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Hyperspherical approach to double-electron excitation of He by fast-ion impact
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Double-electron-excitation processes of He atoms by proton, antiproton, and C +-ion impact have

been theoretically investigated using the second-order Born approximation and the close-coupling
method in the energy regime of MeV/u. The semiclassical impact-parameter method with a straight-
line-trajectory approximation is employed to describe the collision processes. Hyperspherical wave

functions are adopted to take full account of the strongly correlated motion of two atomic electrons in

He. For proton and antiproton impact, it is found that the first-order mechanism dominates for excita-
tion to the (2s2p) 'P' excited state, while the second-order processes play a significant role in excitation
to the (2s2s) 'S', (2p2p)'S', and (2p2p) 'D' excited states at a few MeV/u. It should be noted that the
doubly excited (2s2p) 'I" state plays an important role as an intermediate state in these second-order
processes in addition to the singly excited 1s2p 'I" state. It is also found that the difference for the
double-electron-excitation processes by proton impact and by antiproton impact is much smaller than
that for the double-ionization processes in this energy range. For the C +ion impact, higher-order
mechanisms play more important roles at a few MeV/u. The excitation mechanism is also discussed
based on the classification scheme of the correlation quantum numbers, which enables us to obtain a
more direct physical insight into the collision mechanism.

PACS number(s): 34.50.Fa, 31.50.+w, 31.20.Tz

I. INTRODUCTION

Recently much research has been done to understand
the mechanism of electron correlation experimentally and
theoretically. In studying the role of electron correlation
in ion-atom collisions, there are several interesting phe-
nomena such as double excitation, double ionization,
double charge transfer, transfer excitation, and so forth.
In 1986, Andersen et al. carried out an experiment at
CERN on double ionization of He atoms at a few MeV/u
impact energy by proton and antiproton impact [1]. In
their experiment, it has been found that the cross section
by the antiproton impact is about two times as large as
that by the proton impact in spite of the high impact en-
ergy used, while both single-ionization cross sections are
almost equal to one another. There have been several
theoretical attempts to explain the difference between the
two sets of double-ionization cross sections [2—6]. Re-
cent studies on double ionization [2,3] have suggested the
importance of electron correlation. However, it is rather
difFicult to treat double ionization theoretically. There-
fore it is quite interesting to investigate the double excita-
tion process

A ~ +He(ls )—+A ~ +He**(2l2l')

because this collision process is the simplest one in which
the correlation efI'ect is expected to play a decisive role.

Z +
Here 2

There have been some experimental and theoretical
studies on process (1). Giese et al. [7] and Pedersen and
Hvelplund [8] investigated these processes experimental-
ly. Giese et al. used e, proton, C~+(q =4—6), and
F~ (q =7—9) as projectile, and measured the sets of the
cross sections from the ground state to the three doubly
excited states (2s2s 'S', 2s2p 'P', 2p2p 'D') at 1.5
MeV/u impact energy. On the other hand, Pedersen and
Hvelplund measured the cross sections to the
(2p2p 'D'+2s2p 'P') state at 1.84 MeV/u impact energy
by e, proton, and C~ + (q =4—6) ion impact. They
could not resolve the 2p2p 'D' state from the 2s2p 'I"
state. Fritsch and Lin [9] made theoretical studies on
process (1), using the close-coupling method with the He
wave functions based on the conf]Iguration-interaction
method.

So far, Matsuzawa and co-workers [11—14] have been
investigating collisional properties of He atoms in strong-
ly correlated high-lying doubly excited states, i.e., how
the He atoms in the correlated doubly excited states
behave when they interact with charged particles pertur-
batively. These studies indicate that the He atoms in
strongly correlated doubly excited states tend to conserve
their internal states as a flexible "e-He +-e" triatom. ic
molecule during the excitation processes except for the
restriction arising from the Pauli exclusion principle.
Namely, these simple propensity rules mainly apply to
first-order processes. However, in actual collision pro-
cesses, second- and higher-order processes may become
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important particularly for the optically forbidden transi-
tions. It is interesting and essential to investigate theoret-
ically the simplest two-electron collision processes such
as process (1) in order to understand the correlation
mechanism in collision dynamics.

The purpose of the present paper is to understand the
role of the correlation effects in the simplest collision pro-
cess, i.e., the double excitation process of He by fast-ion
impact such as the proton, antiproton, and C + ion, in
which the electron-electron correlation is expected to
play an essential role. We expand the total wave function
in terms of the He wave functions whose origin is taken
at the He + nucleus and generate the He wave functions
by hyperspherical-coordinate method to take into ac-
count the electron-electron correlation effects. We calcu-
late the double-electron-excitation cross sections from the
ground state to the four lowest doubly excited states us-
ing (i) the second-order-Born approximation and (ii) the
close-coupling method, and discuss the mechanism of the
double-electron excitation by comparing our calculated
results with those of other experimental and theoretical
studies.

II. THEORETICAL TREATMENT

A. Coupling with the continuum

All doubly excited states of He atoms are embedded
and hence coupled with the continuum, and give rise to
autoionization processes, that is,

He *~He++e
If these lifetimes are comparable to or shorter than the
collision ones, we must consider the continuous states ex-
plicitly, i.e., He +e, to calculate the cross sections
from the ground state to doubly excited states. Accord-
ing to the calculations by Burke [15], the autoionzition
widths of the 2s2s 'S', 2s2p 'P', 2p2p 'S', and 2p2p 'D'
states are 0.00259, 0.000805, 0.000345, and 0.00135
a.u. , respectively. As a result, these lifetimes are estimat-

ed to be longer than 300 a.u. On the other hand, in the
incident energy region of projectiles, i.e., more than 1

MeV/u (the velocity of more than 5 a.u. ), we estimate the
collision time to be about 5 a.u. Therefore the autoioni-
zation lifetime is at least 60 times as long as the collision
time. Hence, in this study, we have ignored the coupling
with the continuum.

V;=Z j + i (3)

B.Method of calculation
and the wave function employed

We neglect the charge transfer channels in process (1)
because charge transfer cross sections are quite small in
comparison with excitation cross sections in the high in-
cident energies studied here. Therefore we expand the to-
tal wave function in terms of the He wave functions cen-
tered on the He + nucleus. We generate the He wave
functions employing the hyperspherical-coordinate
method. This allows us to describe the electron-electron
correlation accurately. Table I lists the states included in
the close-coupling calculation with the labelings based on
the conventional independent particle model and gives
the values of the binding energies calculated from our
wave functions [16—18]. Our calculated energy levels
reproduce those of the close-coupling method plus corre-
lation [15] and those based on the complex rotation
method using elaborate Hylleraas-type trial wave func-
tions [19]within at most a few percent.

We calculate double-electron-excitation cross sections
using two different treatments, namely, (i) the second-
order Born approximation and (ii) the close-coupling
method within a semiclassical impact-parameter forrnal-
ism. For the description of the collision processes, we
have to evaluate the following matrix elements of the in-
teraction potential between the projectile and the atomic
electrons:

TABLE I. Doubly excited states included in the calculation of the cross sections and their binding energies. The first column gives
a set of the quantum numbers for the main electronic configuration based on the independent particle model, the second column
shows a set of correlation quantum numbers, the third column gives the values of the binding energies of the doubly excited states
calculated from our hyperspherical wave functions, and columns (4) —(6) give the binding energies calculated by Fritsch and Lin [10],
Burke [15],and Ho [19],respectively. The unit of energy is the Rydberg. The entries given in parentheses in columns (3) and (4) are
the relative errors (%) for the energies calculated by Burke.

1s1s 'S'
1s2s 'S'
1s2p 'P'
2s2s 'S'
2p2p 'S'
2s2p 'P'
2p2p 'D'
1$3p 'P'

(2s3p +3s2p) 'P'
(2s3p —3s2p) 'P'

2p 3d

[1(0,0)+1] 'S'
[1{0,0)+2] 'S'
[1(0,0)'2] 'P'
[2(1,0)+2] 'S'

[2( —1,0)+2] 'S'
[2(0,1)+2] 'P'
[2(1 0)+2] 'D'
[1(0,0) 3] 'P'
[2(0, 1) 3] 'P'
[2(1,0) 3] 'P'

[2( —1,0) 3]1P'

(3)

—5.791
—4.280
—4.243
—1.545(0.7)
—1.210(2.4)
—1.389(0.2)
—1.399(0.4)
—4.108
—1.123
—1.187
—1.090

(4)

—5.754
—4.278
—4.244
—1.544(0. 8)
—1.154(6.9)
—1.336(3.6)
—1.350( 3.8)

(5)

—1.556
—1.240
—1.386
—1.404

(6)

—1.556
—1.244
—1.386
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Here r k(k =1,2) represent distances between the kth
electron and the projectile, and Z is the charge of the
bare projectile ion. To compute this integral stably, we
transform rzk into the integral expression in the momen-
tum space (Q). Then we have

(
1 j e ij l

2w
(4)

Z +
Here R is the internuclear distance between 3 ~ and
He, and rk is the radius vector of the kth electron. The

ig rktransition form factor for the (j~e "~i) is rapidly de-
creasing as Q increases. The integrand of integral (4)
shows no strong oscillations. To test accuracy of the
evaluation of the integrals, we have made a pilot calcula-
tion taking Q,„=20and 30 a.u. as the upper limit of the
Q integration. The difference is found to be less than
0.2'. Hence we fix Q,„ofthe Q integration at 30 a.u.
throughout the calculation. Finally to test our computer
code, we have confirmed that calculated cross sections
from the ground state to the four singly excited states
(ls2s 'S', Is2p 'P', Is3p 'P', Is3d 'D') reproduce those
by Flannery [20], Hippler and Schartner [21], and van
den Bos [22] reasonably.

C. Classification of doubly excited states

T =0, 1, . . . , min(L, X —1),
%=K—T —I,X —T —3, . . . , —(X—T —1) .

(5)

In addition to the labeling of the doubly excited states
based on the conventional independent particle model,
we employ the classification scheme of the doubly excited
states proposed by Lin [23] in later discussion. This
classification scheme is expressed by the set of the quan-
tum numbers [X(E,T)"n] +'L . Here N(n) is the
principal quantum number of the inner (outer) electron,
and E, T, and 3 are the so-called correlation quantum
numbers and their definitions are given below. Other
quantum numbers I, S, and m are defined as usual.

The quantum number K is proportional to—(r(cosO&2), while T is proportional to ((I.r) )2), and
the quantum number T expresses the projection of the to-
tal angular momentum L, onto the mean molecular axis.
Here r(~) ~

is the radius vector of the inner (outer) elec-
tron and 6&2 is an angle between the radius vectors of the
two electrons. These quantum numbers take the follow-
ing values:

He +-e" molecule. Then the quantum number
U ( =%—K —1) can be interpreted as the quantum num-
ber of the doubly degenerate bending vibrational modes
of the Aoppy "e-He +-e" linear triatomic molecule, while
T is the vibrational angular momentum around the mean
molecular axis. For later discussion, the second column
of Table I lists the labelings based on this classification
scheme corresponding to those of the conventional in-
dependent particle model in the first column.

III. RESULTS AND DISCUSSION

A. Total cross sections

We expand the total wave function in terms of 15, 21,
and 27 states. Then we calculate three sets of the excita-
tion cross section to the doubly excited states by the pro-
ton and C ion impact at 1.5 MeV/u impact energy us-
ing the close-coupling method. Our calculated results are
given in Tables II(a) and II(b). The 15 states included in
the close-coupling (CC) calculation are is is '5', is2s '5',
1$2p I, 2$2$ S, 2p2p S, 2$2p I, and 2p 2p g
states. In the CC calculation with the 21 states included,
we add the ls3p 'P', and (2s3p +3s2p) 'P' states to the
set of 15 states mentioned above. Further in the 27-state
calculation, we add the (2s3p —3s2p) 'P' and 2p3d 'P'
states to the set of the 21 states given above. For the pro-
ton impact [see Table II(a)], we have found that the CC
results with the 21 states agree very well with those with
the 27 states and converge at least within our choice of
the states included. However, for the C +-ion impact
[see Table II(b)], the CC calculation with the 21 states ap-
pears to show somewhat slower convergence for the
2p2p 'S' and 2p2p 'D' states at 1.S MeV/u. This arises
from the fact that the couplings among the doubly excit-
ed states become stronger as the charge of the projectile
is higher. Therefore in the present paper we will discuss
the proton and antiproton collisions using the CC results
with the 21 states, while for the C +-ion impact, we em-
ploy the CC results with the 27 states, though the conver-
gence is not fu11y confirmed.

TABLE II. Comparison among three sets of cross sections
(in units of 10 cm ) for each double excitation process at im-
pact energy of 1.5 MeV/u. Three sets of cross sections are cal-
culated with diFerent size of the expansion, i.e., 15, 21, and 27
states.

The quantum number 3 describes the radial correlation
of the two atomic electrons. This quantum number is set
equal to +( —) if the angular channel function has an-
tinode (node) at a=sr/4 where a is a hyperangle defined
by a=tan '(r2/r, ). Other channels are assigned to
A =0 where their channel functions do not have substan-
tial amplitude around a=+/4 for almost all hyperradius
R [=(r, +r2)' ] but reside away at a=0 or m'/2.
Hence the states with A =0 show weak radial correlation
and are considered to be singly excited. According to the
rovibrator model [24—26], the He atom in the doubly ex-
cited states behaves like a Aoppy linear triatomic "e-

Final state

2s2s 'S'
s2p 'P

2p2p 'S'
2p2p 'D'

2s2s 'S'
2s2p 'I"
2p2p 'S'
2p2p 'D'

15 21

(b) C +-ion
67.7

129.2
19.0

176.6

impact
71.9

131.0
11.3

211.9

(a) Proton impact
0.408 0.409
7.72 7.74
0.128 0.116
0.164 0.191

0.410
7.74
0.115
0.191

71.6
131.0

9.88
207.5
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For the proton, antiproton, and C +-ion impact at 1.5
MeV/u, Table III compares our calculated results of the
CC and the second-order Born calculations with the oth-
er experimental data of Giese et al. [7] and theoretical re-
sults of Fritsch and Lin [9]. Note that the present cross
sections are those of the 21-state CC calculation. In the
second-order Born calculations, we include the 15 states
listed above as intermediate ones. Here the experimental
data by electron impact at the corresponding velocity [7]
are given in Table III(b) because the data by the antipro-
ton impact are not available at present. For the proton
and antiproton impact, our CC results are not in such
good agreement with the others for the processes to all
the doubly excited states. On the other hand, for the
C +-ion impact, our CC results are in qualitative agree-
ment with those by Fritsch and Lin except for the
2p2p 'S' state, but do not agree with those by Giese
et al. The discrepancy between our results and those of
Fritsch and Lin [9] mainly comes from the different types
of wave functions employed in the close-coupling calcula-
tion. Fritsch and Lin used the configuration interaction
(CI) to take account of the electron-electron correlation.
The CI wave functions employed in Ref. [9] include four
main doubly excited electron configurations in addition
to 1s, 1s2s, and 1s2p configurations with the effective
charges optimized [10]. On the other hand, we employ
the hyperspherical-coordinate approach [16—18] to gen-
erate our wave functions. These wave functions are con-
structed based on the adiabatic approximation in a hy-
perspherical coordinate's sense, namely, are written as
the product of hyperradial functions and channel func-
tions. Our 'S', 'I", and 'D' channel functions are ex-
panded in terms of 25, 35, and 47 basis functions, respec-
tively. Table I enables us to assess the quality of the wave
functions employed in our calculations and in Ref. [9]

[compare entries of column (3) with those of column (4)
of Table I]. Hence we consider that our hyperspherical
wave functions are more flexible and reliable for the
description of the electron-electron correlation. It should
be noted that the calculated matrix elements of physical
quantities other than energy are quite sensitive to the
quality of the wave functions employed in comparison
with the case of the binding energy. This may explain the
differences between our double-electron-excitation cross
sections and those presented in Ref. [9].

Table III shows that the second-order Born approxi-
mation can reproduce the close-coupling-type calculation
of the proton and the antiproton impact qualitatively.
This implies that nth higher-order processes with n )2
do not give a significant contribution to double-electron
excitation in the proton and antiproton impact at 1.5
MeV/u. However, it fails to give a reasonable descrip-
tion of the excitation by the C + ion impact at 1.5
MeV/u. This failure is attributable to the fact that the
perturbative approach is no longer valid for the C + im-
pact at 1.5 MeV/u because of the strong interaction with
the higher Z . There is some difhculty in the procedure
of extracting the experimental "total double excitation
cross sections" from the ejected electron spectra. In the
analysis of the ejected electron spectra, one usually uses
the Fano profile with Shore's parametrization. However,
one cannot extract the double-electron-excitation cross
sections from the parameters of Shore's formula fitted to
the ejected electron spectra because of the interference
between the direct ionization and the double-electron ex-
citation [9,27]. With this in mind, we consider that the
comparison between experiment and theory presented in
Table III is still preliminary.

Table IV shows the double-electron-excitation cross
sections at 1.5 and 8 MeV/u by the proton and antipro-

TABLE III. Comparison with other experimental and theoretical results of cross sections (in units of 10 cm ) for each double-
excitation process at impact energy of 1.5 MeV/u. The first column lists final states, the second and third columns give our close-
coupling and second-order Born results. The fourth column shows the experimental data by Giese et al. [7]. The entries in (b) are
the experimental data by electron impact at the same velocity [7] instead of those by the antiproton impact. The fifth column lists the
theoretical cross sections given by Fritsch and Lin [9].

Final state

2s2s 'S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

Close coupling

0.409
7.74
0.116
0.191

Second-order Born

(a) Proton impact
0.622
8.72
0.168
0.164

Giese et al. [7]

0.0318
0.608

1.84

Fritsch and Lin [9]

0.74
3.0
0.45
0.48

2s2s S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

0.314
7.65
0.0981
0.185

(b) Antiproton impact
0.538
8.61
0.145
0.174

0.0816
1.17

0.73
3.3
0.41
0.27

2s2s 'S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

71.6
131.0

9.88
207.5

(c) C +-ion impact
346

1130
112
197

10.9
31.1

170

51.6
162
48.6

156
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ton impact calculated by the close-coupling method. We
also give the cross sections to each doubly excited state
evaluated by the first-order Born approximation in the
same table. Comparing our calculated cross sections
with them, we can assess the importance of the second-
and higher-order processes in the double-electron-
excitation process. Here it should be noted that "order"
of the process is defined with respect to the electron-
projectile interactions, i.e., expression (3). There exist
several terminologies based on the independent particle
model such as "shake-up, " "two-step first-order, " and so
forth which are frequently used in the many-body pertur-
bative approach. However, there is no clear cut way of
separating, for example, the so-called shake-up amplitude
from our calculated amplitude. Hence in later discussion
we will not attempt to interpret our results using the ter-
minologies based on this model. We have found that the
first-order process dominates in the excitation process to
the 2s2p 'P' state, while in the other excitation processes
the first- and second-order processes make comparable
contributions at 1.5 MeV/u [compare columns (1) with
(2) in Tables IV(a) and IV(b)]. At higher 8 MeV/u the
second-order processes make considerable contribution
only to the excitation to the 2p2p 'D' state [compare
columns (1) with (2) in Tables IV(c) and IV(d)]. We have
also assessed the importance of each intermediate state
by evaluating a set of the cross sections with a particular
state excluded from the 21-state CC calculation.

The difFerence between the cross section by the proton
impact a(p) and that by the antiproton impact cr(p)
mainly comes from the interference between the first- and
second-order processes. Figure 1 shows the total cross
sections from the ground state to the four doubly excited
(252s 'S', 2s2p 'P', 2p2p 'D', and 2p2p 'S') states as a
function of impact energy by proton and antiproton im-
pact, respectively. From Fig. 1, we find that the
difference between o (p) and o (p ) for the double-electron
excitation is smaller than that in the case of the double
ionization at 1.5 MeV/u (see also Table III). A set of the
cross sections to the 2s2s 'S' state for the proton and an-
tiproton collisions shows the largest difFerence. Namely,
for this excitation, cr(p) is about 0.409X10 cm, and
o(P) is about 0.314X10 cm at 1.5 MeV/u. The
latter is about 0.8 times as small as the former, while for
the double ionization, the latter is twice as large as the
former [1]. This is different from the conclusion obtained
in Ref. [9] that the largest difference between o.(p) and
0.(P ) is seen for the excitation to the 2p2p 'D' state.

For understanding the mechanism of the excitation
process from the ground state to the doubly excited states
in ion-atom collisions, it is necessary to investigate the
role of the intermediate states in more detail. In order to
study what states is important as an intermediate one, we
truncate one particular state from the set of 21 states, and
calculate the excitation cross section to each doubly ex-
cited state [see columns (3)—(5) in Table IV]. Then we

TABLE IV. Double-electron-excitation cross sections (in units of 10 cm ) of He atoms at 1.5 and
8 MeV/u impact energies by proton and antiproton impact. Column (1) lists sets of the cross sections
calculated with the 21 states by the close-coupling method, column (2) gives those by the first-order
Born approximation, and columns (3)—(5) give the calculated cross sections with the following state ex-
cluded from the set of 21 states: (3), 1s2s 'S'; (4), 1s2p 'P'; (5), 2s2p 'P'. The entries given in
parentheses of column (5) of (a) are the calculated cross sections with the 2s2p 'P'(M =0) state only ex-
cluded from the set of the 21 states.

Final states (2) (3) (4) (5)

2s2s 'S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

0.409
7.74
0.116
0.191

(a) Proton impact at 1.5 MeV/u
0.329 0.415
8.03 7.92
0.074 0 0.119
0.016 8 0.195

0.405
7.75
0.103
0.052 5

0.331(0.344)

0.067 3(0.0891)
0.118

252s 'S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

0.314
7.65
0.098 3
0.185

(b) Antiproton
0.329
8.03
0.074 0
0.016 8

impact at 1.5 MeV/u
0.315 0.320
7.59 7.74
0.099 6 0.073 6
0.182 0.067 3

0.334

0.080 5

0.095 4

2s2s 'S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

0.064 6
2.11
0.016 2
0.009 67

(c) Proton impact at 8 MeV/u
0.061 7 0.064 9
2.15 2.12
0.013 9 0.016 3
0.003 15 0.009 70

0.064 8
2.11
0.015 1

0.004 49

0.061 9

0.013 8
0.006 52

2s2s 'S'
2s2p 'P'
2p2p 'S'
2p2p 'D'

0.061 0
2.08
0.015 3
0.009 67

(d) Antiproton impact at 8 MeV/u
0.061 7 0.061 1

2.15 2.08
0.013 9 0.015 4
0.003 15 0.009 61

0.061 4
2.09
0.013 9
0.005 02

0.062 0

0.014 2
0.005 99
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FIG. 1. Energy dependence of the double-electron-excitation
cross sections of He atoms by proton impact (solid line) and by
antiproton impact (dashed line). The final doubly excited states
are the 2s2s 'S', 2s2p 'P', 2p2p 'S', and 2p2p 'D' ones. The
cross sections are given in units of 10 cm for the processes
to the 2s2s 'S', 2p2p 'S', and 2p2p 'D' states, and in units of
10 ' cm for the process to the 2s2p 'P' state.

compare this cross section with that calculated with the
21 states. When the difference between these two cross
sections is large, we identify the state excluded as an im-
portant intermediate state. Fritsch and Lin [9] con-
sidered the two singly excited 1s2s 'S' and 1s2p 'P'
states as intermediate ones. After several test calcula-
tions with or without these intermediate states, they con-
cluded that these singly excited states are considered
unimportant in the excitation to the doubly excited 'S'
states. We also calculate the excitation cross sections
with the two singly excited states excluded from the 21
states. As a result, we have arrived at results similar to
Fritsch and Lin's [compare column (1) with (3) and (4) in
Table IV(a)]. However, we have also found that the dou-
bly excited 2s2p 'P' state is an important intermediate
state in the second-order mechanisms [compare column
(1) with (5) in Tables IV(a) and IV(b)]. Namely, we have
found that in the excitation processes to the 'S' states
there exist not only the first-order but also the second-
order mechanisms. It should be noted that the indepen-
dent particle model cannot describe this type of second-
order mechanism via the doubly excited state.

For excitation to the 2s2s 'S' state, one finds that an
important intermediate state for the proton impact is the
2s2p 'P' state. Further we find that the 2s2p 'P'(M =0)
(the magnetic quantum number M =0) state plays the
most significant roles as the intermediate state [see the
entries in the parentheses of column (5) in Table IV(a)].
While this process by the antiproton impact seems to be
dominated by the first order only [see column (5) in Table
IV(b)], the 2s2p 'P' state still plays a significant role as
the intermediate state, as we will discuss later. The con-
tribution from the second-order process to this excitation
process is not so large, i.e., about 20% for the proton im-
pact at 1.5 MeV/u.

One sees from Table IV that an important intermediate
state to the excitation to the 2p2p 'S' state is also the
2s2p 'P' state for the proton and antiproton impact. The
contribution from the second-order process is about 40%%uo

by the proton impact at 1.5 MeV/u.
As intermediate states to the 2p2p 'D' excitation, one

identifies the 1s2p 'P' and 2s2p 'P' states for the proton
and antiproton impact. In this case the 1s2p 'P' state
plays a more important role as an intermediate state than
the 2s2p 'P' state for the proton and antiproton impact.
The contribution from the second-order process to the
2p2p 'D' excitation is more than 90% and shows no
difference for the proton and antiproton impacts at 1.5
MeV/u as is expected. As the incident energy increases,
Tables IV(c) and IV(d) show that the first-order mecha-
nism dominates except for the 2p2p 'D' excitation where
the second-order mechanism is essential. Generally
speaking, dipole transitions with AL =1 are quite likely
to take place. Here, there exists the first-order process
from the ground state to the doubly excited 2s2p 'P'
state with AL =1, AA =0, Au =1, and AT =1. This is
consistent with the propensity rule previously found for
the optically allowed transitions [12,14]. Specifically the
2s2p 'P' doubly excited state plays the important role as
the intermediate state in the second-order mechanism of
the excitation processes to the doubly excited 'S' and 'D'
states.

B. Impact-parameter dependence

Figures 2(a) and 2(b) display impact-parameter weight-
ed probabilities from the ground state to the doubly ex-
cited 2s2s 'S' state as a function of impact parameter b at
1.5 MeVlu by the proton and antiproton impacts, respec-
tively. There exist two peaks in the b dependence of
probability, one at b equal to 0.2 a.u. and the other at 2
a.u. , and a dip is seen at b = 1 a.u. In the excitation pro-
cess to the 2s2s 'S' state by the antiproton impact, we
find that the probability calculated with the 2s2p 'P'
state excluded is larger than that with all 21 states includ-
ed when b ~ 1 a.u. , while the tendency becomes opposite
when b ~ 1. As a result, the 2s2p 'P' state dose not ap-
parently inhuence the total cross section strongly because
the integral over b turns out to be nearly equal to that
with the 2s2p 'P' state included because of balance of in-
crease and decrease at different impact-parameter re-
gions. Therefore this does not mean that the excitation
process is dominated by the first-order process only. On
the other hand, for the proton impact, one finds explicit
contribution from the second-order mechanism.

For the probabilities to the 2p2p 'S' state compared
using the set with the 2s2p 'P' state excluded from a set
of the 21 states, we find the same trends as are seen in the
case of the process to the 2s2s 'S' state, except that the
total cross section becomes smaller.

Figure 3 shows the impact-parameter dependence of
the weighted probabilities of the 2s2p 'P' excitation. We
also give each component of the probabilities to the mag-
netic quantum numbers M=O, +1 with respect to the
space-fixed z axis where the z axis is taken as an incident
direction of the projectile. One sees that the total proba-
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rameter b -0.2 a.u. as mentioned previously. Therefore
one can easily visualize how the correlated two atomic
electrons behave during the excitation process, i.e., via
the 2s2p 'P'(M =0) [2(0, 1)+2 'P'(M =0) ] state [see fig.
4(b)] and is hyper-radially or vibrationally excited in the
final state, i.e., attains the radial stretching in the 2s2s 'S'
[2(1,0)+2'S'] state or the vibrational excitation of the
bending mode in the 2p2p 'S' [2( —1,0)+2'S'] state
where U(=N —K —1) is 2.

We have found that the impact-parameter dependence
of the 2p2p 'D' [2(1,0)+2'D'] state shows the broad
peak around large impact parameters b =2 a.u. (not
shown here). Table III indicates close agreement with
the second-order Born cross section to the 2p2p 'D' state
with those of the CC calculation where the perturbative
approach is valid at large impact parameters. In this ex-
citation process, the second-order mechanism dominates
as we have already seen. We have two important inter-
mediate states, i.e., the Is2p 'P' [l(0,0) 2 'P'] state and
2s2p 'P' [2(0, 1)+2 'P'] state. The former shows weaker
correlated motion of two atomic electrons because A =0,
though it makes a more important contribution to this
excitation process. For the second-order process to the
2p2p 'D' [2(1,0)+2'D'] state via the latter 2s2p 'P'
[2(0, 1)+2 'P'] state, we can illustrate the behaviors of
the correlated motion of two atomic electrons based on
the rovibrator model during the collision process as fol-
lows. The He atom as the Aoppy "e-He -e" linear tria-
tomic molecule is vibrationally excited in the bending vi-
brational mode and is rotationally excited around the
mean molecular axis (i.e., U =T= 1) in the intermediate
state. Then eventually in the final 2p 2p 'D '
[2(1,0)+2 'D'] state from the intermediate state, the He
atom becomes vibrationally deexcited in the bending vi-
brational mode, i.e., AU = —1 and rotationally further ex-
cited AI. =1. However, the rotation axis becomes per-
pendicular to the mean molecular axis, i.e., I. =2 and
T =0. Eventually from the initial 1s 1s 'S'
[1(0,0)+1 'S'] state with u = T=O to the final 2p2p 'D'
[2(1,0) 2 'D'] state, the He atom stretches its size con-
serving internal state (i.e. AU =AT =0) and is rotational-
ly excited around the axis perpendicular to the mean
molecular axis. However, for the excitation to the
2p2p 'D' state, we have not yet fully elucidated the be-
haviors of the He atom as the floppy linear triatomic mol-
ecule viewed from the space-fixed frame, which we plan
to study for a future publication.

C. Time dependence

Finally, we brieQy discuss the time evolution of the
transition probability during the collision process. Fig-
ure 5 shows time dependence of the excitation probabili-
ties to the doubly excited 2s2s 'S' [2(1,0)+2 'S'],
2p2p 'S' [2( —1,0)+2'S'], and 2s2p 'P' [2(0, 1)+2'P']
(M =0, +1) states by the proton and antiproton impact
at b =0.2 a.u. Here one sees sharp peaks at t =0 for the
excitation to 2s2p 'P' [2(0, 1)+2 'P') (M =0) state.
However, these peaks can be reproduced if we retain only
the four states, i.e., Is ls 'S' [1(0,0)+1 'S'] and 2s2p 'P'
[2(0, 1)+2'P') in the close-coupling calculation. There-

fore these peaks do not contribute to the second-order
mechanism of the excitation to the 2s 2s 'S'
[2(1,0)+2'S'], 2p2p 'S'[2( —1,0)+2'S'] states, and so
forth. These behaviors can be easily understood from the
angular dependence of the matrix element of the interac-
tion potential, i.e.,
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FIG. 5. Time dependence of the excitation probabilities from
the ground state to the doubly excited states at the impact pa-
rameter of 0.2 a.u. : (a) proton impact, (b) antiproton impact:
2s2s 'S' (solid line), 2s2p 'P'(M =0) (dashed line),
2s2p 'P'(M =+1) (dashed-dotted line), and 2p2p 'S' (dashed-
dot-dotted line).

where VJ(R)=(jjV(R)ji). Here, Y& are spherical har-
monics and polar angles (8,$) are defined with respect to
the space-fixed z axis, and L; (Lf ) is an angular momen-
tum quantum number of initial (final) state. The value ofI equal to M; —Mf, and M; (Mf ) is a magnetic quantum
number of the initial (final) state. For the process from
the 'S' state to the 'P' state or from the 'P' state to the
'S' state, the value of l becomes l. For the excitation to
Mf =m =0 component, VI (R) behaves proportionally to
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cosO because F&0~cosO. This dependence gives rise to
the sharp peak at t =0 a.u.

For t =0=1 a.u. , the excitation probability to the
2s2p 'P' [2(0, 1)+2 'P'] (M =0) state for the proton im-
pact indicated in Fig. 5(a) shows a more rapid increase
than that for the antiproton impact as shown in Fig. 5(b).
This diFerence is considered to arise from the interfer-
ence eFect of the first-order amplitudes with the second-
order ones at small impact parameters and causes the
diFerent behaviors of the transition probabilities to the
2s2s 'S' [2(1,0) 2'S'] and 2p2p 'S' [2( —1,0)+2'S']
states between the proton and antiproton collisions as
shown in Fig. 5.

On the other hand, for the excitation to the doubly ex-
cited 2s2p 'P' [2(0, 1)+2'P'] (Mf =+1) state, V~(R)
behaves proportionally to sin8, and the value of V,, (R) is
quite small except for t =0 a.u. at small impact parame-
ters. Therefore the excitation probability to the doubly
excited 2s2p 'P' (M =+1) states increases sharply
around t =0 a.u. , and then, the probabilities for the pro-
cesses to those states remain constant at later times. This
probability is much smaller than that for the process to
the doubly excited 2s2p 'P' (M =0) state at this small
impact parameter. However, at larger impact parame-
ters, i.e., b =1 a.u. , this probability becomes larger, and
makes an essential contribution to the total cross section
of the 2s2p 'P' state (see also Fig. 3). Therefore the first-
order process dominates in the excitation process to the
doubly excited 2s2p 'P' state.

IV. SUMMARY AND CQNCLUSIQNS

We have theoretically investigated the double-electron
excitation of He by fast-ion impact using the hyperspheri-
cal wave functions for the description of the electron-
electron correlation. At 1.5 MeV/u, the first-order pro-
cesses dominate in the excitation process to the 2s2p 'P'

state by the proton and antiproton impact. In the excita-
tion to the 2s2s 'S' and 2p2p 'S' states, the first- and
second-order processes give comparable contribution to
these processes. In the excitation process to the 2p2p 'D'
state, the second-order process dominates. In these pro-
cesses, the doubly excited 2s2p 'P' state plays an essen-
tial role as an intermediate state. As the incident energy
increases, say at 8 MeV/u, the first-order processes dom-
inate except for the excitation to the 2p2p 'D' state. We
have found that the diFerence for the double-electron-
excitation processes by the proton and antiproton impact
is much smaller than that corresponding to the double-
ionization processes. We have also shown that interpre-
tation of our calculated results based on the classification
scheme of the correlation quantum numbers and on the
rovibrator model gives more direct physical insight to the
correlated motion of two atomic electrons during the col-
lision processes. We have made a preliminary discussion
of our calculated results by the C +-ion impact because
the convergence of the calculated cross sections on the
numbers of states included in the close-coupling calcula-
tion is less satisfactory compared to that for the proton
impact.
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