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Electron scattering by atomic sodium: 3 S —3 S and 3 S —3 P cross sections
at 10 to 100 ev
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A coupled-channel optical method for electron-atom scattering is applied to electron-sodium scat-
tering at energies of 10, 20, 22.1, 40, 54.4, and 100 eV. The 3 S, 3 P, and 3 D channels are coupled
explicitly whereas the rest of the one-electron excited states of the atom are taken into account via
the ab initio complex nonlocal polarization potential, The 3 S —3 S and 3 S — 3 P differential
cross sections are found to be in good agreement with the recent experiments of Lorentz and Miller
(unpublished). The effect of the polarization potential does not change the qualitative results of a
standard coupled-channel calculation, but improves agreement with the experiment. Integrated and
total cross sections are also presented.

PACS number(s): 34.80.Bm, 34.80.Dp 34.80Nz

I. INTRODUCTION

For the past two decades electron scattering on atomic
sodium has been greatly studied by a number of exper-
imental and theoretical groups. This is due to the fact
that sodium is a relatively simple target for both exper-
imentalists and theorists, and there are still some un-
resolved discrepancies between theory and some experi-
ment, al data. We would like to apply our recently devel-
oped method, for calculation of electron-atom scattering
phenomena, to electron scattering from atomic sodium
in an attempt to resolve some of these discrepancies.

We use the coupled-channel optical (CCO) method
which is an ab initio approach t, o electron-atom scatter-
ing. It treats a finite set of scattering channels (P space)
explicitly via. the coupled-channel formalism, whilst the
rest of t, he channels (Q space) including the target con-
tinuum, are t, aken into account indirectly through a com-
plex nonlocal polarization potential. This potential, to-
gether with the first-order pot, ential of the explicitly
treated channels, forms the optical potential. We use
the notations nCC and nCCO for calculations that have
the lowest n target states in P space; the latter treats
the Q space via the polarization potential, whereas the
former leaves it out completely.

The strength of the CCO approach to electron-atom
scattering is that it treats the complete set of target
states up to convergence [1]. The effect of higher excited
states on scattering within a. set, of low-lying states can
bc seen by comparing&g corresponding nC"CO and nC( cal-
culations. Furthermore, the polarization potential may
be tested internally by comparing nCCO with n'CCO
calculations, for n' & n [2].

Our CCO approach has proved to be very successful in
the description of electron-hydrogen elastic scattering at
energies ranging from 0.5 to 30 eV [3] and elastic and in-
elastic scat, tering from 30 to 400 eV [4]. We have recently
expanded our CCO theory to incorporate alkali atoms

which we treat by the one electron above the frozen-core
model. This theory has worked extremely well in the de-
scription of elastic scattering from sodium at 20 to 150
eV [5], where we did a series of 1CCO (P space contains
3 S only) calculations.

For hydrogen the complete set of target states is known
exactly. However this is not so for any other atom,
and so approximations must be made to describe their
structure. For alkali atoms we use the one-configuration
self-consistent-field Hartree-Vock method to describe the
ground state of the atom [6]. This approximation works
very well for these atoms, see, for example, Ref. [7].
The complete set of the one-electron excited t ar get
states, including the continuum, is found by solving the
one-electron Schrodinger equation with the frozen-core
Hartree-Fock potential [8]. This is also a very good ap-
proximation as the eH'ects of core excitation on scattering
have been found to be negligible [9].

The aim of this paper is to use our recently developed
theory [3, 5] to calculate the 3 S —3~S and the 3~S—
3 P cross sections at a range of intermediate energies
in an attempt to resolve some of the discrepancies be-
tween measurements by difI'erent experimental groups. In
Sec. II we present the final equations of our CCO method,
as the complete derivation of the theory may be found in
McCarthy and Stelbovics [10] and Bray, Konovalov, and
McCarthy [3, 5].

In Sec. III we present, the results of 3CCO and 3CC (P
space contains 32S, 3 2P, and 3 20) calculations for pro-
jectile energies of 10, 20, 22. 1, 40, 54.4, and 100 eV (Ta-
bles I —III). We compare these results with the measure-
ments of elastic (Fig. 1) and inelastic (Fig. 2) differential
cross sections of Lorentz and Miller [11],Srivastava and
Vuskovic [12], and the Flinders tJniversity experimental
group [13—16]. We find that agreement with the measure-
isaents of Lorentz and Miller and Srivastava and Vuskovic,
which are in disagreement with the measurements of the
Flinders group, is very good at all energies. In Table
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III we also compare the total cross sections calculated
via the optical theorem with the recent measurements of
Kwan et a3. [17], and find excellent, agreement, .

'II. THE COO METHOD FOR ALKALI ATOMS

states we use the frozen-core Hartree-I"ock approximation

(I~ + v —~, ) P, (r) = 0, j g' C,

where

To get the one-electron wave functions @&(r) of an al-
kali atom we solve the self-consistent-field Hartree-I"ock
equations [6] for the ground state of the atom A:

(I~ + v —s, ) g, (r) = 0, j C A

where

ds„ I &g (r') I'
~ (,)Ir —r'I

)
„, , &,"'(r') &~ (&')

(4)

u @~(r) = ——+ '2 )p
Q ggA

ds„, I @~ (i') I'
@ (,.)

@ iQA
(2)

To get, the complete set, of one-electron excited target,
I

and where the notation C indicates the set of frozen-core
states. For sodium we take the core to be 1s22s 2p 'S.

As the target atom is described by the independent
particle model that has one electron above a frozen
core, all matrix elements in the Lippman-Schwinger equa-
tion, which describes the scattering, are reduced to two-
electron mat, rix elements [10]. This integral equation for
the T matrix, which depends on the total spin S, is

(ky: I

Z'
I y*.ko) = (kg* I

Vq'
I 0 .ko) + ) .

P, I &P

d'k' ' ' q, (k'P;
I
T

I 4,,ko),
(E&+1 —e, —k"i2) (5)

where the projectile with momentum ko is incident on the target with the valence electron in state P;, above the
frozen core, and where E = e, , + ko/2 is the on-shell energy. Writing the coordinate space-exchange operator as P„
the matrix elements of V& are given by [10]

(kP, I Vg I@, k') =(kg, Iv +vip[1+( —1) P„] Ig, k')+( —1) (kP, I(c, +~, —E)P„ I@, k')

) (kvp~ I (2s~ —E)P„
I
+~k') + (k@, I Vq + ( —1)s VQP„ I @, k'), (~)

Qg EC

where v is the projectile-core potential and v12 is the
projectile-valence electron potential. The channel space
is divided into two parts: P space and Q space. The
channels in P space are coupled explicitly in (5), whereas

I

the Q-space channels form the complex nonlocal polariza-
tion potential Vq in (6). The details of the calculation of
the polarization-potential matrix elements may be found
in Refs. [3] and [5].

TABLE I. Elastic diAerential cross sections (ao sr }calculated using the 3CCO model at a range of energies.
Square brackets denote powers of 10.

e (deg)
0
5
10
15
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
140
150
160
170
180

10.0
8.06[2
4.39[2]
i.ss[2]
v. 14[1]
2.64f 1]
9.40
3.27
1.12
4.16[-1]
1.97[-1]
1;45[-1]
i.ss[- i]
2.79[-i]
3.ss[- 1]
4.76[-1]
5.06[-1]
4.ss[- i]
3.42[-1]
2.16[-i]
1.23[- i]
8.24[-2]
7.98[-2]
9.as[-2]
9.98[-2]

20.0

s.o2[2]
2.vi[2]
8.10[1]
2.56[1]
8.41
2.76
s.so[-i]
2.49[-i]
1.05[- 1]
1.57[-1]
2.91[- 1]
5.89[-1]
7.67[- i]
7.so[-i]
6.62[-1]
4.?o[-i]
2.v2 f-1]
i.av[- i]
1.15[-1]
2. 17[-1]
4. 12[-1]
6.34[- i]
8.06[- 1]
s.vi [- i]

22. 1

?.01[2]
2.49[2]
7.19[1]
2 25[11
7.37
2.43
7.81[-1]
2.46[-1]
1.49[-1]
2.2v[-i]
3.72[-1]
6.60[-1]
8.08[-1]
7.sv[-i]
6.45[-1]
4.41[-1]
2.44[- i]
1.17[-11
i.o2[-i]
2.09[- i]
4.04[- 1]
6.26[-1]
7.98[-1]
8.64[-1]

Z (eV}

40.0
4.9S[2]
1.4S[2]
3.S4[1]
1.26[1]
4.60
1.87
9.sv[-i]
7.50[-1]
V, 41[-1]
7.94[-1]
8.4v[- i]
8.76[-1]
v. 7s[- i]
s.s2[- 1]
3.49[-1]
1.48[- 1]
4.64[-2]
9.is[-2]
3.00[-1]
6.4s[-i]
1.06
1.45
1.73
1.84

4.64[2]
i.o2f2]
2.90[1]
1.06[1]
4.41
2.21
1.45
1.17
1.04
9.58f-1]
s.ss[-i]
v.44[-i]
s.?4[-i]
3.80[-1]
1.89[-1]
4.94[-2]
8,58[-3]
1 .07[-1]
3 56[-i]
v. 2v[- i]
1.15
1.55
1.84

100.0
2.85[2]
S.92[1]
1.99[1]
8.16
4.06
2.52
1.80
1.35
1.04
8.13[-1]
6.42[- 1]
4. 11[-1]
2.59[-1]
1.39[-1]
5.31[-2]
'- '?[-2]
6.sv[-2]
2.00[- 1]
3.98[-1]
6.27[- 1]
8.48[- 1]
1.02
1.14
1.21
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III. RESULTS AND DISCUSSION

Equation (5) is solved at a range of projectile ener-
gies (/co/2). We take P space to contain 3 S, 3 P,
and 32D as the 32S—3 P and 32S—32D generalized
oscillator strengths are the highest for scattering from
the ground stat, e [18]. This indicates that the 3 P and
3 0 channels have the strongest coupling to the entrance
channel 3 S.

The strength of the CCO approach is that convergence,
by the number of states in P space, may be tested in-
ternally. This convergence has been achieved when the
corresponding results of an n, 'CCO calculation are the
same as that of an nC("0 calculation with n' ) n. I'or
sodium this can be done by comparing the elastic cross

sections of the 1CCO calculation [5] with the correspond-
ing results of our 3CCO calculations. Both of these yield
much the same results. The fact that, the polarization
potential in the 1CCO calculations can reproduce the
very strong dipole coupling (3 S —32P) that is explic-
itly in P space of our 3CCO calculations suggests that
the higher excited states will also be suitably treated by
our polarization potential.

The major discrepancy between theory and experiment
for electron scattering on atomic sodium is between the
absolute measurements of the I"linders University group
[13—16] and the 4CC calculations of Mitroy, McCarthy,
and Stelbovics [9] at intermediate and backward angles.
As the core-excitation eAects were found to be negligible
[9] it was hoped that the discrepancies may be resolved
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FIG. l. Elastic differential cross sections for electron scattering on atomic sodium. The solid line is the 3CCO calculation

and the dashed line is the 3CC calculation where the coupled channels are 3 S, 3 P, and 3 D. The experiments of I orentz
and Miller [11] are denoted by o. Those of Srivastava and Vuskovic [12] are denoted by &. The measurements of the Flinders
University group at 54.4 eV [16] and 100 eV [13] are denoted by O. All measurements have been normalized to the 3CCO
estimates of o3, given in Table III. Error bars are only plotted if they are larger than the size of the symbol denoting the
experiment.
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by taking into account t, he complete set of one-electron
excited target states. This proved to be not the case.

A. Elastic diA'erential cross sections

In I"ig. 1 we present the 3CC and 3CCO calculations
together with available experimental dat, a for the elastic
scattering at a range of energies. Quantitative results
are presented in Tables I and III. The measurements of
Lorentz and Miller [11] are relative and have been nor-
malized to the theoretical estimates for the integrated
elastic cross section o3, of Mitroy, Mccarthy, and Stel-
bovics [9]. The measurements of Srivastava, and Vuskovic
[12] are also relative, but they have been normalized to

their estimate of o3, which have large error bounds. Ac-
cordingly, for plotting, we have renormalized their difI'er-
ential cross sections to our 3CCO estimates for o3, given
in Table III.

Comparing 3CC with 3CCO it is evident that the ef-
fect of the polarization potential on elastic scattering is
quite small, but improves agreement wit, h experiment.
The discrepancy with the I"linders group measurements
at 54.4 and 100 eV cannot be resolved by the addition
of the polarization potential. However the recent relative
experiments by Lorentz and Miller [11] at these energies
are in very good agreement with our 3CCO results. In
general, the agreement between the 3CCO calculations
and the measurements of Lorentz and Miller [11] and
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FIG. 2. 3 S—3 P differential cross sections for electron scattering on atomic sodium. The solid line is the 3CCO calculation
»d the dashed line is the 3CC calculation where the coupled channels are 3 S, 3 P, and 3 D. The experiments of Lorentz
and Miller [ll] are denoted by o and have been normalized to the 3CCO estimates of as& given in Table III. Those of Srivastava
and Vuskovic [12] are denoted by &. The measurements of the Flinders University group at 22.1 eV [15] and other energies
[14] are denoted by O. Error bars are only plotted if they are larger than the size of the symbol denoting the experiment.
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TABLE II. 3 S —3 P dift'erential cross sections (ap sI ) calculated using the 3CCO model at a range of
energies. Square brackets denote powers of 10.

e (deg)
0
5
10
15
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
140
150
160
170
180

10.0

1.61[3]
9 27[2]
3.19[2]
1.05[2]
3.72[1]
1.53[1]
7.82
4.91
3.50
2.61
1.94
1.00
4.83[-1]
2.S6[-1]
2.65[-1]
2.S7[-1]
2.S7[-l]
2.52[-1]
1.92[-1]
1.26[-1]
7.22[-2]
3,86[-2]
2.24[-2]
1.75[-2]

20.0

4.84[3]
1.1O[3]
2.O4[2]
4.78[1]
1.4O[l]
5.61
2.96
1.78
1.07
6.25[- 1]
3.52[-1]
1.69[-1]
2.24[-1]
2.91[-1]
2.S5[-1]
2. 18[-1]
1.37[-1]
s.os[-2]
6.75[-2]
9.64[-2]
1,52[- 1]
2. 14[-1]
2.6O[-1]
2.7S[-1]

F {eV}

22. 1

5.5O[3]
1.O6[3]
l.S2[2]
4.08[1]
1.15[1]
4.57
2.39
1.39
s. lo[-1]
4.52[-1]
2.55[-1]
1.62[-1]
2.36[-l]
2.93[-1]
2.72[-1]
1.97[-1]
1.17[-1]
6.92[-2]
6.93[-2]
1.14[-1]
1.86[-1]
2.59[-1]
3.15[-1]
3.3S[-1]

1.16[4]
7.34[2]
9.2O[1]
1.51[1]
3.24
1.14
5.57[-1]
2.S4[-1]
1.46[-1]
8.73[-2]
7.O6[-2]
S.65[-2]
1.O9[-1]
1.10[-1]
8.55[-2]
5.O4[-2]
2.7O[-2]
3.51[-2]
S.32[-2]
1.65[-1]
2.66[-1]
3.62[-1]
4.28[-1]
4.5O[-1]

1.67[4]
5.46[2]
5.79[1]
7.82
1.42
4.90[-1]
2.24[-1]
1.04[-1]
5.49[-2]
4.09[-2]
4.18[-2]
5.54[-2]
6.35[-2]
5.7O[-2]
3.7O[-2]
1.59[-2]
1.2O[-2]
4.O1[-2]
1.05[-1]
2.oo[-1]
3.O7[-1]
4.05[-1]
4.72[-1]
4.95[-1]

100.0

3.2O[4]
2.65[2]
1.69[1]
l.23
2.24[- 1]
9.66[-2]
4.90[-2]
2.96[-2]
2.2O[-2]
1,91[-2]
1.7S[-2]
1.64[-2]
1.38[ 2]
S,71[-3]
2.69[-3]
5.52[-4]
S.21[-3]
2.95[-2]
6.48[-2]
1.09[- 1]
1.57[- 1]
1.99[-1]
2.28[- 1]
2.37[-1]

those of Srivastava and Vuskovic [12] is very )ood for all
energies.

B. 3 S —3 P differential cross sections

In Fig. 2 we present the 3CC and 3CCO calcula-
tions together with available experimental data for the
3 S—3 P scattering. Quantitative results are presented
in Tables II and III. For this transition only the measure-
ments of Lorentz and Miller [I I] are treated as relative
and are renormalized accordingly as above.

Comparing 3CC with the 3CCO results we see that
the efI'ect of the polarization potential 011 3 S —3 P
scattering is greater than that on the elastic scattering.
The discrepancy between experiment and theory at 22. 1

eV has been essentially resolved by the addition of the
polarization potential. In general the agreement with
experiment is considerably improved by the addition of
the polarization potential at all energies.

One of the advantages of comparing theory against ex-
periment at a range of energies is that one can exam-
ine the consistency of the results. For example, at first
glance the agreement between the theory and experiment
at 40 eV is disappointing. The disagreement at around
5(}', where the theory predicts a local minimum, is quite
large. However at both adjacent energies of 22. 1 and 54.4
eV both the experiments and theory do have this local
minimum and are in good agreement with each other.
This makes us feel more confident with our results at 40
eV.

TABLE III. Integrated 3 S—3 S (era. ), 3 S—3 P (a3&), and total (crq) cross sections calculated
using the 3CCO model at a range of energies. The experimental data of Srivastava and Vuskovic

[12] are denoted by o', that of Buckrnan and Teubner [14] by a, that of Kasdan, Miller, and
Bederson [19] by o', and that of Kwan et al. [17] by a".

o vrao 10.0

20.3
48.9+14.7

20.0

11.3
15.9 + 4.8

22.1

10.6

E (eV)

40.0

7.22
12.5+3.8

54.4

6.06
6.14+1.84

100.0

4.27

0'3 p
0'3 p

b0'3 p

Og

0'

Og

CTg

36.7
36.0+10.8

72.8
70.1+14.0
99.9+42.0
85.2+10.2

34.4
33.0 + 1.0

58.7
54.0+10.8
60.7+25.5
73.9+8.9

56.5
50.9+11.8

27.2
24.8+7.4

42.8
37.0+7.4
47.6+20.0

22.2
21.1+6.3
24.9+3.7

34.8
30.5+7.0
34.3+14.4

12.8

15.2+2.2

20.8
24.5+4.9
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C. Integrated and total cross sections

In Table III we present the integrated elastic o3, , inte-
grated 3 S —3 P, inelastic 0.3&, and total oq cross sec-
tions resulting from our 3CCO calculation together with
various experimental estimates. The 3CCO 03, is consid-
erably lower than experiment at 10 eV, but the agreement
improves for higher energies. The 3CCO os& is in com-
plete agreement with both experimental estimates at all
energies. The 3CCO total cross sections o~, calculated
via the optical theorem, are in excellent agreement with
the measurements of Kwan et al. across all energies. This
is particularly pleasing at the low energies where our es-
timate of o 3, is considerably less than experiment, , but, is
consistent with the total-cross-section measurements.

eAects of spin are averaged. Note however that the dif-
ferential cross section is an absolute number which may
vary over many orders of magnitude as a function of an-
gle, whereas spin- and phase-dependent parameters are
ratios. Spin asymmetries have been recently measured
by the NIST group (Celotta, Kelley, Lorentz, McClel-
land, and Scholten) and will soon be available. As we
believe that our 3CCO calculations have achieved suffi-
cient agreement with experimental diA'erential cross sec-
tions, we will further test our theory against their spin-
and phase-dependent parameters, as well as other cur-
rently available data.
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