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Fourth-order gradient corrections to the relativistic
Thomas-Fermi-Weizsacker model
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We present a calculation of the fourth-order gradient corrections to the noninteracting kinetic
energy of a relativistic system of electrons and positrons. The basis of the calculation is a recently
published algorithm for the generation of the gradient expansion of the Green s function of a field-
theoretical system characterized by a Lagrangian with an efFective external potential.
PACS numbers: 31.20.Lr, 12.20.Ds

I. INTRODUCTION

The Thomas-Fermi model for relativistic many elec-
tron systems has been established quite early [1, 2] and
has since been used for the discussion of a variety of
problems [3]. The derivation of (second-order) gradi-
ent corrections [4] to this model could only be carried
through after the realization that the problem had to be
approached on the level of a field-theoretical formulation
in order to handle questions of renormalization in a con-
sistent manner [5]. A fully covariant formulation could
in turn be obtained [6] on the basis of a recently pub-
lished algorithm for the generation of the semiclassical
expansion of the Green's function [7] in an efFective field
theory.

Numerical investigation of the relativistic Thomas-
Fermi-Dirac-Weizsacker model [8] yielded the expected
improvements over the simpler version, however, the es-
tablishment of higher-order gradient corrections seems to
be desirable.

In this paper we present the fourth-order gradient cor-
rections to the (noninteracting) kinetic energy of a rela;
tivistic system of electrons and positrons on the basis of
the expansion of the Green's function indicated above. In
view of the relative complexity encountered in the stan-
dard steps of semiclassical expansion and inversion we
used the readily available program package REDUCE [9]
to handle technical details.

II. THE SEMICLASSICAL CRADIENT
EXPANSION

Assume that a system of relativistic fermions can be
described by the Lagrangian [we use the metric g"
diag(l, —1, —1, —1) and units with h = c = 1]

~ = ib(z) [i$ —m —P(z)]g(z),
where V„(z) is an eff'ective external four-potential in the
framework of a I&ohn-Sham formulation. Following [7]
we expand the corresponding one-particle propagator in
the form

G(z, y) = ) a["l(z, y),
n=O

where G["l(z, y) denotes the nth-order gradient contri-
bution to G(z, y). Introducing the partial Fourier trans-
forms g["l(p, z) by

G[ ](nz y) e i(x pl v(x) d4p e ip (e y)g[n] (p z)
(2x)~

one readily establishes the recursion relation

(P™)g'"'(»z)= s~ &V.(z) —& Ig'" '(p, z)
0

&pv

which can be resolved (formally) in the form

+2~i 8(E, —p')8(p')S(p' —m')

with the local Fermi energy

E, —:S —V (z).

(2)

The first part in (2) constitutes the contribution of the
fermion vacuum, the second part is the contribution of
free electrons with energy between —m and S. Hence,
one-particle states with energy below S are occupied, the
others are unoccupied. As g["l(p, z) is a linear function
of g[ol(p, z), the separation into vacuum and free-electron
contribution (denoted by the subscript "vac" and "el")
applies in any order of the gradient expansion.

In the vacuum part of (1) it is reasonable to require
that the pole structure is the same in every order. In or-
der to facilitate the evaluation of the electron part of (1)
the following remarks are pertinent: One may obtain the
electron part g, & (p, z) from the vacuum part g (p, z)[nj [~)

The quantity g[ l(p, z) is the local-density approximation
of the Green's function of a homogenous relativistic elec-
tron gas in a constant four potential

g[ol (»)
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by the replacement

1

(p2 m2 + iC)ra+1

: 2vriO(E, —p ) 8(p )b("l(p2 —m ), (3)0
—1)"
n!

where 6(") denotes the nth derivative of Dirac's 6 func-
tion.

This can be demonstrated as follows: First one estab-
lishes that

))V (~) —&))8%' —S')8(S')I = o

As a consequence one has to replace

elementary charge) and the total energy density of the
system of noninteracting particles in an external field in
nth order can be calculated as

pl"l(z) = —lim, tr y0G!"l(z, y)

= —
( ), d'p tr V'gl"l(p, z)],

sl"l(z) = —lim, tr! iy G!"l(z,y) i

/'. 0 0
v-'

d ptr pp g" (p z)

with z = p —m . Second, terms of the form

1
zr

are treated by solving the equation

for T(z). The solution

(4)

The energy density decomposes directly into an elec-
trostatic and a kinetic-energy density (including the
rest mass contribution). The syrrnnetric limit indicated
stands for

1
lim, = — lim + limy~x y~x jy~S'

y
0)&0

y
0(&0 (~—y ) )0

Again the explicit evaluation of the trace of y g!"l(p, z)
and the final integration is carried through with
REDUCE. For the integration we note the following.

(1) Integrals occuring in the vacuum part of Gl"~(z, y)
are divergent and have to be handled by dimensional reg-
ularization [10]. The relevant formula to be used is

(r + s)!

in combination with (4) and (1) readily proves the asser-
tion (3).

Further simplification can be achieved with the relation

O( 0) P(n)( 2 2) ( )p(n)( 0

(p0 + E)n+1 '

where E = gp~+ m2, which can be demonstrated by
induction.

The explicit evaluation of (1) to second order can still
be done by hand, even when dealing with a full electro-
magnetic potential [6]. The evaluation of higher-order
functions g!"l(p, z) becomes, however, extremely tedious,
even if one restricts oneself to the case that the eAective
potential is purely electrostatic. For this reason the eval-
uation was done by developing a program in REDUCE for
the case that

V0(z) = V(x) and V;(z) = 0 for i = 1, 2, 3.

Once g!"l(p, z) is obtained the electron density (ac-
tuaHy the charge density of the system divided by the

I

1 pal. . .pP2n

(2~)D (p~ —m2+ i~)~p

(m2)D/2-a+n (g)siis2. . . gP'2m —1)2n s+. . .)
i (—1) +" r(n —D/2 —n)

(4~)D/2 2" r(~)
where + stands for the sum over all distinct terms
obtained by permutation of the indices p1 . .p2„. For
the case of a pure electrostatic potential some momenta
are timelike (p0), while the others are spacelike (p'). In
this case one has

(p0)2Zpi, pi~„

(2~)D (p2 —m2 + ie)~

(m2)D/2 ~+ss+r(2E —1)!!(gi~ ~ ~ ~ ~ g
2" ~ ~" + ~ ~ )

(—1) +"+' r( —D/2 — —&)

(4~)D/2 2m+i, r(~)
with the convention (—1)!!= ].

(2) Integrals in the electron part of Gl&l(z, y) are of
the form

) - (—I)"'(~+ ~s)'
71!P2 f p3!

& 1+~2+~3—+
r2(E

z!
(E —r2)! 2"+"S

—1
li (

2 +lEr 2+ )—PS S
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where the notation

f(E,):— f(E) dE(dl
dE, ) tn

has been used and p, denotes the relativistic local Fermi momentum

V'E~ —m2 if E, ) m
0 otherwise.

~

~

The results obtained with REDUCE for the fourth-order gradient contributions to the semiclassical expansion of the
density and the kinetic-energy density, including the rest mass term, are (from now on we use units with m = 1)

p'4', =,[3l'V+ 2AV(VV)'+ 2V'V V'(V'V)'], (5a)

p„= — —
i

24K V '
(4p, —1) + 4(AV) —(lip, —15) + 2A(V'V) —(7p, —12)5760~' ), ps S S

+4V'V V'AV —(17p, —24) + 4b, v(V'V) 7 (16p, —8p, + 36p, —75)
J S I S

+4V'V V'(V'U) '
(16p, —8p, + 2lp, —45) + 3(V'V) —9(32p, —80p, —175)

~ )

+S S

, [14(d V)'+ 22VV Vd V+ M(V'V)'+ 8(V'V)'],

(5b)

(6a)

E3 E3
~

24''V —(2p', —1)+ 12(&V)' '(7p,' —5)+6&(vv)' '(5p,' —4)5760'' & p, 5 S 5 s

E3
+12V'U V'AV,' (lip,' —8) + 4d V(WV)' —,(40p,' —54p,' —75)

S S

E)3
+4V'V V'(V'V) —„(20p", —33p, —45) + 3(V'V) ' (16p, —24p, + 70p, —175) i.

S S
(6b)

Since the vacuum contributions are finite, further
renormalization is not necessary in fourth order. The
result for the vacuum part of the density can be inter-
preted in a direct fashion. The first term constitutes the
Uehling term [ll], the last two terms arise from variation
of the Euler-Heisenberg-Lagrangian [12—14] with respect
to V„(z)

2 (E,p, + E,p, —arcsinh p, ),8+2

2&v—(E,'+ p', )24m2 I S

+(VV) —[2p, arcsinh p,J',

—E (p' —1)]» (10)

0 (2F F PF " + 7F *F P*F ")1

360 2 c7 A'P nP

and restriction to the case of an electrostatic field and
p = 0 [15]. Here the field-strength tensor and its dual
form are defined by

F„,= c)„V„—0,V„and *F„„=
~ e„, p F P.

The program also reproduced the known results in ze-
roth and second order, and the fact, that odd orders van-
ish. After renormalization one finds

where pl"l and 7l"l denote (as usual) the sum of the vac-
uum and electron parts.

In the nonrelativistic limit (p, (( m) the fourth-order

contributions p, &
and 7;& reduce to the results correctlyt:4] t41

established by Hodges [16] on the basis of the Kirzhnits
formalism [17]. In the ultrarelativistic limit (p, » m)
Eqs. (5b) and (6b) are just the negative of (5a) and (6a),
indicating a strong correlation in the high-density regime
at the semiclassical level.

3
[0] +S

37r2

~

2~V —(2p, arcsinh p, +E,)
2=

24~' q p,

—(%V)'—(2p,'—1)),I',

(7)

(8)

III. THE DENSITY GRADIENT EXPANSION

In order to obtain the noninteracting kinetic energy
as a functional of the density one has to invert the semi-
classical gradient expansion for the density and eliminate
the eA'ective potential from the semiclassical expansion
of the energy. For this purpose one writes the density
p = pvac + hei in the form
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J s + f2] + [4]
[4] 3~2

where the second term is given by (8) and the last one
denotes the sum of (5a) and (5b). The notation = means[]
"is equal in nth order. " One obtains p, as a function of
p and its gradients by noting that (ll) can be inverted
consistently with the steps

p, = (3x'p)'~s = k,'
fO]

E, = gp&+I
7r2

p[2]
[2] k~

= e ——24k
~

—arcsinh k + —
~

[2] 24 (ez key

&4
+(V'k)

~

arcsinh k +qk' k~8 )
(14)

pal(pal V2E )[2] 3p
„[o]+„[2]

[2]

(12)
with e = gk2+ 1. In order to execute the steps indi-
cated, we again relied on a program in REDUCE. The
program was checked by inserting the inverted form into
Eq. (11) yielding the expected result

p = k
I

1 ——p[2l(plol + pl21 V'2E )
3p

&f41(&fol v4@ ) &Ial{&lol vzE )2)

(13)
In this process the various derivatives of E, (V'E,
—V'V), which occur in (12) and (13), have to be ex-
pressed in terms of derivatives of the density. Second-
and fourth-order derivatives can be generated consis-
tently, by using

k3

[4] 3+2 (15)

Finally p, is inserted into the kinetic-energy expression

T= d z(rial+ rlzl+ rl4l)
[4]

where r["] includes the vacuum and electronic contribu-
tion [using Eqs. (9), (10), (6a), and (6b)]. This insertion
was done again using the REDUCE language. The final
result for the kinetic energy (including zeroth and second
order for completeness) is

Z
[—arcsinh k + ke(k + c )],

T[2] dsz, 2k' kb
(V'k) arcsinb k + —

~24+2 ~)

d z 3k' —2
16(Kk)

~

—arcsinh k + —arcsinh k — +
5760m2 kE

g / 80 . q 20(2e + 1) . 21k2 —10 48k l
+2Ak(V'k)

~

—
z

arcsinh k + arcsinh k—
ke4 k ~

80 . 2 40(k + e ) . 16ks+ 8k +12k4~k2+8
+ V'k arcsinh k + arcsinh k +

k~7 k t. k3~5
——(k ~ —3)~ .16 4,

~6

In order to obtain the result in this minimal form suit-
able partial integrations with the assumption that p(x)
vanishes on the surface of a large sphere have to be per-
formed. The nonrelativistic limit of T[ ] coincides with
the result given by Hodges [16].

some modifications, be extended to the discussion of a
(global) density-functional description of other field the-
oretical systems, as, for instance, quantum hadrodynam-
ics. In the relativistic TFDW4 model one has to consider
the variational equations

IV. CONCLUSION

The results presented are relevant for the formulation
of extended Thomas-Fermi models, as, e.g. , the extended
Thomas-Fermi-Dirac-Weizsacker (TFDW4) model, of
relativistic many-electron systems. They could, with

(Tl l + TÃl + TN + E,+ @ + Efol p~) 0

including the Hartree term E~ for the direct interaction
energy of the electrons and the local-density approxima-
tion for the relativistic exchange contribution [3]. The en-

suing variational equations are reasonably involved, but
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should, in analogy to the nonrelativistic case [18], be
tractable. As inclusion of fourth-order gradient correc-
tions did provide an improved description of ground-state
properties for nonrelativistic atomic and nuclear systems,
this eA'ort is considered to be worthwhile. Work in this
direction is in progress.
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