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The generalized Newton variational method is applied to the static-exchange approximation of the
electron —hydrogen-atom scattering. Slater-type basis functions are employed to expand the amplitude
density. Spurious singularities are encountered in both scattering processes. The width of the unphysi-
cal singularities is broader in the case of singlet scattering. Anomalous poles appear in narrow regions of
the scale parameter and are in evident correlation with the zeros of the determinant of the free-particle
Green's operator. As a by-product, simple least-squares extension of the generalized Newton variational
method is developed in order to avoid spurious singularities and to recognize whether or not the conver-
gence is of secondary nature.

PACS number(s): 03.65.Nk, 34.80.8m, 02.60.+y

I. INTRODUCTION

The Newton variational method [1] has proved to be
an efticient computational tool in different branches of
quantum scattering theory. In nuclear physics, for exam-
ple, it was applied to study the off- and on-shell behavior
of the T-matrix elements of various few-particle reactions
[2—6]. In chemical physics, the generalized Newton vari-
ational method [7,8] (GNVM) has been formulated re-
cently [9,10] to a stage which should provide a practical
method for carrying out three-dimensional quantal calcu-
lations for reactive molecular collisions and molecular
photoionization processes [7—22].

According to the general classification scheme of the
variational methods in scattering theory [23], the GNVM
belongs to the Schwinger-type variational procedures. It
is based on the Lippman-Schwinger integral equation for
the amplitude density [24] being the trial quantity in the
generalized Newton functional [8]. Since the amplitude
density is a well-localized spatial function [21,24] for dis-
torting potentials inducing reactions in chemical physics,
the GNVM requires basis functions selected exclusively
from the X space. Another important property of the
method is the fact that it explicitly involves the Born
term [1]. One would therefore expect the GNVM to per-
form better at higher scattering energies than at lower
ones.

Comparative test calculations [7—12] have shown how-
ever that the Newton variational method is capable of
providing accurate results also in the dynamically impor-
tant low-energy regions. These studies have revealed the
fundamental properties that the GNVM is practically in-
sensitive to the choice of the different basis sets being in
general use, and achieves a fast convergence for all the
typical potentials arising in various chemical reaction
problems. This so-called robust [12] character of the
G-NVM makes it potentially a prominent candidate to be
employed in the future applications. Therefore, the

GNVM deserves to be analyzed further in order to ex-
plore its more subtle properties.

It is the purpose of the present investigation to provide
additional insight into the performance of the GNVM.
Motivated by the facts that (i) there exists a hierarchical
relationship [25,26] among the variational functionals
due to Kohn, Schwinger, and Newton, (ii) spurious singu-
larities are frequently encountered [27,28] in the applica-
tions of the Kohn variational method but less frequently
[29—33] in the Schwinger variational method, (iii) no
such anomalies have been reported so far in conjunction
with the Newton variational method (although a recent
development [15] of the T-matrix version of the GNVM
indicates [34] that anomalies have been encountered in
previous IC-matrix calculations), and (iv) there seems to
exist a prevalent [2,22] theoretical confidence about the
anomaly-free character of the Newton variational
method, we have addressed to ourselves the interesting
question of theoretical importance: whether or not a
GNVM calculation yields spurious singularities for typi-
cal potentials when typical sets of basis functions are also
being used.

The numerical results of the present paper indicate
that there are scattering potentials and basis functions for
which the GNVM gives rise to anomalous (i.e., nonphysi-
cal) behavior of the calculated K-matrix elements as a
function of the scattering energy. This feature is similar
to that observed [27,28] in the application of the Kohn
variational method. As a test example we shall consider
the static-exchange approximation of the electron—
hydrogen-atom scattering. The GNVM calculations will
be carried out using Slater-type basis functions character-
ized by a nonlinear scale parameter.

We shall demonstrate that spurious singularities of the
Kohn type do arise in the tangent of the s-wave phase
shifts computed by the GNVM for both (singlet and trip-
let) scattering processes. (Note that the Schwinger varia-
tional method is free of anomalies in the triplet case. )
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The spurious singularities are located in narrow regions
of the wave number k and nonlinear parameter a. A pro-
nounced correlation is found to exist between the region
of anomalies and the positions of the zero eigenvalues of
the matrix of the free-particle Green's function. A stub-
born secondary plateau of the K matrix computed as a
function of a is shown to appear in the singlet case at a
particular value of k. This feature, well known [27,31] in
the Kohn variational method, may lead one to draw quite
a false conclusion about the accuracy of the computed re-
sults if only the convergence characteristics are investi-
gated. Both shortcomings (spurious singularities and ap-
parent convergence) can be overcome by applying a sim-
ple least-squares extension to the GNVM.

It is important to note that similar anomalies of the
GNVM have been encountered by using a large class of
local potentials, such as exponential potentials or Yu-
kawa potentials. Also the chapge of the basis set does not
seem to cure this unpleasant feature of the GNVM since
the use of exponential basis sets with uniformly distribut-
ed scale parameters has resulted in the appearance of
spurious singularities similar to those presented in this
paper. We emphasize therefore that the validity of some
conclusions (see, e.g. , Ref. [22]) assuming the anomaly-
free character of the Newton variational method should
be checked by appropriate methods.

The organization of this paper is as follows. Section II
contains the necessary formalism including a least-
squares extension of the GNVM which avoids the
anomalies. In Sec. III we present the analysis of the re-
sults obtained for the static-exchange potential by both
the GNVM and its least-squares extension. Some com-
ments are left for Sec. IV.

II. ANALYSIS OF THE GENERALIZED NEW'TON
VARIATIONAL METHOD

m(r, r')=4( —1) e "(E—2E& r—&' )e (2.4)

Here we have S=0 for the singlet scattering process, and
the triplet scattering states are characterized by S=1.
[The symbol r & in Eq. (2.4) denotes the greater of r, r' ].

B. Lippmann-Schwinger equations

The scattering process above is described by a radial
scattering wave function f, (r ) which satisfies the
Lippmann-Schwinger equation

f, =S+QUf, ,

where

(2.5)

(2.6)

and 9 is the principal-value free-particle Green's function
which can be written symbolically [8] as

g= ——J dr'S(r()C(r) ) (2.7)

with

S(r)=k ' sin(kr),

C(r)=k ' cos(kr) .

(2.8)

(2.9)

the Lipmann-Schwinger equation for the radial ampli-
tude density becomes

g, = US+ UQg, . (2.11)

[The symbols r ( and r & in Eq. (2.7) denote, respectively,
the lesser and greater of r, r'].

By defining the radial amplitude density as [24]

(2.10)

A. Static-exchange approximation

V = V, (r )+"1V~(E),

where the energy-independent local part is defined by

(2.1)

V (r)= — —+1 e
r

(2.2)

and the energy-dependent nonlocal (exchange) operator
can be written, in symbolic notation, as

Let us consider the s-wave (l=0) elastic scattering of
an electron by a hydrogen atom and, as a test case, make
use of the simple static-exchange approximation intro-
duced by Erskine and Massey [35]. Employing atomic
units (a.u. ), and denoting the total energy of the
electron —hydrogen-atom system by E, the ground-state
energy of the hydrogen atom by E& (E& = —0.5a.u. ), and
the kinetic energy of the scattering electron by
E =E E ]

=k /2, the static-exchange approximation of
the interaction potential (operator) becomes [35]

The integral expression for the reactance matrix ele-
ment K takes the form

(2.12)

which may be written, using Eqs. (2.5) and (2.10) or Eq.
(2.11), in the form

(2.13)

where

(2.14)

is the first Born approximation.
The reactance matrix element K can be computed by

using a great variety of finite-basis-set expansion methods
[8,30] that are based on the Lippmann-Schwinger integral
equations. In this paper we make use of the generalized
Newton variational method which is based on the
Lippmann-Schwinger equation given by Eq. (2.11).

C. Generalized Newton variational method

with

dr'rw(r, r')r'
2

0
(2.3) The GNVM provides a stationary expression for the

approximate reactance matrix elements with respect to
small changes about the exact solution of the Lippmann-
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Schwinger equation (2.11) for the amplitude density. In
the following we derive the GNVM from the general
method of moments [2,8,30,36] by selecting appropriate
basis functions g, (r .) and test functions X; (r ). [A tilde on
the basis (test) functions indicates the freedom we have in
selecting different types of the X -space functions. ]

As a first step, we consider the expansion of the radial
amplitude density g, (r) in terms of a convenient set of
basis functions y (r). T.he truncated version of this ex-
pansion can be written as

(2.15)

By substituting g, (r) into the Lippmann-Schwinger
equation (2.11), we have

ing and S= 1 for triplet collision. Equations (2.20) and
(2.22) imply

KoN(N;k, a)

(2.23)

where X ' denotes the inverse of the NXX matrix
defined by Eq. (2.21). A comparison of Eq. (2.23) with
Eq. (78) of Ref. [8] shows that KGN is the well-known
GNVM expression for the approximate reactance matrix
element being variationally correct to second-order errors
in the trial amplitude density given by Eq. (2.15).

(1—UQ)g, —US =b, (2.16) D. Singularities

where the deviation b, , ( r ) is related to the error of the ap-
proximate radial amplitude density g, (r). Since the am-
plitude density belongs [21,24] to the X space for the in-
teraction potential defined by Eq. (2.1), we adopt, as basis
functions, a set of (nonorthogonal) square-integrable
Slater-type functions:

g (r)=A rie " j=12, . . . , N . (2.17)

Here a is a (real) nonlinear scale parameter characteriz-
ing the basis and the normalization factors are denoted
by A. .

The next step is the selection of the appropriate test
function X, (r). To arrive at the GNVM expression for
the K-matrix element the test functions have to be chosen
as follows:

To explore the singularity structure of the matrix ele-
ment IC, Eq. (2.23), it will be convenient [30] to denote
the determinant of the N XXmatrix X as follows:

X(N;k, a)= detlxj l . (2.24)

Equation (2.23) shows that a singular behavior of E
can be expected near the real wave number k =ko for
which

X(N;k'~', a) =0 . (2.25)

By computing k=ko ' at many values of u (or vice ver-

sa), we obtain the function k 0 '(a ). Since the zeros of
the determinant X are located along the curve(s) ko '(a),
it will be convenient to rewrite Eq. (2.25) in the form

X, (r)=&p, (r) . (2.18) X(N;k' '(a))=0 . (2.26)

We proceed by fixing X projections of the deviation
vector 6, in the test function space at zero:

&X;l~, &=0, i=1,2, . . . , N.
Equation (2.19) can also be written as

N

x,, ,a=
&x, lvsl&,

(2.19)

(2.20)

where i = 1, . . . ,X and

x„=(&,l~ ~v~l~, ) . (2.21)

E'" (N;k, a) =ac" y(sl vgl+, )a,—, (2.22)

where the upper index (in parenthesis) refers to the fact
that the interaction potential U depends on the quantum
number S which takes the values 5=0 for singlet scatter-

Equation (2.20) is a system of linear inhomogeneous alge-
braic equations which determines the expansion
coefficient aj according to the general method of mo-
ments.

The last step is to calculate the approximate reactance
matrix element IC by substituting Eq. (2.15) into Eq.
(2.13). One obtains

G(N; k, a) = detl G;~ l, i,j = 1,2, . . .N

for the determinant of the matrix elements

G;, = &q; I ~ly, &

(2.27)

(2.28)

of the free-particle Green's function defined by Eq. (2.7).
Of course, the matrix G may have zero eigenvalues for

particular values of a and k. One therefore introduces
the function kI '(a), which is related to the zeros of the
determinant G(¹k, a) by writing

G(N;kI '(~))=0. (2.29)

Both Eqs. (2.26) and (2.29) can be solved by the same nu-
merical procedure; the solutions of Eq. (2.26) define the
function k&'& '(a), those of Eq. (2.29) prescribe the func-
tion k',"'(a).

Our numerical calculations show that, using Slater-
type basis functions defined by Eq. (2.17), there exists a
pronounced correlation between the functions kP'(a)
and k', '(a) [cf. Fig. 2]. Since the function kP'(a) has
nothing to do with the physical singularities of the E ma-

In order to have a deeper insight into the structure of
the singularities of the GNVM, it will be useful to intro-
duce the notation
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trix, this remarkable correlation between the roots of
X(¹k,a) and G(¹k, a) may indicate the existence of
spurious singularities of the approximate reactance ma-
trix element computed by the GNVM as given by Eq.
(2.23). In the discussion of Sec. III we shall see indeed
that the presence of the correlating zeros of the deter-
minants related to the operators 9—QUQ and 9 does in
fact give rise to the appearance of spurious singularities
of Kohn-type in the GNVM reactance matrix elements.

In order to avoid the spurious singularities of the
GNVM one may apply the method proposed by Win-
stead and McKoy [32] to remove the anomalies of the
Schwinger variational method. Here we make use of a
least-squares procedure for this purpose along the lines
discussed in Ref. [30].

X[g]=0. (2.36)

a 1=1 (2.37)

The final result is the system of linear inhomogeneus alge-
braic equations for the coefFicients a, j= 1, . . . , N.
These equations can be written in the form given by

N

Ql. , a =d, ,
j=1

where

i=1,2, . . . , N (2.38)

By variation of A, [g] with respect to the linear parame-
ters a 1 and a,j=1,. . .N, we obtain a simple eigenval-
ue problem. As a next step, we normalize the eigenvector
by setting

E. Least-squares extension of the GNVM

Let us consider the integral equation
and

N+p
X +u&aj

h=1
(2.39)

(1 —UQ)g —a, US =0 . (2.30)

N
g= g a g(r) . . (2.31)

Here the coefficient a, is difFerent from zero and in-
dependent of r, otherwise arbitrary. If the value of a 1 is
fixed at a, =1, then the solution of Eq. (2.30) is g=gi,
satisfying the Lippmann-Schwinger equation (2.11).

The radial amplitude density g(r ) can be expanded in
terms of Slater-type basis functions y. (r),
j=1,2, . . . , N, . . . , defined by Eq. (2.17). The truncated
version of this expansion can be written, similarly to Eq.
(2.15), as

N+p
d, = y x;, &x&IUls& .

h=1
(2.40)

In addition, the formula of the eigenvalue A, =X~~ be-
comes

N+p N

a,"~= g &slUlx~ &&x&IUls& —g d,'(I. '),, d, .
h=1

(2.41)

The approximate reactance matrix element K L& can be(S)

calculated by substituting Eq. (2.31) into Eq. (2.13). One
obtains

By replacing the radial amplitude density g with the
approximation g, one defines the deviation vector as

NK'„"=K" y&sl U—alq, &u, , (2.42)

6(r)=(l —UQ)g —a, US, (2.32)

N+p
&~l&a &~~a &x~ l~&

~[4]=
a 1a

with

(2.33)

p 2 (2.34)

Here the weight matrix m is real, symmetric and all the
eigenvalues of m are larger than zero. For simplicity we
shall choose

~hh' ~hh' (2.35)

The variational functional A.[g] is positive semidefinite by
construction, and we have

which also depends on the linear parameters
a 1,a1,a2, . . . , aN.

We next turn to a definition of the measure of the error
of the radial amplitude density g(r ) in a sufficiently large
[(N+p )-dimensional] subspace spanned by the test func-
tions gh = 0'yh, h =1, . . . , N, . . . , N+p. This definition
can be expressed as [30,37—39]

which depends also on the parameters N, p, o, , and the
wave number k. Equations (2.38) and (2.42) imply

N
K~ ~(N, p;k, a)=K g&slUal—g, &(L '),;~; .

(2.43)

For p =0, one obtains [by inspecting Eqs. (2.23), (2.39),
(2.40), and (2.43)] the equality

KP~(N, p =0;k,a) =Ko~(N;k, a) . (2.44)

Therefore, Eq. (2.43) may be considered as the approxi-
mate reactance matrix element obtained by the least-
squares extension for the generalized Newton variational
method (LNVM).

For p ~ 2, on the other hand, the eigenvalues of the
Hermitian matrix I. are, by construction, non-negative.
Therefore Eq. (2.43) may exhibit a wider stability region
[i.e., interval of the scale parameter a where the function
KL~(a) at fixed values of N, p, and k is almost constant](S)

than the original GNVM formula Eq. (2.23) (cf. Fig. 1).
All our LNVM calculations will be carried out by

choosing
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p=5 . (2.45}

III. RESULTS AND ANALYSIS

A. Triplet scattering {S=1)

The Newton formula, Eq. (2.23), and its least-squares
variant, Eq. (2.43), can be

applied
to calculate the reac-

tance matrix elements ICvN ( Y =G, L ) of the triplet
scattering process at the fixed wave number k =0.5 a.u.
Let us employ five basis functions (X=5), ten test func-
tions (p =5), and perform the calculations at many values
of o. within the range 0.7 ~ e 9.

Figure 1 shows the results where the functions
KoN(a) =XoN(5;0. 5,a) and E'L'N(a) =EL'N(5, 5;0.5,a)
are depicted, respectively, by the dashed and solid curves.
Between the two vertical dash-dotted lines (indicating a
change of scale around a = 1.21), one observes steep
spurious branches of the GNVM reactance matrix ele-
ment which clearly show the presence of an anomalous

It is also worth noting that the expression of KLN is con-(S)

structed from the same type of matrix elements as that of
the original ICGN itself [cf. Eqs. (2.43), (2.40), and (2.39)
with Eqs. (2.23) and (2.21)]. In addition, useful informa-
tion can be obtained about the accuracy of the calcula-
tion by also monitoring the eigenvalue A, LN given by Eq.
(2.41). This feature of the LNVM might prove helpful
when, at different sets of the technical parameters (say, X,
a), the GNVM yields different quantitative results of
similar quality (convergence and stability) for the same
physical quantity (say, E matrix). In this case one may
accept the result which belongs to the smallest eigenvalue
A,

'
N of the LNVM calculations. An example for such a

pathological situation will also be shown in Sec. III (cf.
Fig. 4 and Tables I—III).

pole in the GNVM calculation for the triplet scattering
process. This is to be contrasted with the results ob-
tained [29] by using the Schwinger variational method
which is free of anomalies for the triplet case. The anom-
alous singularities of the GNVM can be avoided by the
least-squares method (LNVM) of Sec. II, as shown by the
solid curve of Fig. 1. Also clearly seen in the figure is
that the I.NVM results are less sensitive to the choice of
the nonlinear scale parameter a of the basis functions
given by Eq. (2.17). We note that three spurious singular-
ities of similar subtle structure can be found in the omit-
ted region 0&+(0.7 of Fig 1. The location of all the
singularities of the GNVM calculations related to the
triplet scattering process can be found in the next figure.

Figure 2 exhibits the pole structure of the GNVM
reactance matrix elements at 5 =1 and %=5. The solid
curves of Fig. 2 represent the function ko )(a) prescrib-

in~ the (possible) poles of the reactance matrix elements
K&N(5;0. 5,a). [The function ko( )(a) can be obtained by
solving Eq. (2.26).] One observes in Fig. 2 a horizontal
trend which consists of five pieces and nicely shows the
position of the true singularity at k=0. 8350 a.u. This
horizontal formation is disrupted by sudden changes due
to avoided crossing into the spurious branches of the
function ko )(a). Figure 2 can thus be used to establish
those corresponding values of the wave number k and
nonlinear parameter cz which should be avoided in the
GNVM calculation with five basis functions for the trip-
let scattering. Fixing the wave number at k=0. 5 a.u. ,
for example, one should avoid the use of the narrow re-
gions around a =0. 17593, Q. 37796, 0.65275, and
1.20874. [The fifth forbidden value of a given by the
prescription ko( (a) =0.5 a.u. lies at a =24. 16, far out of
the reasonable o; region and is therefore not included in
Fig. 2.] One observes also in Fig. 2 that the five spurious
branches of ko ' are in an obvious correlation with the
five dashed straight lines of the function k', )(a) defined

i l
ll

I I

I I

I
l

I
I

I
I

I

I

I I

i

I

l i

1

I

I

I
[

Il t l i

1.20874

—(S)FIG. 1. Reactance matrix elements K~N computed by the
generalized Newton variational method ( F=G, dashed curves )

and its least-squares extension (F=L, solid curves ) for the
triplet scattering process (S=1) at fixed wave number k =0.5

a.u. using basis-set size N=5, vs the nonlinear scale parameter
a within the range 0.7~a ~9. A spurious GNVM singularity
appears between the two dash-dotted vertical lines indicating a
change of scale in the interval [a,b] with a =1.20871 and
b =1.20877.

FICx. 2. The wave numbers k„' '(n =0, 1) vs a. The function
k 0 '(a) is depicted by the solid curves indicating the singular be-
havior of the CxNVM results for triplet scattering (S= 1). [See
Eqs. (2.23) and (2.26).] The dashed lines represent the function
k'l '(a) which is associated with the zero eigenvalues of the ma-

trix G;~ via Eq. (2.29). Both functions were obtained at basis-set
size %=5.
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E~N(5)

—(0)TABLE I. Singlet reactance matrix element ICGN(a) computed by the generalized Newton variation-
al method (GNVM) at fixed wave number k =0.5 a.u. and selected values of the scale parameter a. The
size of the basis set is denoted by X.

X &~N(1) &~N(3) K~N(7) K~N(9)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1.8451
1.5489
1.5843
1.6459
1.6290
1.6467
1.6568
1.6568
1.6619
1.6646
1.6615
1.6667
1.6677
1.6687
1.6686
1.6691

2.5802
2.6496
2.7842
0.2809
1.5680
1.6433
1.6667
1.6689
1.6706
1.6706
1.6707
1.6708
1.6708
1.6708
1.6708
1.6708

2.6217
2.6296
2.6378
2.6567
2.7461
3.4831

—0.3306
1.3585
1.5716
1.6315
1.6556
1.6642
1.6683
1.6698
1.6705
1.6708

2.5431
2.6074
2.6421
2.6438
2.6439
2.6604
2.7193
2.9433
4.0794

—1.0696
1.1449
1.4625
1.5738
1.6215
1.6453
1.6571

2.4461
2.5651
2.6256
2.6396
2.6454
2.6455
2.6474
2.6626
2.7052
2.8216
3.1426
4.7235

—1.8389
0.9146
1.3427
1.4999

a=7) within the fifth approximation (N= 5), then one
would accept the false value KzN =2.6439 which seemed
to be correct to four or five figures. [Similar observation
can be made at +=9 and basis size N=6. Note that use
of N =5—6 (distributed Gauss) basis functions per chan-
nel in GNVM benchmark calculations is justified by the
experiences of Refs. [9] and [10]]. From Table I we learn
also that the appropriate values of the scale parameter cz

lie approximately in the range 3 ~+ ~ 5 for the GNVM.
The rate of convergence is rather slow in comparison
with the Schwinger vari'. tional method which provides
the accurate result EC s,h;„„=1.6709112 using basis-set
sizes N ~ 7 (see Table I of Ref. [30]).

The secondary character of the convergence observed
above can be recovered by performing least-squares cal-
culations and monitoring the corresponding eigenvalues
A, LN [see Eq. (2.41)] which have been listed in Table II.
The slow decrease of the values of A, z N in the table clearly
rejects the secondary nature of the convergence of the
GNVM calculations in the critical regions (a=7, N =—5;
a=9, N =6). On the other hand, a rapid decrease of the
values of Ai N~(S =0, 1) can be observed in the regions of a
and N where the convergence is of primary nature.

Table III presents the LNVM results obtained for the
singlet reactance matrix elements K'LN(N, S;0.5,a) at
selected values of e and increasing basis-set size X. The

TABLE II. Measure of the error A, '„N(a)of the amplitude density calculated by the least-squares ex-
tension of the Newton variational method (LNVM) for singlet scattering at fixed wave number k =0.5
a.u. and selected values of the scale parameter n. The size of the basis set is denoted by N, and N+5
test functions are employed.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

5.4x 10-'
2.0x 10
5.6x10-4
1.3x10
6.7x 10-'
1.3X10
1.7X 10
7.8X10
3.2X 10
3.3X 10
1 Ox 10
6.0x 10-"
1.5 x 10-"
1.6x10-"
9.8X10
2.6x10-"

2.7x 10
7.2X 10
3.5 x10-'
2.8X 10
1.0x 10
4. 1x10-'
1.3 X 10
5.6x 10
7.7x 10-"
1.7x 10-"
6.8x 10-"
6.2x10-"
7.7x 10-"
5.0x 10-"
4.ox 10-"
1.3 x 10-"

A, LN(5)

9.4x10-'
2.0x10-'
3.4x 10-'
3.5 x10-'
6.0X 10
5.7x 10
1.4x 10
6.3 x10-'
3.7x10-'
2.3x lo-'
1.4X 10
9.ox 10-"
5.3 x10-"
3.2 X 10
1.7x 10-"
8.5 x 10-"

ALN(7)

1.1x10-'
5.5 x 10
2.0X 10
5.9X 10
4.6X 10
2.6X 10
1.6x10-'
3.6X 10
2. 1X10
4.4x 10
2.3 x10-'
1.4x10 "
1.0x10-"
7.5x 10-"
5.6x 10-"
4.3x10—"

1.6x10-'
1.3 X 10
6.0x10-'
6.4x10-'
1.3X 10
1.3X 10
6.4x10-'
2.6X 10
1.1X 10
5.8x 10
1.2 x10-'
5.5x10-'
1.3x10-"
6.3 x 10-"
4.2x10-"
3.1x 10
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—(0)
TABLE III. Singlet reactance matrix element ELN(n) computed by the least-squares extension of

the generalized Newton variational method (LNVM) at fixed wave number k=0. 5 a.u. and selected
values of the scale parameter a. The size of the basis set is denoted by X, and N+5 test functions are
employed.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

KLN(1)

1.9239
1.5370
1.5671
1.5744
1.6086
1.6365
1.6366
1.6500
1.6575
1.6572
1.6624
1.6648
1.6671
1.6667
1.6677
1.6685

&LN(3)

2.2962
2.5251
2.1425
1.4320
1.7085
1.6463
1.6764
1.6672
1.6713
1.6703
1.6705
1.6709
1.6709
1.6707
1.6708
1.6708

+LN (5)

2.6768
2.6529
2.5595
2.9142
3.4395
0.6315
1.4960
1.5727
1.6512
1.6527
1.6689
1.6670
1.6710
1.6700
1.6711
1.6707

&LN(7)

2.7532
2.6047
2.6416
2.6573
2.6400
2.7818
2.9839
4.9961
0.2855
1.2539
1.5120
1.5843
1.6329
1.6470
1.6607
1.6637

KLN(9)

2.7325
2.5874
2.6546
2.6417
2.6421
2.6550
2.6588
2.7357
2.8510
3.3284
5.9151

—0.2494
1.0903
1.3922
1.5277
1.5854

convergence characteristic of the LNVM results is simi-
lar to that of the GNVM calculations (see Table I). Also
the accuracy of the two calculations compares well.
Thus, the advantage of a LNVM calculation becomes
manifest in the ability of avoiding spurious singularities
(see Figs. 1 and 3) and indicating the unreliability of
several apparently converged results included in Table I.

IV. COMMENTS

It is demonstrated that the generalized Newton varia-
tional method may present spurious singularities in the
approximate static-exchange E-matrix elements of the
electron —hydrogen-atom scattering. This fact invalidates
the general statement [2] about the anomaly-free charac-
ter of the Newton variational method. Although the ap-
pearance of anomalies may depend on the choice of the
basis sets, the theoretical conclusion of Ref. [22] should
be supplemented by a careful analysis of the numerical
results. We note the important remark of Ref. [34] on
the possible occurrence of anomalies in the GNVM.

The spurious singularities of the GNVM show some
similarity to both the well-studied [13,27,28] anomalies of
the (real) Kohn variational method and the recently
discovered [29—33] Schwinger anomalies. Using Slater-
type basis functions, for example, the anomalies of the
GNVM also appear in the case of purely attractive (or
repulsive) potentials as in the Kohn method. On the oth-
er hand, the spurious singularities of the GNVM are lo-
cated along those (spurious) zeros of the determinant

X= det i ( y; i Q —Q U Q
~ yi ) i which are correlated with

the zeros of the determinant G= deti(g; Qiyl)i. This
feature is similar to the appearance of the Schwinger
anomalies which arise due to the spurious zeros of
det (y; U —UQUi@1. ) i lying close to the zeros of
de«q; UIq) ) I.

In summary, the anomalies of the GNVM appear in
narrow regions of the wave number k and scale parame-
ter a where the numerical results are affected radically
(cf. Figs. 1, 3, and 4, and Table I). The least-squares ex-
tension presented in Sec. II is simply one way of getting
smooth curves across the singular regions of k and 0.'. By
the prescription that the measure of the error of the am-
plitude density should decrease su%ciently as the size X
of the basis-set is enlarged, one can hope to accept calcu-
lations at only one value of the scale parameter, thus sav-
ing a great deal of computational labor.
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