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Analysis of some integrals arising in the atomic three-electron problem
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A detailed analysis is presented for the evaluation of atomic integrals of the form

f —ar& —r2 — r3
rIr/r3123 r3, r",2e

' 'dr, dr2dr, , which arise in several contexts of the three-electron atomic

problem. All convergent integrals with i & —2, j ~ —2, k ~ —2, m ~ —1, and n ~ —1 are examined.
These integrals are solved by two distinct procedures. A majority of the integrals can be evaluated by a
reduction of the three-electron integrals to integrals arising in the atomic two-electron integral problem.
A second approach allows all integrals with the aforementioned indices to be evaluated by the use of
Sack s expansion [J. Math. Phys. 5, 245 (1964)] of the interelectronic separation, which leads to a reduc-
tion of the above nine-dimensional integrals to a set of three-dimensional integrals. A discussion is given
for the numerical evaluation of the three-dimensional integrals that arise.

PACS number(s): 31.15.+q, 31.20.Di, 02.60.+y

I. INTRODUCTION

The purpose of this paper is to present the evaluation
of certain one-center atomic integrals of the form

The approach taken in this work is to divide the I in-
tegrals into two major categories. The first group is
determined by the set of conditions

I(ij,k, l, m, n, a, p, y )=f r'~rzrsrp3r3]

1 2 3
—ar —Pr —y r

l = —2; m, n + —1 and m, n not both odd .

The second group is defined by

(2)

Xdr, dr2dr3

which will be referred to as the I integrals. In Eq. (1), r,
denotes the electron-nuclear separations and r denotes
the interelectronic separations. Henceforth, r23 P3„and
r» will be abbreviated by u„u2, and u3, respectively.
Because these I integrals form the core of calculations on
three-electron systems [1—9], or more generally, four-
particle systems [10], using Hylleraas-type basis func-
tions, there has been considerable attention devoted to
their evaluation in the literature [1,2, 11—18]. A generali-
zation of Eq. (1) has recently been investigated [19]. For
the aforementioned calculations, the I integrals required
have l, m, n each ~ —1.

The present work considers I integrals when one of l,
m, or n is equal to —2, and the other two values are
~ —1. I integrals of this form arise in the evaluation of
certain relativistic contributions for three-electron sys-
tems using Hylleraas-type basis functions. These in-
tegrals also represent the major impediment to the evalu-
ation of lower bounds to the energy, using formulas
dependent on matrix elements of the square of the Hamil-
tonian. Very little work has been previously published
for the I integrals containing a factor r; . Some special
cases of Eq. (1) which arise in the context of the two-
electron atomic problem can be found scattered
throughout the literature [20—27].

l = —2, m, n ~ —1 and m, n odd or even .

This division separates the I integrals into a group that
can be evaluated in closed form (group 1), and a second
set for which no analytic solutions appear possible. This
separation of I integrals resembles the situation known in
the literature for the case l, m, n each & —1. One result
for the I integral in the latter situation when l, m, and n
are all odd is an infinite series [12].

II. SOME PREI.IMINARY INTEGRAI. S

A major component of the evaluation strategy for the
group-1 I integrals is their reduction to simpler integrals
that appear in the two-electron atomic problem. In these
simpler integrals only one interelectronic separation ap-
pears. In Sec. III it will be demonstrated that the I in-
tegrals defined by the conditions given in Eq. (2) can be
reduced to integrals of the form

i j 1 I ~ 22(i j, l, a,P)= f rIrzu3e ' 'dr, dr& . (4)

Two principal cases for Eq. (4) are required, and they are
both treated below.
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A. Integral J'(i,j, l, a,P) fori,j,l) —1

This integral has been discussed at length in the litera-
ture [28,29]. This is the basic atomic integral arising in
the two-electron problem (more generally, the three-
particle problem) using Hylleraas-type basis functions.
Since this integral is central to the results of Sec. III, we
present explicit formulas for its evaluation. Additional
results for this integral can be found in the literature.

The standard simplification for all the 2 integrals in
this work is to convert to perimetric coordinates [30],

X =r1+r2 —u3

y =r2+Q3 r1,
Z =@3+71 P2

and

(5a)

(Sb)

(5c)

dr, dr2= (x +y)(y+z)(z+x)dx dy dz .
4 (5d)

If Eq. (5) is employed in Eq. (4), then for i,j,l each ) —1,

i+1 j+1 1+1 i+ 1
Ãi j,l, a,P) =16m.

r=o s=o t=o

J+1 i +1 (i +j+2 r —s)!(l—+1+s —t)!(r +t)!
~ii j++3—r —s r +t+1 ps +l +2—t (6)

where („)denotes a binomial coeflicient throughout this work. Using integration by parts, it can be shown that the 2
integrals satisfy the general recursion formula

aPS(i j,l, a,P) =P(i+1)2(i —1j,l, a,P)+a(j+1)J'(ij —l, l, a,P)

+(a+P)(l+1)J(ij,l —l, a,P) —(i +1)(j +I) J(i —l,j —l, l, a,P)

(i +1)—(l + 1)J(i —1 j, l —l, a,P) (j +1)—(l +1)J(i j —l, l —l, a,P)

—l(l +1)Ãij,l —2, a,P)+ . .
'
5i+p)i+j+3 (7)

where 5, t denotes the Kronecker 5. The J' integrals can be numerically evaluated in the sequence 2( —1, —l, l, a,P),
J(i, —1, —l, a,P), 2(i, —l, l, a,P), 2(i j,—l, a,P), and finally S(i j,l, a, P) Various . recursion formulas for particular
cases can be obtained from Eq. (7) or by direct consideration of Eq. (4).

B. Integral J'(i,j,—2,a, P) for i,j )—1

J integrals in this group have been discussed in the literature, though less extensively than those described in Sec.
II A. These integrals arise in the calculation of certain relativistic expectation values, and applications involving the
square of the Hamiltonian for two-electron systems using a Hylleraas basis set. A number of special cases have been
discussed in the literature [20—27].

The restrictions for convergence of the above integrals are

i+j+3)0
with

i) —2 and j)—2.

(i +j +2 r —s)!(a+P)"+'—

The simplest case to consider is i ) —1, j ) —1.
Converting Eq. (4) to perimetric coordinates, the following result can be established:

T

2 i+1 j+1 i+1 j+1
J(i,j,—2,a,8)=

( +p)i+j+3 + + r s

(9)

X (
—1)'(r t —1)!(s+t+k)!—2 2 t t irss+t+k+ i r —k —t

, t=o k=O a

where

+ ( —1)"(s + r)!5„,(a,P) (i & —l,j ~ —1) (10)

S', (a,p)=, ln(p/a) —g—1
"+'

1 P—a
(p —a)"+'

'k
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In Eqs. (10) and (11),and throughout the rest of paper, the standard summation convention gk „=0,when m (n, is
employed. For the situation when a and p are approximately the same, Eq. (11) can be reexpressed in a format more
suitable for numerical evaluation, namely,

where

l k

"+'+' (k +r +s +1) (12)

(13)

The following recursion formulas can be established by integration by parts:

(a —P )J'( —1,j+1,—2, a,P)={j+2)(j+1)J'( —1,j—1, —2,a,P)

—2P(j+2)J'( —1,j, —2, a,P)+ .+
'

(j ~ —1)
16m. (j+ 1)!

1+2

with

16m.J'( —1, —1, —2, a,p) =
z ln(a/p);

cz
(15)

and the general result

J 2 a p) J {J+1)J(&j—2, 2ap) —i ('—+1)J'(' —2J —2 p)

+2a( i + 1 )S(i —1,j, —2, a,P) —2P(j + 1 )J'( i,j—1, —2 a P )

j&0
fori ~ —l,j& —1 . (16)

The necessary input for the recursion formula Eq (16), J'(l, —1, —2, a,p) and 2( —1,j, —2, a,p), can be obtained using
Eqs (14) and (15) For the situation where a=p, an alternative to Eq. (14) is

(a+p)&( I~J& 2,a,p)=(J'+ l)S( —1,j—1, —2, a,p)+16~2(j+1)!g.(a p) (17)

where S„,(a,P) has been defined in Eq. (11) and can be
numerically evaluated for the case a =p using Eq. (12).
An alternative recursive scheme to Eq. (16) with all posi-
tive factors is

a-
da;~(a, P)= g (i +j—m)!(m —1)!

m=1 A'

'm

(a+P)J'(i, j, 2, a,P)=—(i+1)J'(i —1,j, —2, a,P)

+{j+1)2(i,j —1, 2,a,P)—
+f(j +l,i+1,P, a)

where

or for the case a =p,f (i,j,a,p) can be expressed in terms
of the hypergeometric function 2F&,

(
. .

p)
16m i!J!

iPj +i( + +1)
&,F,(j+1,1;i +j+2,e)

- e-»yf (i,j,a, p)=16m. f e x'dx J dy . (19)
o o (x+y)

Evaluation off (i,j,a,P) gives

i!(i+j)! " (j+k)!e"
aiPJ+'

o (i+j+k+1)!
with e given in Eq. (13).

(22)

with

—AJ;(P, a)] (20)

f (i,j,a,P)= .+. , [(i+j)!1n(P/a)+AJ(a, P)
16m ( —1)'

(p )i+g+ 1

C. Integral S( —2,j, —2, a, p) fpr j~ —1

The J integral of this subsection can be evaluated by
converting to perimetric coordinates to yield
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r

j+1 j +1
2( —2,j, —2, a,P)=16' g f ™e 'F(j+1—m, a+P, z)F(m, P, z)dz

m=0 0

with [31]
m —

Pyd
F(m, p, z)= f

(23)

m

=( —z) e~'E, (Pz)+ g (
—1)"(k —1)!(Pz)

k=1

where E, (x) is the exponential integral. Substitution of Eq. (24) into Eq. (23) leads to

(24)

W —2,j, —2, a, p)=16m. (
—1)J . K, j+1,—2,

j+1 j+1 1 . a+/3 —P
(a+p)J+' ' '

p 'a+p

+ .+2U j j+1—m, p a —p
p'+' ' a+p' p

j+1—m m

+ . +2 g g ( —1)'+"(I—1)!(k—1)!
1=1 k=1

&(j+1—1 —k)! a+p

I k
CX

p
(25)

U(j, m, a, b)= g ( —1)"(n —1)!a"X(j+1—n, b), (26)

m! 1 aX(m, a) = ', ln(1+a)—
a +'

, k 1+a (31)

n=1

X(m, a)= f x e ' E, (x)dx,
0

(27)
By noting the expansion

ln(1+a)= g '+a
k

1
for a~ ——',

k 2 (32)

K, (m, a, b)= f x e ' E, (x)E, (bx)dx .
0

The function X(m, a) satisfies

m 1 (m —1)!X(m, a)= X(m —l, a) —— (m ~1)
a a (a+1)

(2&)

(29)
X(m, a)= m!

(1+a)m+i

it is clear that Eq. (31) is not numerically stable for large
m, nor is the formula suitable for small a. In place of Eq.
(31), the following two expressions are numerically stable
for both large m and small ~a j:

with

X(0,a) = —ln(1+a);1
(30)

1 a
m+1 „, 1+a

1

n+m+1

for a ~ 0 (33)

ancl

m! 1 aX(m, a)= +(1+a)m+' m +1 1+a m +2
2n

1+a
a 1

2n +m+1 1+a 2n+m+2 for a& ——'
2 (34)
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The function KI(m, a, b) and its generalization are examined in detail in Appendix A. Special cases of the Sec. II C in-

tegral occur in several places in this investigation. With the restriction that aAP, a more compact expression than Eq.
(25) can be obtained by noting

gj+1
7( —2,j, —2, a,P)=( —1)j+' . , 2( —2, —1, —2, a,P) (35)

where

(z +x)(z +y)

—a(x +z) —P(x +y)
X —2, —1, —2, a,p)=161r f f f0 0 0

(36)

J( —2, —1, —2, a, p) may be expressed directly in terms of the
K I (m, a, b) integrals [Eq. (28)] or alternatively, evaluated

by expressing the factors (z +x) and (z +y) as Laplace transforms, with the result

Ã —2, —1, —2a I3)
16~ f lnx dx

l3 x' —1

16 XI(0, —2, 1+v) (37)

with r= a/Ig and II. I(0, —2, 1+r) is given in Eqs. (A6) and (A7). Inserting Eq. (37) into Eq. (35) yields

2( —2,j,—2,a,P)= . 2ICI(0, —2, 1+v)— ln(a/P)+in(P/a) g81r (j+ 1)! 2aP j+1 pm

pj+' a' —p' 2 m (p+a)m (P—a)
j+I pm m —I 1

m „1nl3" (P—a)+X X for j~O. (3&)

The preceding equation is obviously not numerically stable when a =P. Even for moderate differences between a and P,
the formula quickly loses numerical significance as j increases, a fact readily observed by computing separately the posi-
tive and negative contributions to the term in square brackets. In such cases, Eq. (25) is superior for numerical compu-
tation.

D. Integral 2( —2,j, l, a,P ) for j~ —2 and l ~ —1

For j ~ —1 and l ~ —1 the following result is readily derived:

2 1+1 j+1 I+1 j+1
2( —2,j, l, a,P)=

a m=o n=O
(l + 1+n m)!( —1—)

n —m

j+1+m —n

X X(j+1—n +m, P/a)— a+P
m —1 a+@X g ( 1) pl(j +m —n —p)I
p=0

(39)

For the case j = —2 and I ~ —1, the integral simplifies to

1+1 l +1
Ã —2, —2, l, a,P)=16m g f e ' +~'"F(l +1 m, P,x)F(m, a, x—)dx

m=0 0

1+1
J( —2, —2, l, a, P) = 16m. ( —1)'+' 2 K I ( I + 1,0,p/a )1+2

where F(m, a,x) is defined in Eq. (24). The above expression can be simplified to yield

(40)

1+1 I +1
+

m=0
V(l, m, a,P)+ V(l, 1+1—m, P, a)

m 1+1—™(k 1)I(n 1)I(—1)" "(l + 1 k n)I+ 'V 'Y
kpn( +p)l + 2 —k —n

(41)

where
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( —1)"(k —1)!X(l + 1 —k, a/P)
t t t k 1+2—kk=1 a p

and K, (l +1,0,p/a) can be computed from Eq. (All).

(42)

K. A generalized g integral

The first integral that we consider in this section is

i j IA(i j,l, ~,P, y) =f r', r', r»E, («, )e ' 'dr, dr, . (43)

This integral does not arise in any context for the two-electron problem. This special integral arises in the next section,
and is treated here, because of its relationship to other integrals examined above.

Three cases for the A integral will be examined. (a) i ~ —1,j ~ —1, l ~ —1, (b) i ~ —1, j ~ —1, i = —2, and (c)
i = —2, j~ —1, 1 = —2. For case (a), conversion of the integral to perimetric coordinates yields the result

i+l j+l I+l i +1 j+1 l+1
%'(i j 1 apy)=, g g g (r+t)!

P~ r=O s=O t=O

XG i+j+2—r —s,s+l+1 —t,
p+y

a 'e (44)

where

G(i,j,a, b}=f x'e ' dx f yje ~E1(x+y)dy .
0 0

The above integral can be simplified to yield

G(i j,a, b) = Q(i,j,a, b)+ Q(j, i, b, a)

with
m

(46)

Q(i,j,a, b) = ln(1+a) gat+1(b a)j+1 a —b

m

m=1

(j+m)!
m!

a —b

a+1
n

(j+m n)!—
(m —n)!

for aWb . (47)

The case a =b is not required in Eq. (44) since p) 0 in this expression. For the second case (i ~ —1,j ~ —1, l = —2) A'
can be reduced to the form

r

i+1 j+1 l +1 j+1
A(i,j, —2, a, P, y)=16m g g „ f e '~+r' x'+j+ " 'dx f e r~y'E, (a(x+y))F(r, P,y)dy

r=0 s =0 0

where the function F (r, p, y ) is given by Eq. (24). The preceding integral can be simplified to yield

(48)

i+l j+l i +1 j+1
%'(i j,—2, a,P, y) =16m.

r=O s=O

1 "
k a

( —1) (k —1)! — G i +j +2 r —s, r +s —k, —p+y y
i+j+4 k=1 a 'cz

+H(i +j +2 r s, r +s,P—+y,—y —P, a,P) (49)

where

H(m, n, a, b, c,d)= f x e '"dx f y "e E1(c(x+y))E1(dy)dy .
0 0

The function 0 can be simplified using the result

(50)

f x "e '"E,(x +y)dx =
0

E, ~,((1+a)y )
n! n

+, E, (y) e'~p-a"+' =0 a
(51)
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to obtain

n! b d
H(m, n, a, b, c, d)= — K, n, —,—m+1 n+1 1

c
n+1 j—1

b —a a+c
J (52)

czd( —2, —1, —2,a, /3, y)= f e ' dx f e "«Ei(x+y)dy f
CX 0 0 0 (z+x)(z+y)

with a =(P+y)/a, b =y/a, and c =P/a. Inserting the definition of the exponential integral and writing (z +x)
and (z +y) ' as Laplace transforms yields after some manipulation

(53)

The K (m, ~,b) integrals required in Eq. (52) have u = —1. Use of the recursive formula Eq. (A14) together with the re-
sult for K, (0, —1,8) [Eq. (A10)] provides a route to these functions. K, (0, cc, d) for ~ )0 and 8) 0 is also required in

Eq. (52), and this may be obtained using Eq. (A8), or Eq. (A9) if ~ is small.
The integral A( —2,j )—1, l )—1, a, p, y) is also needed for the evaluation of certain I integrals. This particular W

integral can be evaluated in a manner analogous to Eq. (48), leading to a result similar to Eq. (49).
The third case (i = —2, j) —1, l = —2) is by far the most obdurate. We consider first the case j = —1. Conversion

to perimetric coordinates gives

%'( —2, —1, —2, a, P, y)= Q(a, b)
16~
a

with

„dt K, (0, —2, 1+r)
Q(a, b) =

1 t t+b

(54)

(55)

and r=c/(t +b)—:(a b)/(t +b—), and Ki(0, —2, 1+r) is given in Eqs. (A6) or (A7). The integral appearing in Eq. (55)
is rather tedious to evaluate, particularly in a form suitable for numerical evaluation. If c —b ~ 1 then 0 & ~ ~ 1 and Eq.
(55) must be evaluated using Eq. (A7a). If c b) 1 then—Eq. (55) can be written as

R(a, b)= f K, (0, —2, 1+r)+f K, (0, —2, 1+r),
t t+b c —bt t+b (56)

where for the first integral in Eq. (56) r) 1, and for the second integral 0(r ~ 1, and both Eqs. (A7a) and (A7c) are
needed in the evaluation of the integral. In each of the preceding three integrals [Eqs. (55) and (56)], integrands con-
taining a product of a pair of log functions are encountered. Generally, such integrals can be reduced (through some
tedious algebra) to Euler s dilogarithm function and its generalization, the trilogarithm function [32]. We have opted
instead to carry out appropriate series expansion of parts of the integrands, in the hope of obtaining results suitable for
numerical evaluation. For c b~ 1 denot—e R(a, b) by 9, and employ Eq. (A7a), then with the variable change
t=c~ ' —b

2n +2
1 1 'c

R, = ln(1+ b)
4b c „o (2n+1) b

+—,
' cl(i+b) lnr ln[( 1+r) /( 1 —r) ]dr

0 c —~b

2n +1
ln(1+ b)—

k=1

tk

The second factor on the right-hand side (in square brackets) will not be stable for numerical evaluation. Expanding
ln(1+ b) in a power series yields for the summation in Eq. (57)

1 c

„=, (2n+1)' 1+b

2n +1
b 1

1+b j +2n +2 (58)

which is clearly more suitable for numerical computation. The integral in Eq. (57) can be expressed as

c&(i+b) lnrln[(1+r)/(1 —r)]dr 1 1 c
0 c —~b b+1 k, 2k —1 b+1

b+1

, 2k —1

m

t(m +2k)ln[c/(1+b)] —1]
(m +2k)

(59)

Alternative forms for the above integral involving only one infinite summation can be derived, but will be less suitable
for numerical evaluation. Collecting Eqs. (58) and (59), Eq. (57) becomes
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R, = ln(1+b) ——
4b c k o 1+b

2k+2
1 ~ b

(2k+1) „p b+1

n

1

(n +2k+2)
' b +1 (n +4k +3)

c (n +2k +2)(2k +1) (60)

Denote by Rz the second integral on the right-hand side of Eq. (56). Introducing the change of variable r =cr ' ba—nd
employing Eq. (A7a) leads after straightforward algebra to the result

9 = — ln2 4b
c —b 1 b (4n +m +3)

=p c =p [(2n +1)(2n +2+m)]
(61)

The remaining integral in Eq. (56) is

The first integral in Eq. (62) is straightforward and is evaluated to yield
2n

1 b 2' 1
ln(c —b)+ g, [c'—(b +1)']

1
b'iC C

cub+i) z " ', ~/(b+i) lnrln[(r+1)/(r —1)]"3 d+- d ., (2n + 1)' i (c rb)— c —~b
(62)

(63)

and the remaining integral can be evaluated as
T

1 c+b c, 2 b+1
ln ln —ln( c b) + —,

' ln-
2b c —b

——' ln2
2

C

2k

c —b
L&2

c
n

1
2 b +

'n
1 1 b+—g
C k 1

2k+1 C
L

n=1

1 1 b+1
n2 n b

C
' b+1 +— . , (64)

1

n

where Li2(x) is Euler s dilogarithm function. Combining Eqs. (62)—(64) gives the final result for R3.
For the case of general j,%( —2,j,—2, a, p, y) can be evaluated in closed form after some rather tedious and lengthy

algebra. The details are presented in Appendix B.

III. I(i,j,k, —2, m, n, a, P, y ) m AND n NOTBOTH ODD

In this section the I integral with i,j,k each ~ —2 and m, n ~ —1, and with the restriction that m and n are not both
odd is considered. For this case, the I integrals can be reduced to a set of 2 integrals, the latter integrals having been
discussed in detail in the preceding section. %'ithout loss of generality n is assumed even in the following development.
The symmetry exhibited by the I integrals, namely,

I(ij,k, l, m, n, a, P, y )=I(i,k,j, l, n, m, a, y, P)

=I(j,i, k, m, l, n, P, a, y )

=I(j,k, i, m, n, l,P, y, a)

=I(kj, i, n, m, l, y, P, a)

=I(k, i,j,n, l, m, y, a,P) (65)

can be employed to interchange m and n.
The Sack expansion of the function u 2 takes the form [33]

u z
= g R (r3, r, )P~(cos83, )

p=0
(66)

where Pz(cos8) are the Legendre polynomials and R (r3, r, ) denotes the radial functions. Several formulas for R ~
are given by Sack. If the above expansion for u 2 and the analogous expansion for u 3 are inserted into the expression
for the I integral of the Sec. III title, then
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I(i j,k, —2, m, n, a,P, y)= f r', r2r3u1 u2u3e ' ' 'dr, dr2dr3

i k —2 1 ~ 2 yr3
y1y~qr3u1 e ' 'R p(r3, r1)R„l (r1, r2)

p=0 l =0
1

XPp(cos831 }Pl (cos812)dI'1 dI2 dr3
1

Employing the standard expansion of the Legendre polynomials in terms of spherical harmonics

4m.
Pl ( COS831 ) =

1 X Yl»& ( 83, p3 ) Yl»& ( 81,$1 )
m= —l

and inserting this into Eq. (67) yields

(67)

(68)

I(i j,k, —2, m, n, a, P, y)= g 4m

p=o l =0, 2P+1
4~

2l1+ 1

l1

X g g fr'+ rir"u e
M= —pM = —l

1 1

XR „(r3,r, )R„l (r„r2)dr, dr2dr3

X f YpM(83&03) YpM(81&41) YI1M1 (81&41}

X Yl M (82 $2)dQ, . (69)

Employing

f Yl&M1 (81&01)YpM(81&01)d+1 ~p, I&~M M1

in Eq. (69) leads to

(7O)

(i j, , —2, m, ,na/3, y)=4m g f r', + r2r3u, R p(r3, r, )R„p(rl, r2)e ' ' 'Pp(cos823)dr, dr2dr3 .2p+1

(71)

Two distinct expansions of the Sack radial function are employed:

R (r3, r, )= ( —m/2) ~ r»&
13& 13 & pmt

2 p t =0 13)

' 2t

(72)

where

(p —m /2), (
—

—,
' —m /2),

pmt t!(p +—', ),
(73}

(a)b denotes a Pochhammer symbol, r»& denotes the greater of (r„r3), and r13( denotes the lesser of (r„r3). The
second expansion employed is

P1/ 2
oo 4r1 T2% b„

( n /2)—
R„p(r„r2)=

( —,
'

)p

where

(p n /2)„(1+p—)„b„„= u!(2+2p)„ (75}

If these expansions are inserted into Eq. (71) then
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2 "( —m/2)p( —n/2)pI(i j,k —2, m, n, a,P, y)=4m. g g g a, b „„,=o t =o .=o (2p + 1)[(1/2), )'

X I r~z+P+"r3u, e ' 'P (cos823)+u k —2 ~r2

X~(i +2+p +u, m —p 2t—p +2t, n —2p —2u, a, r2, r3 )dr2 dr3 (76)

with

p(L, M, N, P, a, r2, r3)= e r&r&3 r$3 (r&+rz) dr,P
0

(77)

On noting the property of the Pochhammer symbol (for integer k)

( —k)(=0, l )k, (78)

then the p summation in Eq. (76) terminates at p =n l2 (recall the even restriction placed on n at the start of this sec-
tion) and the u summation terminates at (n l2 —p). It is clear that the power P in Eq. (77) is always )0, which allows a
finite binomial expansion of the (r, +rz) factor. On splitting the range [O, ao ) into [O,r3] and [r3, ~ ) in Eq. (77), ~ is
evaluated to be

p
(L M N P r r ) y ru Ma (L+N+P ——u+1)

v=0

X (L +P +N —v)!—e 'Z(L +P+N U, a, r—3)

(ar3) e 'Z(L +M +P —u, a, r3)
+ N ML+P+N —u+—l~r3 CK , nr3

(79)

with

(ar, )'
Z(q, a, r3)=q! g

O
Z 0

(80)

An analysis of the factor (L +M+P —U) [see Eq. (76)] shows that the minimum value is zero for even m and —1 for
odd m, assuming the lowest i value possible. The top factor in the braces in Eq. (79) is employed when
(L +M +P —U) )0, otherwise the term involving the exponential integral is employed.

The Legendre polynomial appearing in Eq. (76) can be expanded as

[p/2j p —2q p —2q —r p —2q p 2q r
P (cosOz3) = g g g ( 1) +"

q=O r=O s=0

p —2q —2r —2s —p+2q +2s 2r
r2 r3 r23

(2p —2q)! (81)

where [p/2] =p /2 for p even or (p —1)/2 for p odd.
If the above expressions for p and P (cos8z3) are inserted into Eq. (76) and the following notational simplifications in-

p
troduced:

g&=i +2+n +2t —u —U,

g2=j +2p +u —2q —2r —2s +U,

f3=k +rn —2p +2q +2s —2t,
g4=k +2q +2s +2t,
f5=i+2+m +n —2p —u —

U
—2t,

then Eq. (76) yields

(82)

(83)

(84)
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Pmax [p/2] p —2q p —2q —r max max n —2p —2u
( 1 )q+r

2~+1

2p 2u
(2p —2q)!( —m /2)„( n—/2)

X r!s!(p —2q r —s—)!q!(p—q)![( '
) ]24p

2 P

I ~N
X g, !2(g2&g„2r —2,P, y) —g, !g, Ãr2&g3+w, 2r —2,P, a+y)

w=O ~'
5 ~N

, Wg2, g4+w, 2r —2,P, a+y)m 2p 4E ~ f )Q

pl+1+a A'(g2, r4, 2r —2,a, P, y)5

(87)

and all the 2 and A integrals needed are defined and eval-
uated in Sec. II. Equation (87) is one of the two principal
results of this investigation. It represents the reduction
of the three-electron integral problem for the case under
consideration to the two-electron case.

The maximum limits on the p, t, and u summations,
denoted by p,„, t,„, and u,„, respectively, are deter-
mined by the appropriate Pochhammer symbols appear-
ing in Eq. (87). p,„=n/2 or, if m is also even, then

p,„=min(m /2, n /2). u,„=n /2 —p and t,„= (m + 1)/2 if I is odd or t,„=m /2 —p if m is even.
The following restrictions can be put on the use of Eq.

(87). The odd-m odd-n —exclusion has already been re-
ferred to at the start of this section. By reference to Eq.
(82) the following condition must hold:

g &0 --i& —2. (88)

j & —2

k& —2,
j+k& —3,
j+k+m & —3,

and (with n even and ~ 0 assumed) for m odd,

i& —2,
j& —2,
k&n —1,
j+k —n & —2.

(89)

(90)

The%' integral in Eq. (87) arises only when i = —2 and m

For r=0 in Eq. (87) the integrals J(g2, g3, —2,a,P),
2(g2, g4, —2,a,P), and%'(g2, g4, —2, a,P, y) must be con-
vergent. By reference to Eqs. (83)—(85) the following
constraints can be deduced. For m even,

i& —2,

is odd. Since n is restricted to even values and k & n —1,
only& integrals for g4~ —1 arise.

Table I presents results for various I integrals evalu-
ated using Eq. (87). A wide selection of I integrals are
presented which utilize the different J and %' integrals
that arise in this expression. The first 42 entries in the
table were checked independently using the approach dis-
cussed in the next section. The number of decimal digits
of precision that matched was in the range 19—27, with
the smaller number of matching digits occurring for
larger values of m and n, and large values of the sum
i +j +k +m +n. For the remaining entries in Table I,
the methods of the next section are somewhat slower and
were used to generate approximately 12—15 significant
figures for the I integrals, in order to compare with the
results from Eq. (87). This match does provide an impor-
tant check, but leaves some uncertainty in the number of
significant figures being generated using Eq. (87) for these
cases. However, there appears to be no reason to expect
any major change in the number of significant figures be-
ing generated for these entries using Eq. (87). All the nu-
merical evaluations in this work were carried out on a
Cray 1M in double precision (which yields approximately
28 decimal digits).

IV. I(i,j,k, —2, m, n, a,P, y) —THK GKNKRAL CASK

In this section the general integral
I(i j,k, 2, m, n, a—,P, y) (m ~ 1,n ~ 1) is reduced to
simpler integrals. Unfortunately, the relative simplicity
of the result obtained in Sec. III is lost for the general
case.

A. Expansion formula for r;J.

To evaluate the general case a suitable expansion for
r, is required The following approach is based on the
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TABLE I ~ Values ofl(i,j,k, l, m, n, a,P, y ) computed using Eq. (87).

0
0
0
0
0
0
2
2
2
1

1

1

3
3
3
3
3
3
3
3
3
3
3
3
0
0

—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—2
—2
—2
—2
—2
—2
—2
—2
—2

2
—2
—1

—1
—1
—2
—2
—2
—2
—2

—2
—2

—2
—2

0
0
0
0
0

2
2
1

1

1

2
2
3

3
2
2
3
3
3
3
3
3
0
0
0
0
0
0
0
3
3
3
3
3
3

—1
—1
—1
—1
—1
—1
—1

0
1

1

2
—1

1

2
2
0
0
1

1

2

—1

1

1

6
—1

0

3
—1

0
0
0
2
4
4
0
2
4
2
4
0

2

0
2
0

0
2
0
2
4
4
0
0
2
4
0
0
2
0
2
4
2
0
2
4
2
4
0
2
4
2

2
2

2
0
0
0

2

2.0
5.0
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
0.5
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
27
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7

2.0
5.0
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
0.5
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.92
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9

2.0
5.0
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
1.0
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
2.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65

2.067 085 112019988 011 698 421 00 X 10'
3.386 712 247 533 548 358 366 692 97 X 10
2.069 431 027 531 892 717 303 91429 X 10'
5.834 638 925 250 533 OOS 404 820 65 X 10'
3.434050939 387 686 769 519490 8 X 10'
2.399 706 201 578 161 234 002 003 8 X 10
3.051 914096 585 057 305 590 024 6 X 10
2.350 220 972 043 034 399 333 867 8 X 10'
3.179460482 863 080485 056 679 6 X 10'
2.3Q3 g24 60Q 3g9 656 4g7 454 977 7 X 10
2.155 598 471 373 367 692 201 820 4 X 10
1.654 915 009 958 514078 982 271 0 X 10
1.892 395 797 843 513 878 591765X 10'
8.382 093 933 453 153 119689 782 X 10
2.750 777 067 630 129 348 914 527 X 10
5.518 061 029 454 149 476 487 148 X 10
2.573 361 421 526 794238 287 725 X 1Q

2.352 124 263 232 767 920 735 299 X 10
5.357 654 836 588 144 700 825 901 X 10
4.580429 171 980 893 713 536495 X 10
1.661 934415 781 205 486972 822X 10
1.655 254 412 226 743 522 888 135 X 10'
1.262 075 100417 932 549 496 420 X 10'
1.316 185 845 361 141 014 644 198X 10
1.423 236 982 236 386 168 558 231 X 10'
2.358 198 302 782 912 116458407 X 10'
2.067 321 071 227 145 287 680 895 X 10'
2.793 731 887 168 055 168 360 284 X 10'
5.577 394 740 719449 871 403 270 X 10'
2.474 991 388 450 957 507 219 897 X 10
6.030 719203 675 633 061 583 526 X 10'
1.144010541 077 014 596 095 036 X 10
5.153 289 329 234 846 352 545 967 X 10
1.106 225 242 658 711 311 585 232 X 10
1.725 301 862 323 040 537 224447 X 10
6.739 279 036 920 982 069 090 995 X 10
8.383 204 201 213 800 191 615 640 X 10
1.376 066 844 627 906 944 819661 X 10
9.138 865 880 993 483 437 450 698 X 10'
1.914 808 553 442 016 138095 538 X ].0~

2.975 496 827 447 503 261280 484 X 10'
1.001 224 088 412 704 075 110 145 X 10
6.404 335 322 907 260 289 063 400 X 10
1.715 887 878 071 845 875 610 635 X 10
2.867 034 747 696 047 768 426 855 X 10
4.793 502 392 148 070 693 668 806 X 10
1.050 013 709 895 394 890 960 2S8 X 10
2.820 676 020 288 631 555 890 723 X 10
8.133 653 681 661 903 522 531 843 X 10
2.066 S69 861 842100263 569 142 X 10'
2.168 791 565 210 574 301 222 774 X 10
3.576 974 714 380 302 751 730 570 X 10
4.623 806 824 305 902 305 315 834 X 10
6.473 942 674 258 305 779 561 337 X 10
3.477 322 58S 501 385 971 888 241 X 10
5.363 393 270 088 623 464 144 902 X 10
2.986 965 412 857 829 505 998 896 X 10
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work of Sack [33]. The Sack expansion of r, 2 takes the
form

r12 g R —2I(rl r2)PI(cos~12)
l =0

(91)

The R functions of Sack can be expressed as hyper-
geometric functions. If Eq. (27a) of Sack's paper is em-

ployed then

tions of the second kind [34] to yield

2l +1R —2I(rl r2) Ql(1/p)
2r1r2

(94)

Sack [33] was aware of the connection between the R
functions and the Legendre functions of the second kind,
but he did not pursue the connection. Now using the fol-
lowing result [35]:

(1)lr,r2l l

R —2I( 1 2)
1 2 2 I+1

( —,'), (r, +r2)

Ql(Z) =Qp(Z)PI(Z) WI 1(Z)

where Wl, (z) is a polynomial in z, then

(95)

where

XF(—,'I +1,—,'I +—,'; —,'+I;p ) (92) 2l+1
r12

o 2r1r2
1 1P
p

'
p P

2r1r2
P r +r (93)

Equation (92) can be cast in terms of the Legendre func-

XPI(cos8,2) . (96)

Using the value of Qo(1/p) and the expansion of Pl(1/p),
the first factor in the square brackets in Eq. (96) can be
expressed as

Qo
—Pl
1'.p. '

P

1+ I /p
1 —1/p

( —I )"(2l —2r)!
„=p 2 r!(I—r)!(l —2r)! P

I —2r

1
[l/'21

( —4)"
(4r1r2)' „=o

21 —2r 1 r1+r2
r 1 2 1 2( r r )2r( r 2 + r 2 )I 2r ln-

r1 r2
(97)

If (r1+r2 )' " is expanded as a binomial series and a summation rearrangement is made, Eq. (97) simplifies to

Qo
—Pl
1'
p

r +y l min[~ l —
&~

ln y 2v 2I —2a

(4r, r2 )' r1 "2 =o 0
( —4)'

2l —2v

l K
(98)

From Ref. [36] it can be deduced that

(2l 1)112
l p=O

P ( —I )"l!(2/ —1 —2u)!!
(2p —2v + 1)(2u)!!(I—2v)!(2I —1)11

(99)

and hence

1 I+, " "
2

" ( —1)"(2l—1 —2u)!!
' '.p. p (21M —2u + l)2"v!(l —2u)!

P

2l —2v

, V
(100)

Inserting the expression for p and employing a binomial expansion for (r1+r2) ' ~, followed by a summation rear-
rangement, leads to

r

l 2l —2v
r

1
Wl

P

l —1
~ —2l+1 ~ —i+1+2m l —2a —1r1 r2

x=O

mIn[v, l —x' —1]

j=0

I —2j —1

K j v=0

( —1)'
v l

2j —2v +1 (101)

Inserting Eqs. (98) and (101) into Eq. (96) yields
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1

2I'12 1=0

2l+1
4

2 r1 —r2

mln[K, I —K]

( —4)'
u=0

21 —2u l —2u

K V

I —1 min[K, I —K—1]—i+2» I —2» —2 y 4j7"
1 72

K=O j=0

I —2j —1

K j

2l —2v

I
l

(
—1)'

J u
L

2, -2.+1 P, (cos8,2) .

(102)

An alternative to the above approach is to carry out a Neumann expansion in a series of Legendre polynomials.
The Neumann expansion approach was considered in a recent paper by Pauli and Kleindienst [24]. Ignoring a few

minor misprints in their expression for r, 2 (l should read l,2 in two binomial coefficients), they have miscalculated the
summation limits in three places, as well as incorrectly giving one binomial factor, which is readily observed to be in-
consistent with the summation limits. An alternative approach to the expansion of r12, which was not exploited in the
present investigation, is [37]

r, 2
= g C„(cos8,2)

0 r12
(103)

where C„(cos8) are the Gegenbauer polynomials. This form has obvious similarities with the well-known expansion of
r12' in terms of Legendre polynomials, however the "complexities" of the expansion are carried with the angular term.
This expansion may merit detailed investigation. An alternative expansion for r, 2 given in the literature [38] was ex-
plored in our initial investigations, but not employed for the final results of this section.

B. Evaluation of the I integrals using Eq. (102)

Utilizing the expression derived above for r; a general formula for the I integral can be developed. Inserting Eq.
(102) for r23 into Eq. (1) yields

I(i j,k, 2, m, n, a—,P, y)
oo oo oo 2J + 1 ~ ~ (xt' pl' fp

4 p&(cos82&)r irzr ie ' ' 'R ( r&, ri )R„& (r» r )P2&(c so8& )Pi(icos8i2)
2

mp

p =0 I( =0 I =0

X
r +r—I —1+2K I —1 —2K 2 3

1'2 P'3 n
K=O P'2 7"

3

min[K, I —K]

u=0

r

I 2l —2u I —2u

I —1 min[K, I —K —1]—1+2» I —2» —2 y 4j72 T3
K=O j=0

I —2j —1

X
- v=O

l 2l —2v
( —1)'

v l

2j —2v +1 d r, d r2 d r3 (104)

V(l, a) =
v=0

and

where the Sack expansion given in Eq. (66) has been employed. To simplify the notation set

min[K, I —K] l 2l —2v I —2v

K —u (105)

min[K, I —K—1]
Q(l, s)=2 g 4j

j=0

I —2j —1

K j

2l —2u

l( —1)"

2j —2u +1 (106)

The angle integral in Eq. (104) is
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Irt = fPi(cos823)Pp(cos831)PI (cos8,2)dQ, dQ2dQ3 (107)

which can be evaluated on employing Eq. (68) to give

(2l + 1)2 lt, p l, lt p, l ~

So Eq. (104) simplifies to
oo —I

I(i I k —2 m n a P y)=32~ y fR
1=0

I —I —1+2~ I —1 —2')~~ r2 r, n
ti.=0

r2+r3
V( 1,1~)

r2

(108)

I —1

Q(l, it) dr, dr2 dr3 .
le=0

Inserting the Sack expansions for R I (r3, rI ) and R„I(r„r2 ) into Eq. (109) yields

4 '( —m /2)1( n /2)1—
I(i,j,k, —

2, m, n, aP, y)= 32m 3g g t21, g
1=o (2l+1)[(—,')i] t=o =o

P(l ir) rm —I 2trl+2t—rn —I —2s I+2s i+2 j+I—I+2» k+1+I —2» r2+r3
K 13 r}3 r}2 }2 1 r2 r3 Il

it=0 r2 r3

cxr ( pr2Xe ' ' 'dr} dr2 dr3

(109)

I —1

g( i ir) r m —! 2t I+2t —n —I —2s I+2s i +2 j+2—I +2». k +I —2» ~"t Ii"3 Y"3K r}3& r13& r12& r12& r} r2 r3 e dr} dr2 ar3
a.=O

where ai„, is defined in Eq. (73). To simplify the notation define

A, =%,(i,j,k, m, n, l, s, t, a, P, y)
I

n'(l s l m —I 2trl+2t—rn —!—2s I+2s 1+2 j+I—I+2» k+1+I —2»1, Kg g r}3& r}3& r}2& r}2& r} r2 r3
tt =0

r2+r3
r2 r3

—ar
&

—pr& —yr3

(110)

J7 2 =%2(i,j,k—, m, n, 1,s, t, a, p, y )

I —1

g(l q 1 m —I 2t I+2t n —I —2s—I+2s i+2 j+2—I+2» k+I —2' "t "2 «"3dr
, K'& r}3 r}3 r }2 r}2 r} r2 r3 e r} r2 r3

li =0
(112)

I

The %2 integral can be simplified by splitting the integration range for the six choices 0(r, (r &rk ( cc.3, with the re-
sult that

I —1

%2= —g Q(l, i~)[ W(i +2+2l +2t +2s,j+2+n —21 —2s +2m, k +m 2t —2 , lc—pa, y)

where

+ W (j+2+ 2s + 21c., i +2+ n +2t —2s, k +m 2t —21~,P, a, y)—
+ W(k+2t +2l —21',j+2+2s+2It, i +2+m +n —2l 2t —2s, y, p, a)—
+ W(i +2+21 +2s+2t, k+m 2t —2', j+2+n —2l ——2s+2 , libya, p)

+ W(j+2+2s+21r, k +2l +2t —2Ic, i +2+m +n —2l —2s —2t P, y, a)

+ W(k +2l +2t —2v, i +2+m +2s —2t, j+2+n —2l —2s +2,1tya, )p] (113)

W(L, M, N, a, b, c)=f x e '"dx f y e "«dy f z e "dz . (114)
0 X 3'

The W integrals appearing in Eq. (114) have been discussed in several places in the literature [1,2, 12,14,18]. Efiicient al-
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gorithrns for their evaluation are available [12].
In a similar fashion the A

&
integral can be split up as a sum of six integrals to yield

jt

%&= g V(l, x)[WI (i +2+21+2s+2tj +1+n —21 —2s+2a, k+1+m 2—t —2~, a, p, y)
v=0

+ WL (i +2+21 +2s+2t, k +1+m 2t——2~ j+1+n —21 —2s +2~,a, y, p)

+ WL (k+1+21+2t 2a,j—+1+2s+21r,i +2+m +n —21 —2s 2t, —y, p, a)

+ WL (j+1+2s+2~,k+1+21+2t —2a, i+2+m +n —21 Zt ——2s, p, y, a)

+ Wr (j+1+2s+2~,i +2+n +2t —2s, k+1+m 2t —2x—,P, a, y)

+ WL (k+1+21+2t —21', i +2+m +2s 2t j—+1+n —21 —2s+2v, y, a,p)] (115)

where

WL (L,M, N, a, b, c)=f x e 'dxf y e «dyf z e "ln dz,z+y
X 3' z —y

(116)

WL (L,M, N, a, b, c)=f x e '"dx y e «ln dy f z e "dz,y+x
X X y

(117)

WL (L,M, N, a, b, c)=f x e '"dx f y e dy f z e "ln dz .
X 3' z x

The above integrals can be simplified down to two-dimensional integrals, and a complete discussion of these is given in
Appendix C. Since the whole analysis of the general case being considered in this section hinges on the solution of the
WL, Wl, and Wl integrals, a complete discussion of their evaluation is given in Appendix D. Some representative

1 2 3

values for the above WL, WL, and WI integrals are given in Table II.
1 2 3

So the final result obtained is

4 "(—m /2) ( —n /2)I(i j,k, —2, m, n, a, p, y)=32m g g a~„, g a, [A,(i,j,k, m, n, w, s, t, a, p, y)
~=o (2w+1)l(-,')~]' s=o

"
~=o

+%2(ij,k, m, n, w, s, t, a, p, y)] (119)

i& —2, j& —1, k& —1 (120)

no WL integrals with negative arguments arise, and the
computational time required for the evaluation of the I
integral is relatively short. If m is even, and n is odd and

i& —1, j&m, k& —1, (121)

or m is odd and n is even and

with Eqs. (115) and (113) providing a route for the evalu-
ation of %& and %z. Equation (119) is a principal result
of this study.

As discussed in detail in Appendix D, the slow in-
tegrals to compute are WL, WL, and particularly Wl

1 2 3

with negative values for I., M, and X. By inspection of
Eq. (115) the following observations can be made. If m
and n are both even in Eq. (119), then with

i& —1, j& —1, k&n, (122)

WL integrals with negative arguments do not arise, and
as above, the computational time for the I integral is
short. When m and n are both odd, WL integrals with
negative arguments arise, and the computational speed
for the evaluation of the I integrals is somewhat slow,
particularly if more than about 10 significant figures are
required. A good fraction of the evaluation time is tied
up in the calculation of WL integrals with negative argu-

3

ments. Equation (119) has been employed to calculate a
large number of I integrals. This formula has provided
an important check on the result of Sec. III.

In Table III some results are presented for I integrals
not accessible by the methods of Sec. III. The number of
significant figures presented was determined by succes-
sively decreasing the summation cutoff' tolerance for the
several infinite sums involved in the calculations (see Ap-
pendices C and D for details).
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V. CONCLUSION

In this work a major integral bottleneck for accurate
calculations on three-electron atomic systems has been
resolved. Two formulas have been developed, one formu-
la being able to handle most cases and being computa-
tionally quick, the other being general, but less rapid in
computational speed.

There are still some open issues. There arise in certain
atomic three-electron calculations integrals even more re-
calcitrant than those investigated in this work. These
have factors of the form r,~ r, i, (jWk) in the integrand.
The principal advice that can be provided is to choose the
basis set judiciously, so that these integrals do not arise.
It would, however, be nice to see procedures developed to
solve these integrals.

A generalization of the title integral can be made by in-

serting the factor e "" "" "". Evaluation of
these integrals would allow additional flexibility in the
choice of trial basis functions, and aid in the accurate cal-
culation of properties for three-electron systems.

The analysis of Sec. IV would be greatly enhanced if
faster and computationally stable algorithms could be
found which improve on the results of Appendix D.
Work is in progress to develop fast and eKcient special-
ized numerical quadrature procedures to deal with the
8'L integrals.
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APPEND IX A EVALUATION OF ECJ ( m, a, b )

This appendix evaluates the function K~(m, a, b),
defined by

IC (m, a, b)= J x e '
E~ (bx)E, (x)dx, j~ .1, (Al)

0

where E (x) is the exponential integral. Special cases and
generalizations of Eq. (Al) have been discussed in the
literature [39—41j. Several special cases of this function
which are needed in Sec. II are examined.
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1. Case (i) m=o, j=1
Inserting the definition of E, (x) into Eq. (Al) leads to

ln(1+x)
d

a+b x (x a)

The integral in Eq. (A2) can be evaluated according to
the values of a and b For (a +b) ~0.

O m O

I I I
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TABLE III. Values of I( i,j,k, I, m, n, a,P, y ) generated using Eq. (119).

0
—1

1

0
0

0
—1

1

0
0

0
—1

1

0
0

1

1

1
—1
—1

1

1

1
—1

1

2.5
2.7
2.7
2.7
2.7

2.5
2.9
2.7
2.9
2.9

0.6
0.65
2.7
0.65
0.65

2.035 406498 2 X 10'
7.290 827 5 X 10'
7.187 646 24
1.527 OX 10'
1.698 678 25 X 10'

1 . a+b
Lj.za 1+a +b

b
2 1+ +b

b—ln(1+a)ln 1+a +b for 1+a )0 (A3a)

1 . a+bE, (O, a, b) = —Liz +Liz
a 1+a +b

1+a +b
b

1+a +b

b—ln( —a —1)ln for 1+a &0 (A3b)

and for 0& 1+a +b & 1

Li2( —a —b)+ Li2
1 b +—'ln (a +b +1)
2 2 1+a+

+ln(1+a)ln b

1+a +b
X, (O, a, b)= '

~2
+Li ( —a —b) —Li

2 3 2 2

+ln( —1 —a)ln
b

1+a +b

for 1+a )0

1+a+b + '1 (1+ +b) ——'1 1+ +b
b 2 2

for 1+a &0 .

(A4a)

(A4b)

Li2(x) denotes Euler s dilogarithm function, which can be evaluated from the series representation (see Chap. 1 of Ref.
[32])

oo pg

Li2(x)= g
n=I &

(A5)

Some special cases of Eqs. (A3) and (A4) which are used explicitly in Sec. II, or have been employed in the numerical
phase of the project, are

Z, (O, —2, 1+r)= .
v —1—Li2

1 'm2
+Li (1—r) —Li

2 3 2 2

1 I~2 —Li2
2 3 ' +1

L

—ln (1+r), 0(r(1

——1n
1 2

2

(A6a)

(A6b)

21+z
2 1+ 4

co Pn+ 1

X , 0~~~1
„=o (2n+1)

(A7a)

7 1
8

'

1—Inz 1n
2

&+1 1

(2n +1) r "+' (A7c)
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For a ~0 and b&0

1 . a+b . b

+b ' 1++ba
b—ln( 1+a )ln 1+a +b (A8)

For small a a form for Eq. (A8) suitable for numerical evaluation is

K, (0,a, b) =ln g +—g1+a +b ( —a)~ 1 1 b

0 g+1 b „1n2 1+a+b

The special case a = —1 is also utilized in Sec. II; the result is

n
n —1 1+—

b
(A9)

2

+ —,'ln (b)+Liz(1 —b), 0(b + 1
6

(A10a)

K, (0, —l, b)=
b —1

6 b
b~l . (A lob)

2. Case (ii) m&0, j=1
The following recursion formula can be readily estab-

lished by integration by parts

is inserted into Eq. (Al) the following result is obtained:

KJ(m, a, b)= [L(m, a+b) bK~, (—m + l, a, b)]
1

l

K, (m, a, b)= —K, (m —l, a, b) X—m —1,
m 1 1+a
a Q

for j~2. (A14)

——X(m —l, a+b) for m &11

a
(A 1 1)

where the function X(m, a) is defined in Eq. (27). The
special case a =0 can be directly evaluated from Eq. (Al)
to yield

Several of the formulas of this appendix could involve the
evaluation of the dilogarithm function for arguments nu-
merically close to l. In such cases, Eq. (A5) is not nu-
merically suitable. A superior approach is to employ the
Euler result [32]

KI(m, O, b)= X(m, b)+ +, X m, —1 1 1

bm+1

m &0 . (A12)

Li2(x) = —lnx ln(1 —x)—Li2(1 —x) . (A15)

3. Case (iii) j&1

If the recursion formula

EJ(Px) = . [e ~" PxE~ &(Px)],—j& 2
1

J
(A13)

APPENDIX 8: EVALUATION OF%'{—2, j, —2, a, P, y)

The gd integral of this appendix is rather tedious to
evaluate. For the case of general j (j & —1), Eq. (43),
after conversion to perimetric coordinates, can be
simplified to

with

2 j+1 j+1
A( —2,j, —2,a, P, y)= . (j +1)!g ( —1)'f I„(j+1—s,s, r)dzyj+, 0 o 1 —z

(Bl)

and

I„(m, , n)=rf
7 —1

ln(1+x)+ g ( x)'li dx-
i=1

(x +2)m+1 n+1

b
7 b ~~~~

t
~~c

7b+1' a' b
' a

ThefunctionI (m, n, r) satisfies

(B3)
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I,(m, O, ~)= IC, (0, —2, 1+r)+g„(m, r) for m )01

m
(84)

and

I,(m, n, r)=— m+1 I,(m + l, n —l, r)+f„(m, n, r) for n ) 1
n

(85)

and

m 2I
g, (m, v)=, g —. lnm+1

1 1f,(m, n, r) =—
~

(r+1) +'(~—1)"

in' ~' 1 2"

(r+1)';=, i(1+7)

(1—~)'
ln~+

(86)

—( —1)" ln
1 ~ 1

~+1 n(~+1) ';, i(1 +r)'
(n ) 1) . (87)

The IC, function in Eq. (84) is discussed in Appendix A. The next step is the evaluation of the integrals

j+1 j+1f I (m, O, &)dz and f f (m, n, w)dz
0 1 —2 0 1 —2

which together with Eqs. (84)—(87) provide a route for the evaluation of the integrals required in Eq. (Bl).
Solution of the integral involving the K1 function leads to

j+1 2k+1~+1

(4k +p +3)
(2k + 1)(2k +p +2) for p(1 (88)

j+1 [ —,'in@+ [1/(2p + 1)]]f — K, (0, —2, jL+~)dz =in@
0 1 —2 (2p + 1)A.

+ 1

gp + i
I =j+1

1 1

,=, (2k+p)' (p+1)

k=o (p —2k)'
1

(p —2k)(2k + 1)

where

p=c(l+b)
X=cb

+— g co"g', „ lnp+1, 1 1 1

~ p=j+i i =o (p —2k)p" (2k+1) (p —2k)
for p& 1 (89)

(810a)

(810b)

The prime on the summation denotes the omission of the singular term p =2k in the sum.
The details for the evaluation of the remaining integrals necessary to evaluate Eq. (81) can be obtained from the

Physics Auxiliary Publication Service [42]. The last five entries reported in Table I have been evaluated by employing
the analysis of Appendix B.

APPENDIX C: INTEGRALS REQUIRED FOR THE EVALUATION OF WL

In this appendix, the focus is the evaluation of the integral

VL(L, M, a, b)= f x e ' dx f y e Pin dy .y+x
0 x y X

(Cl)
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This integral is utilized in the evaluation of the WL integrals, which are discussed below.
By appropriate expansion of the log term appearing in Eq. (Cl) the following limits on L and M can be determined in

order that the integral converge:

L+ —1,
M+L+ —1.

(C2)

(C3)

The analysis can most conveniently be broken up into two cases: (i) L ~ 0, M ~ 0 and (ii) integrals where L or M or both
are negative.

1. Case (OL ~O, M ~0

With the change of variable y —x =xz, Eq. (Cl) can be written as

z+2
V (L M a b)= g x ™Ie'&+s)&dx zme dZPl 0m=0 0 Z

Now

(C4)

z+2
z me

—bxzln dz =
0 Z

[ln(2bx) —S +y]+2 +' f z e ""'ln(1+z)dz
)m+1 0

(C5)

where y is Euler's constant, S is defined by
m

S = g —,So=0,
k=1

and the integral appearing on the right-hand side of Eq. (C5) can be evaluated to be

1)mm1 m
( 1)k m

1 m ( —1)~(S —S )f z e 'ln(1+z)dz = e Ei(2bx) g + g0 2bx k =0 (m —k)!(2bx)" 1 =1 (2bx)', t (m —t)!(t —I)!

Inserting Eqs. (C5) and (C6) into Eq. (C4) leads to

(C6)

M! M 1 (L +M —m)!b, M —m! b (a+b)L+M — +'
2b

+SL+M —m Sma+&

+( —2)
1 ( —I)"X(L +M —k, (a b) l2b )—

(2b)L+M+1 ~ (m k)1+,g (L+M /)!—+b)L+M+1 2b

( —1)J(S.—S t )xg
(m —j)!(j —I)!

(C7)

where X(L +M —k, (a b) l2b ) is —defined in Eq. (27).
Equation (C7) has been tested for a range of values of L, M, a, and b Computing .the positive and negative contribu-

tions to VL(L, M, a, b) in Eq. (C7) shows that the formula downgrades for large values of M. The particular values of M
for which this becomes a serious difhculty are governed by the selected values of a and b. Under such circumstances
Eq. (C15) given below should be utilized, though this result is slower to evaluate. Equation (Cl) can also be convenient-
ly reduced to a single quadrature, namely,

(1+y) ln

VI (L,M, a, b)=(L +M+1)!f dy .)L+M+2

Equation (C8) has been employed as a check on Eq. (C7).
The following recursion formula can be established by integration by parts:

VL(L —1,M+ 1,a, b)= —[(L +M +1)VL(L —1,M, a, b) —aVL(L, M, a, b)] .1

b

The recursion formula above requires VL(L, O, a, b), which for a&b can be conveniently computed using

(C9)
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k
L

VL(L 0 a b)=
2

'
(a b—) +'SL —(a+b)

b(a2 b2)L+1 , k a+b

+ [( +b)L+1 ( b)L+1 jl
2b

(C10)

which has been obtained by employing

gL
VL(L, O, a, b)=( —1) VL(0, 0,a, b) . (Cl 1)

Equation (C9) appears to be reasonably stable for numerical computation.

2. Case (ii) L and/or M negative

Reversing the order of integration in Eq. (Cl) and introducing the change of variable x =yz leads to

VL(L, M, a, b)= f y
+ +'e «dy z e "«ln dz .1+z

0 0 1 —z
(C12)

Now using the change of variable z = 1 —x,

f ' L —az —a 'axz e ' 'ln(1+z)dz =e ' e'«"(1 —x) ln(2 —x)dx
0 0

(ay)"=e '«g f (1—x) x "ln(2 —x)dx
k-0

and similarly,

(C13)

(C14)

V, (L,M, a, b)= +b)L+M+2 a +b

with

Substituting Eqs. (C13) and (C14) into Eq. (C12) leads to
T k

(L +M+1+k)!
k! (C15)

1

g(L, k)= f (1—x) x "ln(2 —x)dx —f (1—x)Lx "lnx dx . (C16)
0 0

Since the second integral in Eq. (C16) is negative, the summation in Eq. (C15) is numerically stable. The evaluation of
the two integrals appearing in Eq. (C16) can be treated as two cases, (i) L = —1 or (ii) L ~ 0.

f 1

(1—x) x "lnx dx =
0

—g(2, k+1) for L = —1

—k!L, ! l
(k+L+1)! . o k+1+j

(C17a)

where g( m, n ) is the generalized zeta function, which can be evaluated as

(C17b)

g(2, k+1)=
6

(C18)

Equation (C18) is suitable for numerical evaluation except for large values of k, where the formula
OO

1
(2,k+1)=

J=o (j+k+1) (C19)

is employed in connection with Kummer s comparison method. In practical calculations, large values of k are not re-
quired in Eq. (C17). The summation in Eq. (C17b) can be expressed as (SL+k+, —Sk ). The other integral appearing in
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Eq. (C16) can be expressed as

1f (1—x) x ln(2 —x)dx = .

2 k 2j k —1 k —j—in2+ —+ g2'g for L= —1
12 . , j . o, m(m+j)

L—2 J
L j k+/+1

for L &0.

(C208)

(C20b)

Several alternative formulas for both cases of Eq. (C20) have been derived. Equation (C20) is numerically stable only

for small values of k. For larger values of k the following results are employed:

2 k

f (1 —x) x "ln(2 —x)dx =
, j „,2"(n+j)

2 1
x "ln(2 —x)dx = for L =0,

0 k +1 „2 2"(n +k)

for L= —1, (C21)

(C22)

1 —x x ln 2 —x dx=k!
0 , J L+J+k+1! (C23a)

k !L i. 1 rJr k+I
1 —TT(k+L+1)! . , 2~j, L+1+k+m for L)0. (C23b)

Equation (C23b) has the advantage of being a sum of pos-
itive terms, so it is likely to be more suitable for numeri-
cal evaluation.

A principle advantage of the above approach is that
the g(L, k) integrals are independent of the parameters a
and b, and so a matrix array of these integrals need only
be computed once and stored. This in turn means that
the evaluation of the VL integrals using Eq. (C15) is com-
putationally quick.

APPENDIX D: THE 8'L, INTEGRATES

L& —1,
L+M& —2,
L+M+N& —2 .

(D3a)

(D3b)

(D3c)

As for the Vl integrals, analysis of the O'L integrals is
most conveniently handled by considering two categories;
(i) all L,M, N indices positive, or (ii) cases where one or
more of the L,M, X indices are negative.

L&O,
L+M& —2,
L+M+S& —2;

(D 1a)

(D lb)

(D lc)

The O'L integrals appearing in Sec. IV are defined in
Eqs. (116)—(118). Appendix D indicates the strategy for
the evaluation of these integrals. A straightforward
analysis shows that the integrals converge when the fol-
lowing conditions hold: for O'L,

1

1. Case (i) 8'z integrals, positive L,M, N

The approach taken below is to reduce the 8'I in-
tegrals to the VI integrals wherever possible. The latter
integrals have been thoroughly discussed in Appendix C.

For 8'I the following result holds:
2

8'L (L&M, N, a b c)=f0

for O'L,2'

L& —1,
L+M& —1,
L +M+X& —2;

and for 8'L,3'

(D2b)

(D2c)

X f y e ln dy
X y —x

N+1 ~ p!v=0

(D4)
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and hence Wr (L,M, N, a, b, c)=f y e «g(y)dy f x e ' dx
0

X! c"
WI (L,M, N, a, b, c)= &

', g, VI(L,M+v, a, b+c).
where

(D6)

(D5)

For Wl, Eq. (116) can be written, after changing the or-
1

der of integration with respect to y and x, as

g(y)= f "z e "ln y dz .
Z

Equation (D7) can be recast as

(D7)

Wi (L,M, N, a, b, c)=f y e «g(y)dy f xie '"dx —f xie '"dx
0 0

I l 00 b
L a Uf y e g (y)dy —g, f y e ~' g(y)dy

U=0

and hence

(D8)

Wz (I„M,N, a, b, c)= I.! a'
~+i VI (M, N, b, c)—g VI (M+u, N, a+b, c) (D9)

For WI, Eq. (138) can be expressed as3'

Wi (LMNabc)=f x e 'dxf y e dyf z e "ln dz
3 0 X X Z X

—f x e '"dx f y e "«dy f z e "ln dz .
0 X X Z X

(D 10)

The first integral on the right-hand side of Eq. (D10) can be simplified as follows:

0 X X Z X 0 x Z X 1

Ml M b'
~+, g, VI(L+u, N, a+b, c) . (D 1 1)

On interchanging the order of integration in Eq. (D10), first with respect to x and y, then with respect to x and z, yields

f"x e 'dxf"y e «dyf z e "ln dz=f"y e «dyf z e "zdf'x~e '"ln dx.
0 X X Z X 0 0 0 Z X

(D12)

Equation (D12) can be rearranged to the form

f x e 'dxf y e "«dyf z e "ln dz=f x e '"dxf z e "ln dzf y e "dy
0 X X Z X 0 X Z X

M g, v

f "x~e '"dx f "z"+'e "+"ln dz
Z X

(D13)

Combining Eqs. (Dl 1) and (D13) leads to
M gu

WI (L,M, N, a, b, c)= ~+, g [VI(L+v, N, a+b, c)—Vl(L, N+u, a, b+c)] . (D14)

Equations (D5), (D9), and (D14) represent the results for the Wr integrals for the all positive L,M, N case. Attention is
now focused on the Wi integrals for cases where one (or more) of the indices L,M, N is negative.
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2. Case {ii) 8't, integrals; negative values of L, M, or N

The strategy employed for this case is the same as above, that is, an attempt is made to simplify the W~ integrals to
expressions involving the Vl integrals.

For WI, since L 0 [Eq. (Dla)], Eq. (116) can be simplified to yield Eq. (D9). When significant figure loss is likely to

arise, then WL can be written as
1

Wl (L,M, N, a, b, c)=f y e «dy f z e "ln dz f x e '"dx
0 Z y 0

I.! a'
,

Vi (L +M +v, N, a +b, c) . (D15)

This form for WL eliminates the possibility of significant figure loss by subtraction of terms of similar size, as may

occur in the use of Eq. (D9).
For Wi, Eq. (117)can be simplified to2'

Wl (L,M, N, a, b, c)=f y e "«dy f z e "dz f x e ' ln dx
0 0 y —x

(L V) yL+M+" +ie —(&+b)Jd f ZNe
—

ozdZ'y
a'

,
g(L, v)V(L+M+1+v, N, a+b, c)

U=o U'
(D16)

where V (L,M, a, b ) is defined by

V(LMab)=f x e '"dxf y e «dy.
0 X

(D17)

Methods for the evaluation of this integral have been discussed in the literature [12,14].
For WI for negative L, M, or N, several subcases are considered according to (i) M &0 with L &0, N &0 or L &0,

3

N&0 or L&0, N&0. (ii) M&0 and either L or N&0 [but not both; note Eq. (D3c)].
For subcase (i), Eq. (D14) can be reexpressed as

M!
WL (L,M, N, a, b, c)=

oo
( b)m M bj

.
,

[Vi (L +j +m, N a, c)—Vl (L,N+ j+m, a, c)]
m=M+1 ' j=0 ~'

M

m=0

m =0

( —b)

(
—b)
m!

M bj
. , [VL(L +j+m, N, a, c) VL (L,N+j +—m, a, c))

j=M —m+1

M —m gj
. , [VL {L+j +m, N, a, c) V~{L,N+j—+m, a, c)]I. (D18)

The last double sum in Eq. (D18) equals zero, therefore Eq. (D18) simplifies to

M
( b)m M bj

WL (L,M N a, b, c)= ' g g [VL(L +j +m, N, a, c)—VI (L,N+j +m, a, c)]
m =0 ' j=M —m+1

oo
( b)m M bj+ g g . [VL(L+j +m, N a, c) Vl (L,N+j +m, a—, c)]

m =M+1 j=O ~
(D19)

When round-off' errors are likely because of the subtraction of terms of similar size in Eq. (D19), the approach indicated

in Eq. (D20) should be employed.
For the second subcase, use the change of variable z =vy in Eq. (118), reverse the order of integration over x and y,

and then introduce the variable change x =yt to obtain
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JFL (L,M, N, a, b, c)=f y
+ + e «dy t e '«'dt u e '«'ln du

0 U

L +M +N +2e —
byd u

N + 1 2k—e
c—«Ud t L —1+2k aytd—t

oo ]

, (2k —1) o

(L +2k —1)! g fPT
oo L +M+N+ 2e—(a+b)yd f N+ I —2k —cyvd

(2k —1) o (L +2k+m)! o

(L +2k —1)! a Pal

,
V(L+M+m+2k, N+1 —2k, a+b, c) . (D20)

The above result will actually handle both subcases (i)
and (ii), and has the advantage that it represents a sum of
positive terms. An alternative form of Eq. (D20) is possi-
ble with the infinite sum over index I replaced by a finite
sum, but this is at the expense of introducing a di6'erence
of terms in the infinite sum over the index k.

The major impediment in the approach discussed in
Sec. IV is the fast computation of the 8'L integrals with

3

negative arguments. This becomes particularly prob-
lematic if a large number of significant figures are re-
quired for the I integrals. The best approach to the com-
putation of I integrals requiring a number of the recalci-
trant 8'L integrals is to build up and store arrays of the V
and Vl integrals as a function of the variables a, b, and c.
This avoids redundant calculation of the reoccurring V,
Vl, and O'L integrals.
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