The various rotatiqnal
contributions are shown separately. X denotes the cross section
summed over the rotational states J', whereas FBA denotes the
calculation made using Eq. (2.9).

this channel is comparable with the J'= 1 channel which
is instead overall dominant in the vibrational elastic case.
This result induced us to pursue the inclusion of the
quadrupole interaction which should favor even more
than J'=2 state.

In fact, this is already evident from Figs. 7 and 8 where
the differential cross section for the vibrational elastic

channel is shown in the case of dipole-plus-quadrupole in-
teractions. Even more pronounced is the same effect on
the vibrational excitation cross sections shown in Figs. 9
and 10.

The main effect of the inclusion of the quadrupole in-
teraction is on the J'=2 and on the J'=0 channels. This
is due to the quadrupole operator selection rules. How-

g0

M
I'I)

Q 'co

~ ~ g

Mg

2-0

3-0 X 0-0

~U

g0

Q 'c&

I I I I I I I I

20 40 60, 80 100 120 140 160 180
Scattering angle (deg)

FICJ. 3. e +HF differential cross section for excitation of
the v'= 1 vibrational band at E, =20 eV. The various rotational
contributions are shown separately. X denotes the cross section
summed over the rotational states J', whereas FBA denotes the
calculation made using Eq. (2.9).

I I I I I I

0 20 40 60 80 100 12C 140 160 180
Scattering angle (deg)

FIG. 5. The same as in Fig. 3 for the v'=2 band.
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FIG. 6. The same as in Fig. 4 for the U'=2 band.
FIG. 8. e +HCl diff'erential cross section for the vibrational

elastic scattering at E, =20 eV. Dipole-plus-quadrupole in-
teraction is included simultaneously.

ever, from our experience it came out that also the cutoff
radius Rz affects the results particularly at large angles,
even though the relative contributions of the various J'
channels remain practically independent on the cutoff
procedure. The values of Rz used in the present calcula-
tions were such that in the case of pure quadrupole in-
teraction we were able to obtain a cross section for the
J' =2 channels convergent to the FBA values for this in-
teraction.

Moreover, it should be noted that at large angles the
Glauber approximation is questionable and it has to be
born in mind that other short-range types of interactions
should be included into the model. In fact, exchange and
correlation-polarization interactions play an important
role, particularly for vibrational excitation as shown, for
instance, by the coupled. -channel calculations of Refs.
[25,26]. As already mentioned, the inclusion of short-
range interactions through combined algebraic and
close-coupling methods has been recently achieved for
the case of rotational excitation by the hybrid approach
[l31

2-0
~op~ ~as~1-0 ~~~aa~e

0
IH:

V3
N
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~hi@. W' ~ 0hm
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Q
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Scattering angle (deg)

FIG. 7. e +HF differential cross section for the vibrational
elastic scattering at E, =20 eV. Dipole-plus-quadrupole in-
teraction is included simultaneously.
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FIG. 9. The same as in Fig. 7 for the U'=1 band.
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APPENDIX A: MATRIX ELEMENTS
FOR DIPOLE TRANSITIONS

The reduced matrix elements of the operators given in
the text, necessary for the calculation of the scattering
amplitude, are

& u'J + 1IID II
UJ & =5.. .[(J+ 1)(N +2 u+ J +2)

x (N —2u —J)]'

Q
I I I I !

0 20 40 60 80 100 120 140 160 180

Scattering angle (deg)

FIG. 10. The same as in Fig. 8 for the v'=1 band.

& u'Jlle 8+Be lluJ &

=(& vJ'll& II» &+ & u'J'IID Ilu'J & )

x &u'le lu &,

where

v'& v, Av =v' —U,
1/2

(A2)

(A3)

V. CONCLUSIONS
&v'Ie Iu&=( —1) '&hule Io&

v!Ev!

Two main targets have been achieved in the present
work. The erst is the inclusion of vibrational excitation
in the algebraic approach to the calculation of the
scattering cross section for the e + molecule collision
process in the Glauber approximation. This has been
done introducing into the algebraic-eikonal formalism an
appropriate dipole transition operator which can induce
vibrational excitation. The second is the inclusion of the
quadrupole interaction potential into the same frame-
work.

As far as the vibrational excitation for dipole interac-
tion is concerned, a simple analytical expression for the
matrix elements involved in the calculation has been de-
rived, making the calculation feasible without recurring
to numerical diagonalizations. This can be considered
particularly useful for the generalization of the algebraic
approach to the collision process of electrons with polya-
tomic molecules.

The inclusion of quadrupole interaction improve the
potential description of the scattering process even
though the drawback of DCO models could not be avoid-
ed at the present status of the theory.

Finally, we would like to remark that the inclusion of
the vibrational excitation as well as of the quadrupole in-
teraction could be easily introduced into the framework
of the hybrid approach in order to make the algebraic
techniques suitable for more realistic calculations of the
scattering cross section for the vibrational excitation in
the electron-molecule collision process.
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U Kv, AV=U U

1/2
(A4)

&vie lo&=
u!(X—u )!

e —1

e +1
e +1

2

'N

(AS)

The matrix elements of the two terms of the dipole transi-
tion operator given in Eq. (3.7) can be calculated from re-
lations (Al) and (A2).

APPENDIX 8: SCATTERING AMPLITUDES
FOR QUADRUPOLE INTERACTION

The matrix elements of the first term in Eq. (3.26) al-

ready given above in Eq. (3.11), with Eqs. (3.16a) and
(3.16b). Those of the second term can be calculated as
follows. We first note that

&
u'J'M'le' yg(b) I

uJM &

&u'J'M'le lu "J"M"
&

tt Jll ~ll
7

x &v "J"M"ly~(b)luJM &,

where we have dropped & in the notation because it is
inessential here. It is convenient at this point to calculate
the quantity

f &v J M'Ie '
y~(t )IvJM &e 'dP, ,

0

because some selection rules can be applied in this case.
The result of the integration, using (81), is
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2~~i.,M —Mnz(b)eo & & u'J'M'le lu "J"M"
&

v "J"M"

X & u "J"M"
~ QM. , ~ ~

uJM &,

(B2)

& ~'J'll Q II~J &
= —v'5(2J'+1)(2J + I ) X,

where

6) 1 co 1

2 2

(B4)

X &u "J"M"~e
"o' '~uJM &, (B3)

with v"=v' —1,v', v'+ 1, J"=J' —1,J',J'+ 1, and
M"=M' —2,M'+2.

It is worth nothing here that, even though the summa-
tions in Eqs. (B2) and (B3) run over three indices, the
selection rules of Q keep the calculation easily manage-
able. Moreover, in actual situations the calculation has
to be performed for the initial molecular state with v =0,
J =0, and M =0. In this case, only the values v"=0, 1,
J"=0,2, and M"= —2, 2 are to be included in the sum-
mations.

We finally give here the reduced matrix elements of the
quadrupole operator defined in Eq. (3.1d) appearing
above in Eqs. (B2) and (B3):

with v"=v —1,v, v+1, J"=J—2,J J+2, and
M" =M —2, M +2. The matrix elements of Q are given
below. Analogously,

f & u'J'M'~X&(b)e ~uJM &e

'drab

0

=2~~,, M M~, (b)~o

x g &u'J'M'IQM. M. lu "J"M"
& 6) CO Jt

2 2

CO CO (N+2)
to =co, X= ——J (to+ 1)

2 2 2
1 1 2

co+ 1 co+ 1

2 2

ct)+ 1 co+ 1co'=co+2, X=
2 2

1 1

X (co+ I )(N co)(N +co—+4)
4(co+3)

where co:N —2u and I
.—. .

I denote 9j symbols.

1/2

s 1 g~ =co 2, X= J
2 2

1 1 2
1/2

X (co+ I')(N co+—2)(N +co+2)
4(co —I )
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