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A theoretical study of electron emissions resulting from ionzation of light hydrogenlike projectiles in

ion (atom)-atom collisions with heavy targets is presented with emphasis on backward observation an-

gles. Angular and energy distributions of the ejected electrons have been calculated with various ap-

proximation methods, which agree with or can be traced to the impulse approximation with the exact
off-energy-shell transition amplitudes. Comparisons with experimental data have been made for col-
lisions of H and He+ with Ar. We find good agreement for both the electron angular distributions and

the angular variation of the peak position. Our results show that electron loss at backward angles is

dominated by elastic scattering of the projectile electron in the strong field of the heavy target. A reli-

able representation of the potential and a high-order theory for scattering at this potential are required

to describe the experiment accurately.

PACS number(s): 34.50.Fa, 34.10.+x, 34.80.Bm

I. INTRODUCTION

One of the fundamental processes occurring in ion
(atom)-atom collisions is the ejection of electrons into the
continuum. Study of the angular and energy distribu-
tions gives valuable information about the ionizing mech-
anisms and the atomic structure of the participants. De-
tailed comparison between experiment and theory using
various projectiles and targets at different impact energies
also provides sensitive tests of theoretical descriptions of
the ionization process [1].

Electron emission becomes considerably complex and
interesting when the impinging projectile carries elec-
trons into the collision. In this case both target and pro-
jectile ionization contribute to the total electron spec-
trum. Furthermore, either of the collision partners can
be ionized with the other either staying in the ground
state or being excited to a discrete or continuum state.

The pioneering experimental studies were carried out
by Burch, Wieman, and Ingalls [2] for heavy ion-atom
collisions and by Wilson and Toburen [3] for molecular-
ion —molecule collisions. A broad peak was discovered
which was attributed to electrons emitted from the in-
cident ions, frequently referred to as the electron-loss
peak (ELP). It should be noted, however, that the dom-
inant ionizing mechanisms that lead to the formation of
the ELP are very different at either small or large angles.
At forward angles the peak originates in a soft collision
with the target and takes the form of a cusp at very small
angles, i.e., the electron loss to the continuum (ELC)
peak. On the other hand, the backward ELP is known to
result from a head-on binary collision between a projec-
tile electron and the target core.

The first treatment of projectile and target ionization
in atom-atom collision was given by Bates and Griffing
[4] using the first-order Born approximation. Burch,
Wieman, and Ingalls [2] proposed a simple model for the
ELP which assumed that projectile electrons scatter

elastically at the target. The final distribution of elec-
trons lost from the projectile is obtained by convoluting
the elastic-scattering cross section over the Compton
profile of the initial state of the projectile electron. This
model was subsequently extended by Duncan and Menen-
dez [5] using more realistic optical-model elastic-
scattering cross sections and is often called the elastic-
scattering model (ESM). Using a first-order Born ap-
proximation Drepper and Briggs [6] have stressed simi-
larities between the ELP and target ionization with help
of a Galilei transformation from the projectile rest frame
to the laboratory frame. It has been shown, however,
that the first-order Born approximation is insufficient for
heavy targets [7] due to the strength of the perturbation.
In this case a higher-order theory is necessary [8,9].

As first pointed out by Bates and Griffing [4] two in-
dependent channels contribute to projectile ionization in
atom-atom collisions: the projectile electron can be
knocked out by the screened target nucleus or by a target
electron. The former is usually referred to as the singly
inelastic (SI) channel since the target can (but not always)
remain in its ground state. Similarly, the latter is referred
to as the doubly inelastic (DI) channel since the target is
excited or ionized. To the extent that these two channels
lead to different final states they are to be added in-
coherently. A more precise definition of these channels is
presented in Sec. II. Several calculations for electron loss
[9,10] have included the DI channel in the first-order
Born approximation. The relative importance of the two
channels depends on the region in velocity space as well
as the collision system.

Since the discovery of the ELP, ejected electron spec-
tra have been measured for a variety of projectiles and
targets by numerous authors [11—14]. One of the princi-
pal difficulties is the separation of the pure target ioniza-
tion and of the projectile electron-loss components in the
total yield of electrons. Recently developed coincidence
techniques have aided in the understanding of the mecha-
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nisms leading to target ionization and projectile electron
loss [15,16].

The present work was motivated by an unresolved
discrepancy between theory and experiment for the singly
differential cross section (SDCS) for electron loss at back-
ward angles in collisions of 0.5 —0.8 MeV/u He ions
with He, Ne, and Ar targets [9,17]. Theoretical SDCS's
have been found to be systematically smaller then their
experimental counterparts by an amount that ranges
from a factor of 2 to a factor of 4. The discrepancy is
particularly intriguing considering the good agreement
between theory and experiment at small angles where
post-collisional distortions are much more important
than at backward angles. Electron emission into large
angles through a hard binary collision is thought to be
one of the simplest mechanisms for ionization for which
even classical binary encounter theory has been success-
fully applied [18].

Since the DI channel contribution to the cross section
at backward angles can be shown to be negligible for
heauy targets [9,19] our study concentrates on an im-
proved treatment of the SI channel. The impulse approx-
imation (IA) treats the scattering of the projectile elec-
tron in the strong target field to all orders. In line with
previous investigations it serves as the starting point of
our analysis. More specifically, we formulate an impulse
approximation with the exact o8'-energy-shell transition
amplitude in a time-dependent approach. By involving
additional peaking and on-shell approximations we illus-
trate the relation of the exact impulse approximation to
other models such as the ESM, the binary encounter ap-
proximation, and other on-shell impulse approximations.
We find that for collisions involving heavy targets the
cross sections for emission into large angles is very sensi-
tive to the choice of the interaction potential and of the
approach to the energy shell. %'e find the exact impulse
approximation to be in good agreement with the experi-
ment. Unless otherwise explicitly noted, atomic units
(a.u. ) e =m, =6= 1 are used throughout the paper.

II. IMPULSE APPROXIMATION

the probability for projectile ionization by P (I) and the
probability for target excitation to a final state n by
PT(n), we have

P~(I) =P&(I)PT(0)+P (I) g PT(n),
n (%0)

where we denote the initial target state by 0. In the cal-
culation of Pz(I) the charge distribution of the target in
its ground state is used. While this may be a crude ap-
proximation for a process involving also simultaneous
target ionization with large energies of the ejected elec-
tron, Eq. (1) nevertheless shows that the uncorrelated DI
processes, apart from the inaccuracy of the potential, are
implicitly included in the SI channel within the indepen-
dent particle model. Correlated DI processes due to
electron-electron scattering, on the other hand, amount
to a breakdown of the independent particle model and
represent true scattering correlations [20].

We consider a hydrogenlike projectile of nuclear
charge Zz, mass Mz, and speed U incident on a target
atom of nuclear charge ZT and mass MT. The geometry
of the collision system is depicted in Fig. 1. We use the
semiclassical approximation in which the internuclear
motion is described classically and the electronic evolu-
tion quantum mechanically. This approximation is
justified in view of the large reduced mass
p=MPMTl(MP+MT) and the corresponding small de
Broglie wavelength 1/pU « 1. Furthermore, the internu-
clear motion is approximated by a straight-line trajectory
with R =b+ vt, where b denotes the impact parameter.

The exact transition amplitude is given by

af;(b)= i f dt(p—f(t)~ V~/,+(r) & (2)

where pf(t) is the final state of the ejected electron and

g,+(t) is the exact scattering wave function propagated
from the initial state P;(t) with outgoing boundary condi-
tions, V is the interaction of the projectile electron with
the target. We replace the exact wave function g,+(t) by
its impulse approximation (IA),

(3)

We consider in the following the SI channel. The DI
channel has been shown in the first-order Born approxi-
mation to be negligibly small at backward angles [9]. For
heavy targets this remains true when higher-order Born
terms are included [19]. We note, however, that for light
targets electron-electron scattering contributions can no
longer be neglected. It is important to realize that, in ad-
dition to the DI process caused by electron-electron
scattering referred to in the following as the correlated DI
process, there is a second, doubly inelastic process due to
simultaneous projectile ionization and target excitation
or ionization: independent but simultaneous projectile
electron scattering at the screened target nucleus and tar-
get electron scattering at the screened projectile nucleus.
We refer to this process in the following as the uncorre-
lated DI process. It should be noted that, within the limi-
tations of the independent particle model [20], the un-
correlated DI process is approximately included in the
perturbative calculation of the SI channel. If we denote

where P;(q, t) = (q~P;(t)) is the momentum space repre-
sentation of the initial state and 1'+ represents the scat-
tered electron wave of initial momentum q

(
& q2+ y)q+ ] 2q+

Mp

FIG. 1. Geometry of the collision system.
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a&~(b)= i f—dt dpdqP&(p, t)(pl Vlf~ )P;(q, t), (5)

satisfying outgoing boundary conditions. g+ describes
the exact propagation in the target potential V while the
interaction with the projectile enters Eq. (3) only through
its initial momentum distribution known as the Compton
profile. Therefore the IA is expected to be valid for high
impact speeds Z~/U &(1, which is satisfied in our case
for light projectiles Z~ = 1 at energies )0.5 MeV/u.

Substituting (3) into (2) and inserting a complete set of
plane waves yields

where the integration limits are understood to extend
over +~. In (5) the two-body T matrix element can be
identified as

(6)

which is the transition amplitude of a free electron with
incident momentum q to a final momentum p. In general
lqlA lpl, i.e., (6) is off-energy shell and is not directly re-
lated to any physical observable.

After integration over time in (5) which gives rise to a
5 function, we arrive at the exact transition amplitude in
the IA,

kf +U 2ci
a&; (b) = —2m. i exp(ik& b) f dqd p 5 q v— exp( —iq b)T&;(p+v, p+v+q —k&)g» *(p)@;(p+q—k/)

q, = ( k& + U
—2c,; ) /2u . (9)

%'ithout the replacement by a plane wave, the Fourier
transformation of the initial state in Eq. (8), y; should be
replaced by the inelastic form factor

S/;(p)=(qr& lexp( ip rJ, ) y;—) . (10)

SI, (p) should be used at small angles or small energies of
the ejected electron. From (8) we find the doubly
differential cross section (DDCS) as a function of the en-
ergy and angle of ejected electrons

with kf being the ejected electron momentum in the labo-
ratory frame and y& (p) is the momentum space repre-
sentation of the final continuum state given by an incom-
ing Coulomb wave in the projectile rest frame with ener-

gy ef p(kf v) .
For electron emission into backward angles where

kf —v is large, the Coulomb wave yf can be replaced
by a plane wave. Independent numerical checks confirm
the validity of this replacement near the EI.P originally
suggested by Drepper and Briggs [6]. The exact impulse
approximation with plane-wave final states reduces to

a&; (b)= — exp(ikI b)gA 27Tl

U

X f dqiexp( —iq b)T&, (k&, q)y, (q —v)

with q=q, +q~v and

imations. The underlying idea in each case is that the
on-shell T matrix element

l T&, l
becomes proportional to

the elastic cross section for the scattering of an electron
at the target core. The approach to the energy shell is
not unique and as will be shown below, leads to
discrepancies at backward angles.

Frequently employed on-shell approximations (OSA's)
include the following choices.

(a) The form of OSA to (ll) recently introduced by
Hartley and Walters [9] consists of keeping the exact
momentum transfer q —kf and choosing an approximate
energy according to E =max(k&/2, q /2). This choice of
E ensures that the largest possible momentum transfer
for a given pair (k&, q) is less than 2V2E, a relation
satisfied in elastic scattering with well-defined energies.
The T matrix element in (11) is therefore replaced by

16m
l TI; (kI, q) l

=o,i(E, cos( 8,&)), (12)

where the effective scattering angle for elastic scattering
0,&is given by

cos(8,tt)=1 —
lq k&l /4E . — (13)

It should be noted that the effective scattering angle re-
sulting from the imposed constraints on E and on the
momentum transfer is related to the true scattering angle
8=cos '(q k&) as follows:

sin (8,ir/2) —sin (8/2)

4 kf +U 2E;
k dq6 q

=(a +b —2ab cos8)/4a —sin (8/2)
= —(a b)(a +b —2a cos—8)/4a2, (14)

X lT/'(kf q)y, (q —v)l' .

We refer in the following to (g) and (11) as the exact
impulse approximation (in spite of the approximation of
the liberated electron by a plane wave) since it contains
the exact off-shell two-body T matrix element. Further
frequently used approximation can now be derived from
(8) and (11)by invoking various forms of on-shell approx- dq&~e& E,cos Oeff ~ i (15)

where a =max(q, k&) and b =min(q, k&). For backward
scattering angles (8)m/2), sin (8,z/2) —sin (8/2) is al-
ways negative and since sin (8/2) is a monotonically in-
creasing function for 0 ~ 0 (m, the effective angle is
smaller, i.e., 0,&(0. Finally the DDCS is given by
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5(q v —uq, ) =5((q +u )/2 —uq, ) . (16)

This leads to a constraint in the magnitude of q of the
form

(b) An alternative OSA can be devised by noting that
the momentum distribution (i.e., the Compton profile) is
strongly peaked around q= v or q —v =0. Therefore the
energy-conserving 5 function in (11) is modified such that

netic energy of the scattered electron (q' —v) /2, as seen
in the projectile rest frame, must be equal to the asymp-
totic kinetic energy (kf —v) /2 after escaping from the
projectile potential with a local value at the point of the
collision, V(r) =e; —(q —v) /2.

The corresponding SEA cross section is given by

d2 BEA

J d q o,~(q /2, cos8) I p; (q —v) I

qo/2=kf /2 —a; . (17) X5(q /2 —q' /2) . (24)

Conservation of the exact momentum transfer q —kf re-
quires the replacement of the off-shell T matrix in (11)by
the elastic differential cross section

16ir
I Tf'(kf, q)I —=o',~(qo/2, cos(8,~))

with

cos(8,~)=1—
Iqo

—kf I /2qo .

The effective scattering angle in this approximation is re-
lated to the true scattering angle 0 through

sin (8,fr/2) —sin (8/2)

De6ning p =q —v a simpler expression for the cross sec-
tion can be obtained by integrating (24) over the angle
cosO =p v)

d2 BEA Q p

dZdn
=

~ ~
X J dPcr, ~(q' /2, cos8),

0
(25)

where P is the azimuthal angle of p (or q) and p;„and
p,„are the minimum and maximum values for which
Eq. (23) can be satisfied. It is important to note that
cr,~(q /2, cos8) is not axially symmetric with respect to v
and is therefore P dependent.

= —(qo kf )(qo+—kf —2qocos8)/2qo . (20)

As is the case in choice (a), the effective scattering angle
is also smaller, i.e., 0,&~0. However since q0 kf ls
small [Eq. (17)] 8,~ is closer to the true scattering angle
than in (a). The DDCS is now of the form

d
kf f dQ~ oct(qo/2, cos(8,tr))ly (qo

(21)

The physical picture underlying (21) is that the doubly
differential cross section is determined by a subset of the
Compton profile lying on a surface of constant qo [Eq.
(17)], which is scattered into the direction of kf. We
point out that the OSA scheme represented by Eq. (21) is
essentially equivalent to the ESM proposed by Burch,
Wieman, and Ingalls [2). The only difference appears to
be that the initial binding energy of the projectile electron
is explicitly taken into account in Eq. (21).

(c) In the binary encounter approximation (BEA) origi-
nally proposed by Bonsen and Vriens [21] the direction of
the outgoing electron j f rather than the momentum
transfer is preserved. This implies the following replace-
ment for the T matrix element in (11),

16m IT(kfq, q)l =o„(q /2, cos8) . (22)

(kf —v) /2=(q' —v) /2 —(q —v) /2+a, (23)

The latter has an obvious physical interpretation: the ki-

Unlike the two previous approximations the elastic cross
sectioned depends on the true scattering angle. The ener-

gy conserving 5 function in (11) is now replaced by
5(q /2 —q' /2), where the energy E =q' /2 for elastic
scattering is determined from the relation for an impul-
sive momentum transfer in the projectile field

III. EI.ASTIC SCATTERING IN THE TARGET
POTENTIAL

Since both the exact two-body T matrix element as well
as its on-shell approximations determine the behavior of
the electron-loss cross section we have investigated the
elastic electron scattering in the effective target potential
in detail. In our calculation we have used a parametrized
model potential [22] for the static potential of the Ar tar-
get. We have tested this model potential by comparing it
with the electrostatic potential calculated with the
Hartree-Fock method. For r ~ 2 they are virtually identi-
cal. Since at backward angles the small-r region is most
important, it is therefore appropriate for our purposes.
The calculation of the exact scattered wave [Eq. (4)]
proceeds most easily with' the help of a partial-wave ex-
pansion. The resulting elastic-scattering cross section for
electrons on argon can be tested by comparison with ex-
perimental data. In Fig. 2 we display the elastic cross
section for electrons on Ar with a typical energy of 200
eV. The calculation with the effective potential is seen to
agree within 20 Jo with experimental values. It indicates
that exchange effects are small in 0.5 MeV/u energy
range [24].

One characteristic feature of the scattering cross sec-
tion is a rise at large angles (8~ 130 ). Since this struc-
ture will eventually survive the convolution with the
Compton profile [Eq. (11)] it is important to understand
its origin. Figure 3 displays the decomposition of the to-
tal elastic cross section into partial-wave components.
The rapid decrease with l is characteristic for heavy neu-
tral targets. For small l (or impact parameter b) the elec-
tron is influenced by a strong, only slightly screened,
Coulomb potential. For moderately high l, however, the
electron interacts with an essentially neutral -target with
which the interaction is, apart from polarization forces,
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FIG. 2. Quantum and classical cross section for elastic

scattering of 200-eV electrons at Ar. ( — ) quantum-
mechanical result; ( ———), classical result; { ) experimental
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FIG. 4. Classical deflection function for elastic scattering of
200-eV electrons by Ar. The rainbow occurs at an impact pa-
rameter b=0.2, corresponding to an angular momentum of
/ —1. The glory is around b=0.4, where the curve crosses
0= —m.
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FIG. 3. Partial-wave decomposition of elastic cross section
for 200-eV electrons on Ar. Each partial-wave contribution o.

~

is normalized to the total cross section o,

negligible. The fact that only a few partial waves
efFectively contribute results in the oscillatory structures
in the elastic di6'erential cross section. In fact, in a
simplified model with partial-wave contributions only
from I =0 and l =2, the angular distribution rejects the
nodal structure of the Legendre polynomial P2 with mini-
ma at O=54' and 126 and maxima at 0, 90', and 180'.
The latter accounts qualitatively for the structures seen in
Fig. 2.

These structures are to be distinguished from classical
rainbow and glory singularities present in the classical
cross section also shown in Fig. 2. Their origin can be
traced to the classical deAection function shown in Fig. 4.

Recalling that the classical cross section is given by

db;
b;sinO, . ' d 8

where i runs through all impact parameters contributing
at a given observation angle O, it is seen that a singularity
can occur if either deldb or sin8 is zero. The former
gives rise to a rainbow, the latter to a glory. In the neigh-
borhood of the rainbow or the glory, there are three im-
pact parameters leading to the same 8 (see Fig. 4). Since
0(b~ ~)=0 and 8(b~O)= —~, the occurrence of a
rainbow for fast electron-atom collisions requires the de-
crease of the deAection function to below —m at finite im-
pact parameters. The prerequisite for the latter is a local-
ly strong attractive potential as can be found near the nu-
cleus of a heavy target. Thus, the strong variation of the
target potential is the origin of both the quantum in-
terference of a limited number of partial waves and of the
classical rainbow. However the rise of the cross section is
not a classical rainbow or a glory. In order to investigate
the relation between the quantum-mechanical and classi-
cal scattering cross section we have tested a semiclassical
approximation [25] that remains valid when the rainbow
is close to m. and overlaps with the glory. The results do
not agree with the exact cross section in either shape or
magnitude. In tracing the discrepancy we found that the
first step of a semiclassical approximation, the replace-
ment of the exact scattering phases by their %'KB limit is
valid, i.e., the resulting cross section agrees to a very
good approximation with the exact quantum-mechanical
result. The latter implies that the De Broglie wavelength
is still sufFiciently small compared to the characteristic
spatial variation of the potential. The breakdown of the
semiclassical approximation occurs in the second step:
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the replacement of the sum over partial waves by an in-
tegral over I (or b). The latter is an obvious consequence
of the fact that only a few partial waves contribute.

We conclude that the enhancement seen at backward
angles is a pure quantum-mechanical effect that can be
traced to the fact that the cross section in Fig. 2 can be
reproduced with very few partial waves. We note that
due to the presence of classical singularities in the elastic
cross sectio~, classical methods should be used with cau-
tion for calculating electron-loss cross section for heavy
targets. Furthermore, classical (or semiclassical) rainbow
and glory structures will be rejected in the quantum-
mechanical cross section when the deAection function for
fast electrons resembles the one shown in Fig. 4 and, in
addition, the range of impact parameters contributing to
the rainbow and glory encompasses a wide range of angu-
lar momenta.

IV. RESULTS AND DISCUSSION

A. Doubly differential cross sections (DDCS's)

In this section we present results for H and He+ on
Ar. Argon was chosen to be representative of heavy tar-
gets because of the availability of experimental data for
these collision systems. We first consider 0.5-MeV atom-
ic hydrogen incident on Ar. Calculations of the doubly
differential cross section (DDCS) for the SI channel at
130 and 150 are compared in Fig. 5 with recent mea-
surements by Heil [16]. A single, broad peak is observed
and identified as the electron loss or binary peak resulting
from projectile ionization. The shape of the ELP is near-
ly symmetric rejecting to a certain extent the Compton
profile of the projectile initial state [H( ls)]. Even though
the widths and positions of the ELP at the two angles are
similar there is a large difference in the peak height. The
ELP at 150 is almost twice as high as at 130 . This can
be qualitatively understood by noting that the elastic

cross section (Fig. 2) increases with angle in the backward
direction. Overall, the agreement between theory and ex-
periment is very good considering that the experimental
data are absolute and no normalization factors are used
in the comparison. At both angles the agreement with
experiment is better on the higher-energy side of the ELP
than on the lower side. The latter is partly due to in-
creasing target ionization contributions at lower energies.
Another source could be the absence of the correlated DI
channel in the theory.

The above calculation has been performed using the
full off-energy-shell T matrix elements (11). In Fig. 6 we
compare the various on-shell approximations we dis-
cussed in Sec. II with the exact impulse approximation
for DDCS at 135' for He+ on Ar at 0.8 MeV/u. We note
that the calculation of Ref. [9] shown in Fig. 6 includes
the correlated DI channel in first-order Born approxima-
tion. However, since the latter has been shown to be
small at backward angles, this inconsistency does not dis-
tort the comparison. Furthermore, since the experimen-
tal data are relative we have adapted the normalization of
Ref. [9] for the SDCS. While the different on-shell ap-
proximations (curves a and b in Fig. 6) reproduce the
shape of the ELP we find remarkable differences in the
magnitude of the cross section. Obviously, the DDCS at
backward angles is extremely sensitive to the on-shell ap-
proximations used. Again, its origin can be traced to the
strong rise of the elastic-scattering cross section at back-
ward angles (Fig. 2). Since an on-shell approximation
amounts, in a simplified picture, to an alteration of either
the exact momentum transfer vector or the final momen-
tum vector, one probes, in effect, the elastic cross section
at different backward angles. In line with this analysis we
find the DDCS at forward angles, i.e., smaller momentum
transfers, is much less sensitive to choice of the on-shell
approximation. In view of the simplicity of the OSA
given by Eq. (21) (curve b) and its good agreement with
the exact off-shell IA (curve d), we use this model for the

0,08 0.0 l4,

150

0.06— 0.0 IO
b

0.04—

0.02—

0,002

00(00 200
E (eV)

300 400

FIG. 5. Absolute DDCS for H +Ar at 0.5-MeV/u calculat-
ed with the off-shell IA. ( ) 130' (

———
) 150'. Experi-

mental data from Ref. [16]; ( ) 130'; (4) 150.

300 200 300 400 500 600
E (eV)

FIG. 6. DDCS for He++Ar at 0.8-MeV/u. (a) On-shell IA
from Ref. [9] [Eq. (15)]; (b) on-shell IA [Eq. (21)]; (c) BEA [Eq.
(25)]; (d) off-shell IA [Eq. (11)] (see text). ( ) experimental data
from Ref. [14] normalized to our result.



ELECTRON LOSS AT BACKWARD OBSERVATION ANGLES 7249

calculation of the SDCS and the peak position presented
below.

B. Singly di8'erential cross sections (SDCS's)

The angular distribution of loss electrons, i.e., the sing-
ly differential cross section (SDCS) is obtained by in-
tegrating the DDCS over all electron energies. Figure 7
displays the SDCS for H and He+ on Ar at 0.5 -MeV/u.
The most important observation is that the SDCS closely
resembles the elastic cross section. The rise at large an-
gles following a minimum around 110' is seen to be
present for both H and He+ projectiles. In addition, the
magnitude for the two collision systems seems to be equal
within experimental error bars although the theoretical
calculations show that the SDCS is slightly higher for H
than for He+. The similarity in both shape and magni-
tude can be viewed as a direct experimental confirmation
of the validity of the impulse approximation. Apart from
the different width of the Compton profile, the loss cross
section should be independent of the projectile and only
determined by the interaction with the heavy target.
Furthermore, the good agreement of the IA with the ex-
periment with only the SI channel included confirms that
the correlated DI channel is, indeed, negligible. Previous
discrepancies are due to the choice of on-shell approxi-
mations rather than to an inadequate representation of
the DI channel. Clearly, since only first-approximation
Born calculations are available for the DI channel at
backward angles more elaborate calculations including
higher-order contributions should be performed before
arriving at a more definitive conclusion.

C. Angular dependence of the peak position

It has been experimentally observed [17] that the
dependence of the position in energy of the ELP on the
ejection angle is nonmonotonic. The peak position is

found to be shifted to energies below the position expect-
ed for a binary encounter collision of a heavy particle
with a free electron of well-defined momentum. This is
due to the binding energy e6'ect and to the convolution of
the Compton profile with a rapidly decreasing elastic
cross section as a function of energy. This shift is
displayed in Fig. 8 for the case of He on Ar at 0.5
MeV/u for which we find qualitative agreement between
experiment and theory. We note that the peak position
displays a hump around 110', i.e., the shift is reduced by
a factor of -2. This angle is found to correspond to the
minimum of the SDCS (Fig. 7), which in turn is related to
the minimum of the elastic cross section. We therefore
analyze the dependence of the elastic cross section on the
electron energy around this angle as depicted in Fig. 9.
The 110' curve shows a minimum due to the strong
partial-wave interference at an energy below the free elec-
tron energy U /2. In contrast, the cross section decreases
monotonically from intermediate to large electron ener-
gies, as intuitively expected. The net effect is a reduction
of the cross section on the low-energy tail and an
enhancement on the high-energy tail, and hence, a partial
suppression of the peak shift to lower energies at 0= 110 .

The increase of the peak shift (Fig. 8) at large angles
rejects the fact that the slope of the elastic cross section
(Fig. 9) as a function of k (or E) becomes steeper with in-
creasing E, such that the opposite trend becomes opera-
tive: The high-energy tail of the ELP is reduced relative
to the low-energy tail resulting in an increased peak shift.

The anomalous energy dependence of elastic cross sec-
tion seen in the 110 curve in Fig. 9 has interesting impli-
cations for heavier targets. First, the same behavior is
expected to be found at more than one angle since more
minima in the elastic cross sections are present [26],
which Duncan and Menendez have indeed observed for
H, He+ +Kr collisions [27]. Furthermore, as the target
becomes heavier the minimum (as a function of energy)
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becomes so sharp that it can "burn" a hole in the energy
spectrum such that the DDCS would show two peaks in-
stead of one. This phenomenon has been demonstrated
experimentally and theoretically in a recent study of the
forward-binary-peak splitting [28,29] by partially
stripped heavy-ion impact. By the same token the
enhancement seen at backward angles for electron loss is
also reAected in the forward-binary-electron production
where the magnitude of the cross section for partially
stripped ion impact exceeds that for the fully stripped ion
impact [30—32]. Our present study for electron loss at
backward angles, coupled with the forward binary peak
for target ionization, provides a unified description of the
backward- and forward-binary-electron production
mechanism, whose origin is largely dominated by the
elastic scattering in the respective target or projectile
fields.

FIG. 9. Di6'erential cross section for elastic scattering of
electrons by Ar as a function of the incident momentum k.
( ) 110'(- —-) 150.

V. CONCLUSIONS

Projectile electron loss at backward angles has been
studied for heavy targets. Comparing experimental re-
sults with theoretical calculations using an impulse ap-
proximation with the exact of-energy-shell transition ma-
trix elements, good agreement has been obtained for both
the DDCS and the SDCS for H impact of Ar. The cal-
culated SDCS as well as the angular variation of the peak
position for He+ on Ar have also been found to be in
good accord with experiment. It is therefore concluded
that for heavy targets like Ar, the singly inelastic channel
is the dominant ionizing channel at backward angles.

We find the properties of the electron emission spec-
trum to be largely governed by the elastic-scattering pro-
cess at the heavy target. A reliable representation of the
target potential and an accurate treatment of the two-
body T matrix element for scattering in the target field is
therefore a prerequisite for a successful description. The
present analysis stresses the similarity in the underlying
mechanism for electron loss at backward angles in col-
lisions with heavy targets and for the target binary peak
at forward angles in collisions with partially stripped
heavy projectile ions.

We conclude by noting that the application of the
present analysis to light targets does not account for the
previously noted diferences between theory and experi-
ment. Evidently, other ionizing mechanisms play an im-
portant role. Work is in progress in this direction using
(i) a second-order Born approximation for the correlated
DI channel and (ii) a modified SI theory that can account
for processes such as the transfer of a projectile electron
to the continuum of the target.
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