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Relativistic configuration-interaction theory for atomic systems
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The relativistic configuration-interaction method with analytical relativistic Hartree-Fock-Roothaan
(RHFR} basis functions for atomic systems is presented. One-electron functions used for constructing
configuration state functions (CSF's) are obtained with the RHFR method in which the large and small

components of the radial part of a four-component wave function are expanded in terms of an analytical
basis set consisting of Slater-type orbitals. Numerical application of the method to neonlike atomic sys-

tems is carried out. It is shown that calculated excitation energies with the method are in good agree-
ment with experiment. The Z-dependent behavior of the optical oscillator strengths for various
electric-dipole transitions from the ground state in the systems is also given.

PACS number(s): 31.15.+q, 31.20.Di, 32.30.Rj, 32.70.Cs

I. INTRODUCTION

Highly ionized atoms have attracted special interest in
modern atomic physics and other related fields such as
astrophysics and plasma physics [1]. Lines emitted from
highly ionized atoms such as the first transition elements
immersed in solar, stellar, and laboratory plasmas have
been playing a very important role in modeling these
matters. The development of experimental techniques
such as the electron-beam ion sources or ion accelerators
have made it possible to study the spectroscopic proper-
ties and scattering cross sections of various ion-collision
processes with high accuracy [2]. In the analysis of the
spectra observed in these experiments, accurate level
structures and optical oscillator strengths for an atom in
various charge states are required.

In the theoretical calculation of energy levels and oscil-
lator strengths of highly ionized atoms, various relativis-
tic effects as well as the correlation effects must be includ-
ed in the theory adequately because the relativistic effects
become large as the atomic number increases or as the
degree of ionization in an atom becomes high. In the
nonrelativistic quantum theory, the variational methods
have widely been used for calculating energy levels in
many-electron systems such as atoms and molecules. In
this case the variational principle is used as a minimum
principle as well as a stationary one. However, in relativ-
istic quantum mechanics, the situation is very different
from the nonrelativistic one. Brown and Ravenhall [3]
have pointed out that the relativistic wave equation for
many-body systems does not yield a normalizable wave
function for a bound state because not only the positive-
energy bound and continuum solutions but also
negative-energy continuum ones are obtained with the
wave equation. This means that there are an infinite
number of configurations containing pairs of the positive-
and negative-continuum states which yield the same ener-

gy as that for a bound state if the two-body interaction is
neglected in the Hamiltonian. However, when this in-
teraction is taken into account, these configurations are
mixed with the normalizable bound state wave function

in the configuration-interaction scheme, so that a total
wave function becomes an unnormalizable function.
Moreover, variational solutions for the relativistic wave
equation cannot be obtained as an upper bound for the
exact energy value of the ground state in a system since
the spectrum of a relativistic Hamiltonian is not bounded
from below due to the negative-energy continuum states.

Some people [3—5] proposed the no-pair approxima-
tion for the relativistic wave equation with the Dirac-
Breit Hamiltonian for many-electron atomic systems to
avoid the "continuum dissolution, " that is, a mixing of
positive- and negative-energy states obtained. The no-
pair Hamiltonian contains a projection operator which
can be expressed in terms of a set of positive-energy
eigenfunctions for the single-electron Dirac wave equa-
tion. However, the positive-energy spectrum for the
Dirac Hamiltonian with an appropriate one-electron po-
tential in general consists of both discrete and continuum
states so that one always encounters a difticulty of dealing
with continuum wave functions in the calculation for en-
ergies in many-electron systems. Moreover, it seems that
it is dificult to obtain a good energy with a relativistic
calculation based on the no-pair approximation if the
contribution from the continuum states to the total ener-

gy is not taken into account [6].
On the other hand, using the Dirac-Breit Hamiltonian

for many-electron atoms, various relativistic atomic
structure theories such as the Dirac-Hartree-Fock (DHF)
one by use of the finite difference numerical method [7],
analytical relativistic Hartree-Fock-Roothaan (RHFR)
[8,9], multiconfiguration Dirac-Fock (MCDF) [10,11],
analytical multiconfiguration relativistic Hartree-Fock-
Roothaan (MCRHFR) [12] ones, relativistic many-body
perturbation theory (RMBPT) [13—16], and relativistic
Z-expansion theory [17] have so far been developed and
successfully applied to atomic systems to obtain the rela-
tivistic effects on the energies and transition probabilities
or optical oscillator strengths.

For the purpose of calculating energies for states con-
sisting of a large number of multiplet terms in highly ion-
ized atoms systematically, the relativistic configuration-
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interaction method (RCI) is also one of the most powerful
and efficient methods. Hagelstein [18]has made RCI cal-
culations for highly ionized atoms, where a basis set for
constructing the configuration state functions (CSF's) is
obtained with the DHF calculation for corresponding
fictitious closed-shell systems which have an electronic
configuration containing excited orbitals with fractional
occupation numbers. However, there have so far been re-
ported few RCI calculations for atoms with large basis
sets and the effectiveness of the method has not been in-
vestigated sufficiently. The whole scheme of the method
is much simpler than that of the MCDF one, since the
latter method requires one to solve extra coupled self-
consistent field equations to determine one-electron wave
functions in each calculation. Naturally accuracy of a
RCI calculation deeply depends on one-electron func-
tions used as a basis set.

Recently, the usefulness of the analytic basis set ap-
proach to accurate relativistic calculations for atoms
such as the relativistic many-body perturbation ones
[14—16] has been demonstrated. These calculations show
that analytic basis set expansion methods can be used in
approximating a projection operator introduced in the
no-pair Hamiltonian in an efficient and easy-to-handle
way. However, in this case the rigorous mathematical
basis for the no-pair approximation is lost because each
one-electron state obtained with the basis set expansion
method is not necessarily an eigenstate for the Dirac
wave equation containing an appropriate one-electron po-
tential.

In this paper, we present the RCI method with a basis
set in terms of analytical RHFR functions. By using
Slater-type orbitals (STO's) with noninteger powers of r, a
set of one-electron functions (OEF's) for constructing
CSF's are obtained from the RHFR calculations [9] not
only for the ground state but also some singly excited
states in the systems under consideration. The RHFR
calculations for excited states are carried out when OEF's
belonging to the different symmetry from those contained
in the ground-state configuration are needed in the RCI
calculation.

In the RHFR calculation one sometimes encounters a
difficulty that lower energies than the exact ground-state
one for a system considered are obtained if one uses im-
proper basis sets in the calculation because of the
negative-continuum states in the energy spectrum of the
Dirae;-Hreit Hamiltonian for atomic systems. In order to
avoid the v. &merica1 failure, the relativistic virial theorem
has been used to obtain a proper stationary RHFR solu-
tion, although it is not a necessary and sufficient condi-
tion for guaranteeing variational upper-bound solutions
[8 3,19].

The operator H~(i, j) due to the Breit interaction be-
tween two electrons is neglected in the RHFR calculation
but is treated by using the first-order perturbation theory
in the RCI calculation. The radiative corrections or the
Lamb-shift energies such as the self-energy and the vacu-
um polarization energy are not included in the present
theory because they are higher-order corrections com-
pared with the Coulomb or Breit interaction energies.
The optical oscillator strengths for various transitions in

a system are calculated relativistically with the RCI ener-
gies and the wave functions obtained.

Numerical application of the method to neonlike atom-
ic systems is carried out. The calculated excitation ener-
gies and optical oscillator strengths are compared with
experiment and those of the MCDF method [10,11], the
RCI method of Hagelstein [18], and the Hartree-Fock
with the relativistic correction (HFR) method [20].

II. RELATIVISTIC
CONFIGURATION-INTERACTION METHOD

For atomic systems, a relativistic Hamiltonian in atom-
ic units is written as a sum of the Dirac Hamiltonian
HD(i) and the two-electron operator g (i,j ) due to the
Coulomb and the Breit interactions between electrons as
follows:

H = g H~(i)+g g g (i,j ),

where

HD(i) =ca, p, +c P, + V~(r; ), (2)

c is the velocity of light, and a and P are the Dirac opera-
tors in matrix form. V~(r) is the potential due to the nu-
cleus which is assumed as a uniformly charged sphere,
given by

g(i, j)= 1 +H~(i,j ), (4)

where Hii(i,j ) is an operator for the Breit interaction
given by

In the present RCI calculation, the Breit interaction is
treated using a first-order-perturbation theory.

We write a total configuration-interaction (CI) wave
function %(yJP) with a total angular momentum J and
parity P as a linear combination of CSF's as

4'(y JP)= gc„@„(y„JP), (6)

where N(y„JP) is a CSF and c„ is an expansion
coefficient. y denotes a set of quantum numbers other
than J and P, which are needed to specify the state
uniquely.

The RCI method deals with the secular equation for a
Hamiltonian matrix with respect to CSF's. Each CSF is
constructed as a product of QEF's obtained with the
RHFR calculations described below.

—(Z/2R)(3 —r IR ) for r ~R
Vx(r)= ' —Z/r for r )8,

where Z is the atomic number and 8 is the radius of the
nucleus which is in proportion to the cube of the atomic
mass A written as 8 =2.3X10 A ' a.u.

The two-electron operator g (i,j ) is written as
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A. Calculation of RHI'R one-electron basis functions

As details of the RHFR method for open-shell atoms
have been described elsewhere [9], here we only give a
brief description of the method in connection with the
RCI scheme.

A four-component wave function g(r) is expressed as

P„(r) y (0,P)
Pn~m(r) iQ (r) y (g P) (7)

where P„(r) and Q„„(r) are the large and small com-
ponents of the radial part of a wave function, respective-
ly. y, (8,$) is a two-component spherical harmonic spi-
nor and ~ is a relativistic angular momentum quantum
number.

In the RHFR method, both P„,(r) and Q„(r) are ex-
panded in terms of the same STO's in the following form:

P„(r)= gg„„f„(r) (8a)

Q„(r)= g rl„„f;(r), (8b)

where g and g are expansion coefficients for the P(r) and
Q(r), respectively. A STO f; (r) is written as

f„(r)=(2(„)". [I (2v„+1)] '/ r "exp( g, r), —

(9)

tivistic virial theorem is used as a criterion for a station-
ary RHFR solution. The relativistic virial theorem is ex-
pressed as

where ( ~ T~ ), (
~

V~ ), and ( ~M~ ) are the expectation
values for the kinetic, potential, and rest-mass energy
operators. In the RHFR calculation, the optimization of
the orbital exponents in the STO's is carried out so as to
obtain a lower energy among those which satisfy the rela-
tivistic virial theorem.

In addition to the problem of the unboundedness of the
Hamiltonian described above, a problem of spurious solu-
tions for the relativistic wave equation also lies in the
RHFR calculation, where a spurious solution which cor-
responds to the lowest positive-energy state belonging to
a positive ~ symmetry always appears. These unphysical
solutions such as 1p, &2, 2d3/2 etc. are completely dis-
carded in the RHFR calculation. However, a normal HF
orbital belonging to a positive ~ symmetry is obtained as
a function to be orthogonal to all the rest HF orbitals in-
cluding the spurious one. This means that in order to ob-
tain a good RHFR energy it is important to add some
STO's to the basis set to describe an orbital for the spuri-
ous state adequately. Previously we have used STO's
with the same principal quantum number as those of or-
bitals for spurious states for positive x symmetries such
as 1p, 2d, etc. in the RHFR calculation, respectively, and
obtained a good result for various atomic systems [9].

where

v„=n; —I+ [ic (Za) ]'/ —for n; =1,2, . . . , (10)

I (2v„+ 1) is a gamma function, and a the fine-structure
constant.

The RHFR equation for open-shell atoms is the pseu-
doeigenvalue equations for closed- and open-shell vectors
of the expansion coe%cients and solved by iteration for
the closed- and open-shell equations until self-consistency
is obtained. The solutions for negative-energy states are
not used since we are concerned with positive-energy
states. All the real and virtual RHFR OEF's obtained
can form a basis set for constructing CSF's in a RCI wave
function. OEF's required in the RCI calculation are ob-
tained from the RHFR calculations not only for the
ground state but also for singly excited states. For exam-
ple, in the case of neonlike atoms, the ground-state
configuration is 1s 2s 2p &&22p3&2 so that the RHFR cal-
culation for the ground state yields OEF's belonging to
the s, p&&2, and p3/2 symmetries. On the other hand,
OEF's belonging to other K symmetry species such as
d3/2 d5/p f5/p etc. are obtained from the RHFR calcu-
lations for singly excited states having configurations of
Is 2s 2p&/z2p3/2(n~) for n~=3d z3/3ds/2 4fs/2, etc.

In the RHFR calculation, optimization for the ex-
ponents in the STO's is important to obtain a good ener-
gy. However, a RHFR solution is not always obtained as
an upper bound for the true ground-state energy in a sys-
tem because of the negative-energy states appearing in
the solutions for the relativistic wave equation. The rela-

B. Evaluation of Hamiltonian matrix elements

a) =( —1)j a~ (13)

[aj ] also form a complete set of a spherical tensor of
rank j. The anticommutation relation for a and a~ ten-
sors is expressed as

By using tensor algebra, various techniques in evaluat-
ing the matrix elements for one- and two-body operators
have been developed [21—28]. The tensor recoupling
transformation techniques in the second quantized form
have also been used to evaluate Hamiltonian matrix ele-
ments in the MCRHFR theory by Kagawa [12]. Here we
describe the method of calculating matrix elements for
two-electron operators such as the Coulomb and the
Breit interaction ones with respect to two CSF's in more
detail. The method in the j-j coupling scheme is almost
the same as that in the LS coupling case of Sasaki [28].

Let a and a be creation and annihilation operators
for a jm state, respectively. They obey the anticommuta-
tion relations given by

(a,a' )+ =5.'5
(12)

(a. , a,' )+=(a,a. .)+=0 .

-The 2j+1 operators of a~ for —j ~m ~j form a com-
plete set of a spherical tensor of rank j. This is not the
case for a . . However, if one uses modified annihilation
operators a - given by
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[a Xat) +( —1)~+ [at Xa ]J J J J

=&2j + 15), 5J()5M(, , (14)

where [a Xa ] means the tensor coupling leading to a
resultant angular momentum J and its component M.

A state arising from N equivalent electrons in an n~
relativistic atomic shell is specified by a total angular
momentum quantum number T and an ordering index k
as a result of the angular momentum coupling for these
equivalent electrons in the shell. We do not use the
seniority scheme [24] here, since. in this scheme one
cannot uniquely specify a state containing more than two
equivalent electrons in the n~ shells with j ~

—,'. This re-
striction for the high-j states can be removed if one uses
an ordering index A, for states with the same J instead of U

to label them. We have developed a general computer
program to calculate fractional parentage coefficients
(FPC's) for n a shells with any number of equivalent elec-
trons.

lyJ)=[(AT)x(A, 'T')] l0) . (16)

The quantum number M of a component for J is omitted
because the total energy for a state with J is not afFected
by any value of M.

By extending the coupling scheme to many-shell cases,
a CSF with a total angular moxnentum quantum number
J is constructed by performing the step-by-step coupling
of the angular momentum from the innermost core to the
outermost m valence shell in the following:

Using creation operators at, a state lA, T) with X elec-
trons in the nsc shell is written as

lzT) =[(a„'.)",~T]lo&,

where l0) denotes the vacuum state.
Ef an electronic configuration consists of two nsc and

n'sc' shells with subtotal angular momentum quantum
numbers T and T', respectively, a state with J obtained
with the coupling of the two angular momenta is given by

lyJ)=[(a" ),k T„,[(a, ) ',~,T „[ ' [(a1) ', ~)T)] '] ' ' ' ] '] Io& (17)

where X, is the number of electrons in the ith shell. J,. is
generated by the coupling of J;, and T, , J&=T& and
J =J.

A two-electron operator G in the second quantized
form is written as [12]

—,& X s~u.
v s, t, u, v

where

6„„,= (st lg (1,2) juu )a, a, a, a„

(18)

=( —1) (»+1) '"(&llg "(1)llu & «llg "(2)IIV &

X:([a,Xa„] X [a,tXa„] ):, (19)

and:: means the normal product for the creation and an-
nihilation operators in G„u, .

Now we describe the method of calculating the angular
part of matrix elements for the Coulomb and the Breit in-
teraction operators with respect to two CSF's. As the ra-
dial integrals for the operators are multiplicative factors
for these matrix elements, we omit them in the following
description.

The reduced matrix element for the Coulomb interac-
tion operator with the wave functions in j-j coupling is
expressed by use of a Wigner's 3-j symbol as

g (1 2) —y(1L)v(1).y(1L')v(2)

where

y(1L)v [(1)X C(L)]v—
(21)

(22)

and u"' is the Dirac operator of rank one. The reduced
matrix element for T" ' with respect to Dirac wave
functions is written as a sum of those with respect to the
large and small components between the wave functions.
In this case the Pauli spin operator o'" instead of a'" in
T" ' appears in each reduced matrix element. The re-
duced matrix element is expressed with the Wigner 9-j
symbol as

( —,'I,j, llC'"'ll —,'E„j„)=( —1) ' [(2j,+1)(2j„+1)]'
js ~ ju

1 P 1

2 2

for I, +v+1„even, (20)

where C' ' is a spherical harmonic tensor and I is an or-
bital angular momentum quantum number. The Breit in-
teraction operator, which consists of the magnetic and
the retardation terms, is written elsewhere [12,29]. It is
expressed in terms of scalar products of the two tensors
having the form



7096 TAKASHI KAGAWA, YOSHIE HONDA, AND SHUJI KIYOKAWA

where

1

II
~(i )II

1
&
—Q3 (24)

der from the innermost core to the outermost m shell in
the following form:

&y„JI([a, Xa„] X[a, Xa„] )' 'Iy„,J&

I, I I„
& l, lIC' 'lll„& =( —1) '[(2l, +1)(2l„+I)]'~

(25)

where

(26)

(27)

Let bra &y„JI and ket Iy„J& states be two CSF's in
Eq. (17) expressed in the second quantized form. The
participating electrons labeled by s, t, u, and U in the in-
teraction can be selected so that the matrix element does
not vanish. We usually have two combinations of two
pairs of a creation and an annihilation operator in 6„„,
in Eq. (19), which correspond to the direct and exchange
terms. In order to use the reduction formulas to evaluate
the angular part of the matrix elements, the normal prod-
uct of the operators specified by s, t, and u, and v in Eq.
(19) must be rearranged their positions by using the ten-
sor recoupling transformation formulas. The arrange-
ment for them is carried out in the same way as those for
the creation operators in a CSF in Eq. (17), that is, in or-

and q, =a, , q, =a, , q„=a„,q, =a„. q; becomes the unit
tensor if spectator electrons occupy the ith shell between
two CSF's. AJ is a factor arising from the recoupling for
the creation and annihilation operators in the arrange-
ment and J is one of the resultant angular momentum
quantum numbers due to the recoupling. When more
than one participating electrons exist in the same shell, q
means a set of these operators.

The general reduction formula for the reduced matrix
elements for tensor products of two tensors can directly
be applied to the evaluation of the matrix elements for
the second quantized operators in Eq. (26). Thus the re-
duced matrix element for the Q' ' tensor in Eq. (26) can
be expressed with the reduction formula [28] as

&y„JI&"'ly.J&=&[T XJ i]'l[q xQ —i]"'I[T' xJ' i]'&

Tm Jm-i
' &T lie IIT' &&J -illQ -illJ' -i &(2J+I»'

q Q, 0

(28)

where n (T' ) and n (Q, ) indicate the number of
operators involved in T' and Q i. If q consists of a
single operator or complex ones appearing in the normal
product in G in Eq. (19), & T Ilq IIT' & is evaluated in
terms of a fractional parentage coefficient [23,24,27] for
the mth shell. If q is the unit tensor,

(29)

of operators in G in Eq. (19) with the formula, one is only
required to prepare appropriate FPC's for the shells
specified by s, t, u, and v. The merit of using the tensor
recoupling transformation techniques in the second quan-
tized form is that it is the straightforward iterative calcu-
lation without any procedure of antisymmetrization of
wave functions and special treatment of the FPC's for
atomic shells related to the matrix element.

The same formula can be applied to the reduced matrix
element &J,II Qm, IIJm, & in the next step of the cal-
culation. So & J; IIQ, IIJ,' & for the ith atomic shell is in gen-
eral given by

l

&J;IIQ;IIJ &= HLk
k=1

where
I

I.k =( —1) " " ' [(2J„+1)(2Qk+ 1)(2Jk+ 1)]'i

Tk Jk —I Jk & Tk II ik II Tk &

Qk —i Qk

In evaluating the matrix element for the normal product

C. Relativistic transition probabilities and oscillator strengths

For highly ionized atoms, the relativistic e6'ects on the
energy levels and wave functions become large. This
leads to significant changes in the transition energies and
probabilities for the optical transitions in the systems
from corresponding values of nonrelativistic calculations.
So, it is very interesting to calculate transition probabili-
ties or oscillator strengths for various optical transitions
because the accuracy of calculated energies and wave
functions obtained can be seen by comparing them with
experiment.

The relativistic transition probability for an optical
transition in an atomic system can be obtained by use of
the time-dependent perturbation theory with the Born
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approximation for the transition matrix (T matrix)
[30,31], where the T matrix is given by the matrix ele-
ment for the interaction Hamiltonian between atomic
electrons and the radiation field with respect to the initial
and final atomic states. The multipole expansion of the
electromagnetic field leads to the total transition proba-
bility as a sum of those for all multipole electric- and
magnetic-type transitions. The spontaneous emission
probability for the transition from an upper Ib) to a
lower Ia ) state is written as

Ab, =2aco g [(blM (e)la )+(blM (m)la)]

(32)

where a is the fine-structure constant and co is the transi-
tion frequency. M (e) and M (m) stand for the opera-
tors for the 2 pole electric- and magnetic-type transi-
tions, respectively. The expression of the matrix element
for the transition operators M in Eq. (29) with the RCI
wave functions is given by

(blM'I a &
= y y c.c. y y

n n' s t
(1.Jbll[a,'Xa, ]'ll) .J. &

2L +1 (33)

where c„and c„are the expansion coefficients for CSF's
in the RCI wave functions for the upper (bl and lower
Ia ) states, respectively.

A single-electron operator h (e) for the electric-type
transition in Eq. (33) contains a gauge G. The matrix ele-
ment for it is given by

(j II" (e)llj &
= [G( r, + fi)+ f ] (34)

START

where Y„Y&, and Y, are the transition matrix elements
for the scalar, longitudinal, and transverse photons be™
tween the two states. The expression for them is complex
and lengthy and given elsewhere [30,31]. The value of
the transition probability is not free from the choice of G
when the exact wave functions for a system cannot be
used, whereas Y, +Y&=0 if they are evaluated with the

exact wave functions for the system. Since an exact wave
function for a many-electron system is hard to obtain,
one usually uses special values of G = —[(L+1)/L]'~
and G =0 in the evaluation of the matrix element for
h (e), which correspond to the length and velocity forms
in the nonrelativistic limit, respectively.

In the evaluation of the m'atrix elements for [a,tXa, ]
involved in Eq. (34) with the RCI wave functions, one can
also use the same reduction formula in Eq. (28) as that
used for two-electron operators. Before doing this, one
has to arrange the operator [a,~Xa, ] in the same order
of atomic shells as that for CSF's in Eq. (17).

It is convenient to use the oscillator strengths instead
of the transition probability if one compares the theoreti-
cal results with intensities of spectra observed. The rela-
tivistic oscillator strength for electric- and magnetic-type
transitions in atomic units is written in terms of the rela-
tivistic transition probability Ab, as

INPUT

ATOMIC NUMBER

~ NO. OF ELECTRONS

STO

2Jb+1
2J, + 1 2~3~2

(35)

CALCULATION OF RHFR

BASIS SET

F ILE 1

RHFR BASIS SET

Finally the Aowchart of the RCI calculation for energy
levels and optical oscillator strengths in an atomic system
is shown in Fig. 1.

III. CALCULATED RESULTS
FOR NEONLIKK SYSTEMS

BCI CALCULATION OF

ENERGIES AND

WAVE FUNCTIONS
FILE 2

RCI ENERGIES AND

WAVE FUNCTIONS

CA LC ULAT ION OF

OSCILLATOR STRENGTH

FILE 3

OS Cll L ATOR STR EN GT M

FIG. 1. Flowchart of the atomic structure calculation with
the RCI method.

Now we apply the RCI method to neon isoelectronic
sequence to see the effectiveness of the method. The
neonlike systems picked here are Ar +(Z=18),
Ti' +(Z =22), Fe' +(Z =26), Se +(Z =34)
Kr +(Z =36), Mo +(Z =42), Ag +(Z =47),
Xe +(Z =54) Ba +(Z =56), W +(Z =74), and
U +(Z =92).

First we carry out the RHFR calculations by use of
STO's to obtain a set of OEF's for constructing the CSF's
in Eq. (6). The number of STO's used for the systems
considered is 8 for s»2, 8 for p, &2, 6 for p3&2, 6 for d3/2 6
for d5&2, 6 for f5&&, and 6 for f7&2, where they consist of
some sets of two STO's with the same n; but different or-
bital exponents of g„and g„';, the so-called double-zeta
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basis set. For x) 0, STO's with the same principal quan-
tum number n, as that of a spurious-state orbital such as
1p STO's etc. are included in the basis set to describe it
adequately. An optimum RHFR energy can be obtained
by varying orbital exponents in STO's so as to satisfy the
relativistic virial theorem in Eq. (11).

In order to facilitate the optimization of the orbital ex-
ponents in the RHFR calculation, the values of ex-
ponents in the STO's belonging to K symmetry are taken
as a function of a principal quantum number n; in v,. in
Eq. (10) and a variational parameter ti, for 7r symmetry,
given by

and

(„=5,/(n; ) (36)

CK! 0PKl (37)

where p and q are parameters appropriately chosen for
each system and Axed during the RHFR calculation. So
these constraints for the orbital exponents lead to only
one parameter 5 needed to determine exponents in all
STO's belonging to ~ symmetry. We choose p =q =1.S
for all the systems considered here except for the W
and U + ions, p =q =2.0 for W + and p =q =2.5 for
U +. 5 is varied in the RHFR calculation to obtain an
optirnurn RHFR energy.

As has been mentioned in Sec. II, OEF's for s, /z, p, /2,
and p 3 /2 symmetries are obtained from the RHFR calcu-
lation for the ground state and those belonging to d3/2,
d5/2, f5/2, and f7/2 ones for excited states having the
configuration of 1s 2s 2p, /22+3/2(n7r) with the largest J
in the systems under consideration. It is noted that all
the OEF's obtained form an orthonormal set. We assume

TABLE I. Optimized parameter 5, for orbital exponents g;„
and g,'„ in double-zeta STO's obtained with the RHFR calcula-
tion for neonlike Fe' + and Xe +, where g;„=o„ln and
g';, = l.5g;,.

Symmetry

&1/2

P 1/2

P3/2
d 3/2

f5/2f7/2

Number
of STO's

n; in
STO's

1 —4
1—4
2—4
2—4
3—5
3—5

4—6

F 16+

25.232 52
26.19050
26.19051
34.394 30
26.000 00
26.000 00
25.946 12

Xe44+

45.151 12
66.162 74
57.322 43
56.700 00
55.096 20
54.000 00
54.000 00

that the positive-energy projection operator in the no-
pair Hamiltonian for systems can effectively be approxi-
mated with the basis set.

Using 23 OEF's consisting from the 1s up to 5f7/2
RHFR functions, we carry out the RCI calculations to
obtain the energies for even-parity states with J=0—5
and odd-parity ones with J=O—4 in Fe' + and Xe
ions. The optimized values of the parameter 5 obtained
with the RHFR calculation for these ions are listed in
Table I. CSF's used in the RCI calculation are the
ground configuration and all the possible single-
excitation CSF s with the RHFR basis set used. In addi-
tion to the single-excitation CSF's, we use the n =2~3
double-excitation CSF's represented by the
(2p3/2) ~(3') excitation from the ground state for
even-parity states to take the electron correlation effects
into account in the calculation adequately, where 3~
stands for 3s, 3p&/z, 3p3/2 3d3/2 and 3d»2. In Figs. 2

1400-
Fe XVII (Ne-like)

1300-
Q3

CD 1200—
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0 1000-
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+ + + + + +
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FICi. 2. Singly excited levels up to n =5 for even-parity states with J =0—5 and odd-parity ones with J =0—4 in Fe XVII (neon-
like). J+ denotes even- and odd-parity states with J, respectively.
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and 3, calculated excitation energies from the ground-
state energy for all the singly excited states with n & 5 in
Fe' + and Xe + are shown, respectively. It is seen from
the Sgures that the relative spacing of the energy levels
between the two systems changes because of the
difference of the intermediate coupling in the wave func-
tion obtained through the RCI calculation between these
systems.

In Table II, the RCI excitation energies from the
ground state to singly excited ones with n =3 in Fe' +

are compared with other theoretical results [32,33] and
experiment [34]. Our RCI results are slightly large com-

pared with two other theoretical values and experiment.
This arises mainly for two reasons: One is that the Lamb
shift or @ED corrections are not taken into account in
our RCI theory, since it is considered that the difFerence
of the corrections between the I.- and M-shell electrons is
larger than that between the electrons in the same shell.
The other is due to the basis set used: A set of OEF's ob-
tained with the RHFR calculations is more preferable to
obtain the energy for the ground state than those for ex-
cited states because the set commonly used in the RCI
calculations has core orbitals obtained for the ground
state in the systems. This leads to a little more energy

TABLE II. Comparison of the excitation energies from the ground state to excited states with n =3
in neonlike Fe(Z =26) in cm

State

2s 2p ('So)

2s 2p 3s ( 2, 2 )o

2 2 3 ( —' —')'
2s 2p'3p ( 2, ~ )i

2s'2p'3p (2y 2)3

2s 2p 3d (z~ z)o
2s 2p 3d (2, 3))
2s 2p 3d ( ——)'
25 2p 3d ( ——)'

$22p53d (
3 3 )0

2$ 2p 3d ( 2, 2 )2

2p 53d ( )o

2s 2p'3d ( 2y 2 ))

»'2p'3d (2y p)3
2s 2p 3d ( —,—)1

»2p'3d (ps2)p

'Reference [32].
bReference [33].
'Reference [34].

RCI

5 861 127
5 875 609
5 962 151
5 969 957
6 109418
6 134205
6 138237
6 143 687
6 153 238
6 195 122

6 228 788
6 254 298
6258 885

6 360 681
6472 881
6 482 760
6497 840
6 497 939
6 504 263
6 516 582
6 528 114
6 564 236
6 602 564
6 610361
6 614 948
6 680481
6 955 442
7 006 626
7 220 122

7 225 645
7 243 722
7 260 860
7 579 365
7 580405
7 582 893
7 624 886

RCI'

0
5 854 100
5 869 700
5 957 000
5 966 800
6097 800
6 125 900
6 138 800
6 148 300
6 162 500
6 208 000
6 224 600
6 250 300
6 253 500
6 376400
6 468 500
6 476 200
6 491 800
6 490 900
6 498 500
6 512 279
6 520 700
6 559 900
6 600 900
6 606 900
6 611 600
6 674 500
6 950 300
7 002 700
7 214 100
7 217 800
7 236 600
7 251 600
7 578 100
7 579 000
7 581 000
7 620 200

HFRb

0
5 844472
5 859 198
5 946 639
5 956000
6 094 955
6 122 516
6 134946
6 144426
6 158 046
6 203 689
6 221 146
6 246 049
6248 856
6 361 052
6 462 777
6 470 935
6 487 376
6 486 043
6 492 956
6 506 860
6 515 730
6 553 145

6 594 981
6 601 670
6 606 055
6 664 325

Expt. '

0
5 852 700
5 864770

5 960 870

6471 800

6 552 200

6 660000

7 198900

7 235 900
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FIG. 3. Singly excited levels up to n = 5 for even-parity states with J=0—5 and odd-parity ones with J=0—4 in Xe XLV (neon-
like).

drop of the total RCI energy for the ground state than
those for all excited states considered.

In fusion study, various specific elements such as the
first transition elements or Mo become important because
they are used to construct a fusion reactor. On the other
hand, this conversely causes the radiation loss problem if
they are sputtered from the wall of the reactor into fusion
plasmas. For neonlike systems, many intense lines due to
the electric-dipole (El) transitions between the ground
state (J=O) and excited states (I =I) have been ob-
served and identified. There have been many comparison
data for spectroscopic lines observed in highly ionized
atomic system including these elements related especially
to the astrophysics or fusion study.

In Tables III—VII, the RCI transition energies for the
E1 transitions between the ground and the singly excited
states in neonlike Ar, Ti, Fe, Ni, and Mo ions are com-
pared with experiment, respectively. In these tables the
calculated oscillator strengths are also listed together
with those obtained with the relativistic random phase
approximation (RRPA) method by Shorer [35] or those
in the atomic transition tables of Wiese and his collabora-
tors cited by other people in the compilation of the exper-
imental data [34,36,37]. We consider in detail the accu-
racy of our RCI results for these systems in the tables.

A. Ar~+ ~pn

The RCI excitation energies for Ar + are compared
with the experimental ones [38] in Table III. In the inter-
mediate coupling, it often happens that the main
configuration for a state cannot necessarily be represent-
ed with a single CSF in either pure LS or j-j couplings.

In the Ar + case, the three CSF's generated by the
2p»2~3d3&2, 2p3&2~3d3&2, and 2p3&2~3dsrz
tions from the ground configuration are so strongly
mixed that it is dificult to pick the main configuration
especially for the fourth lowest excited state in the table.
We write the Is 2s 2p 3d ( —,', —,')& as the main
configuration for both the fourth and fifth lowest excited
states in the table because of the largest expansion
coeKcient for the CSF. This means that the wave func-
tion for Ar + can still be described well with LS coupling
rather than the j-j one. This fact has already been shown
by Shorer by transforming the RRPA wave functions in
j-j coupling into the L,S coupling ones, where each state
can be well described with a main configuration in LS
coupling. This means that the spin-orbit term is not so
large compared with the Coulomb interaction energies in
this ion.

It is seen from the table that errors for most RCI re-
sults except those for states arising from the excitation of
2s or 2p, &2 electrons are within about O. S%%uo. Large error
in the calculated transition frequencies for some singly
excited states due to the transition of the inner 2s or
2p»2 electrons will be seen in the tables for other ions
such as Ti' +, Fe' +, and Ni' + systems. It mainly arises
from the lack of the Lamb shift or the @ED corrections
in our RCI theory.

The RCI oscillator strengths for the n =2—+3 transi-
tion lines are compared in the table with the RRPA ones
of Shorer [35] and MCDF ones of Fielder, Lin, and Ton-
That [39]. Small discrepancies of the fL values among
the three method are observed in the table. The RCI re-
sults for the 2p3/2~3s transitions are close to the MCDF
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ones, whereas those for the 2p-3d transitions are close to
the RRPA ones.

2p)/2 3d3/2 excited states becomes slightly large com-
pared with that in Ar + ion in Table III.

B. Tx12+ eon C. Fe' + ion

In Table IV, the RCI transition energies for the same
E1 transition in Ti' + are compared with experiment
[36]. One sees from the table that the calculated energies
are in good agreement with experiment except those for
the 2p, /z~5d3/2 transition. This is due to the limited
basis set with n ~ 5 used in the present RCI calculation,
since the mixing of wave functions between these states
and higher excited states increases as their energy levels
become closer to each other. Relatively large errors of
the RCI results for these states due to the excitations of
inner 2s and 2p&/z electrons are also observed in the sys-
tern.

The RCI fL values are compared with those with vari-
ous theoretical calculations listed in the data table of
Mori et al. [36]. The RCI oscillator strengths are in
good agreement with those for most transitions except
that for the 2p&/2 —+5d3/2 transition which has just been
discussed above. The oscillator strength for the reso-
nance transition between the ground and the

In Table V, we compare the RCI transition energies for
the E1 transitions in Fe' + with the experimental ones
[34]. For the states up to n =4, experimental data are
complete. It is seen from the table that the RCI excita-
tion energies are in much better agreement with experi-
ment than those for Ar + and Ti' + ions. One also ob-
serves larger error for calculated results for the excita-
tions of inner 2s and 2p, /z electrons compared with those
due to the excitation of the valence 2p3/2 electron. It is
interesting to note that the absolute values of the error
for all excited states up to n =4 are almost the same. It
is considered that this arises mainly from the difference of
the magnitude of the Lamb shift or the QED eifects on
the binding energy between the core electrons in the I.
shell. As has been mentioned in Sec. IIIB, error in the
RCI transition energies for some n =2~5 transitions
especially for the 2p, /2

—+5d3/2 one becomes large com-
pared with those for the n =2—+3 and the n =2~4 tran-
sitions because the basis set used is not sufhcient to de-

TABLE III. Transition energies and oscillator strengtlts with the length form fL for the E I transi-
tions from the ground state to the excited states with J= 1 and odd parity in neonlike Ar(Z = 18).

State RCI
Transition energy (cm ')

Expt. ' RCI RRPA

2 2 3 ( ——')'

2s 2p'3s z~ T

2s 2p'3d ( —' —)'

$22p53d (
1 3

)o1

s2p 3d(1 3)o

s 2p'4$ (- -')

2$2p'3p ( —2'7 —,
'

)1

2 2p 4d ( ——)'
2$'2p'4d ( —2'7 —,

'
)1

$22 54d (
1 3 )o

S22p55S (
3 1 )o

2$ 22p 55d (
3 5 )o

2$2p 5S (2'2)
2s 2p'5d ( — )o

$22p55d (
1 3 )o

2s2p 5p (2, 2)1

'Reference [34].
Reference [35].

'Reference [39].

2 044 048

2 063 460

2 361 937

2 392 145

2431 187

2 718 302
2 734 572
2 806 990
2 816798
2 834 792
2 850486
2 868 985
3 045 631
3 056 381
3 063 863
3 230 103
3 264 987
3 389 145
3 392 724
3 751 858
3 760 629

2033 350

2 052 120

2 349 620

2 379 820

2 410 800

2 782 000
2 791 740
2 834470
2 855 510

3 063 730

10698

11 340

12 317

12 325

20 387

24 990
25 058

322
—5 024

—7 349

0.0522

0.1022

0.0022

0.1296

2.1924

0.0194
0.0054
0.0027
0.3252
0.0000
0.1145
0.5747
0.0174
0.1161
0.0536
0.1156
0.4808
0.0018
0.1038
0.0740
0.0946

0.063
(0.050)'
0.181

(0.112)'
0.005
(0.001)'
0.139
(0.175)'
1.90

(1.85)'
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TABLE IV. Transition energies and oscillator strengths with the length form fI for the El transi-
tions from the ground state in neonlike Ti(Z =22).

State

22p 53$ (
3 1 )0

2s 2p'3s 2'2
2s22p53d (

3 3 )0

2$'2p'3d ( —
27 —,

'
)1

22p 53d (
1 3 )0

2s 2p 3p ( 2, 2 )1
22 4 (3 1)0

2$ 2p 4$ 2' 2
22 54d (

3 3 )0

s 2p'4d ( ——')
2$ 2p 4d (- -).
2$22p55$ (

3 1 )0

2s 2p'5s ( 2, 2 )1

2s 2p Sd ( 2
—)'

2s 2p Sd ( ——)'
22p 55d (

1 3 )0

2s 2p 5p ( 2, 2 )1

'Reference [36].

3 720 398
3 764 133
4 179077
4 232 070
4 303 630
4759 835
4 781 061
4 982 111
5 026 506
5 154742
5 179 380
5 223 496
5 528 602
5 573 484
5 608 281
5 689 532
5 749 066
5 894 831
5 901 081
6483 758
6491 695

Transition energy
Expt. '

3 709 200
3 753 600
4 168 200
4219 800
4 281 600
4733 300
4 754 000
4966 500
5 014 300

5 163 700
5 207 200

5 596 300

5 641 100

(cm ')

11 198
10 533
10 877
12 270
22 030
26 535
27 061
15 611
12 206

15 680
16296

11 981

107 966

RCI

0.0740
0.0637
0.0038
0.2948
2.5675
0.0141
0.2976
0.0114
0.0084
0.0045
0.3157
0.4844
0.0041
0.0033
0.1713
0.0818
0.3044
0.0074
0.1184
0.0496
0.0830

Others'

0.063
0.075

0.33
2.4

0.017
0.011

0.28
0.45

0.14

0.16

TABLE V. Transition energies and oscillator strengths with the length form fL for the El transi-
tions from the ground state in neonlike Fe(Z =26).

State RCI
Transition energy

Expt. '
(cm ')

RCI Others'

2s 2p '3s ( 2, 2 )1

2s 2p 3s (2, 2)1
2$'2p'3d ( —', , —', )1

2s 2p 3d ( ——)'
2s 2p 3d ( —' —)'

2s2p 3p (2 2)1
$22 54 (

3 1 )0

2s 2p 4s (2, 2)1
2s 2p'4d ( — )0

$22 54d (
3 5 )0

2s 2p 4d ( —' —)'
2$ 22p 55$ (

3 1 )0

2$22 5 (1 1)0

2s 2p'5d ( ——)'

2s2p 4p ( —', —);
22p55d (

3 3 )0

2$22p55d (
1 3 )0

2s2p 5p ( —', —);

'Reference [34].

5 875 609
5 969 957
6 482 760
6 564 236
6 680481
7 225 645
7 260 860
7 900 034
7 997 853
8 132412
8 168 769
8 260958
8 773 600
8 872 484
8 899 330
9085 388
9 097 026
9 689 956
9 829 893
9 925 981
9 929 645

5 864770
5 960 870
6 471 800
6 552 200
6 660 000
7 198900
7 234 300
7 885 800
7 983 000
8 116000
8 154000
8 249 000
8 757 000
8 860000
8 887000
9 056 000
9 072 000

8 982 000
9 878 000
9 878 000

10 839
9 087

10960
12 036
20481
26 745
26 560
14 234
14 853
16412
14 769
11 958
16600
12 484
12 330
29 388
25 026

847 893
47 981
51 645

0.0829
0.0447
0.0049
0.6189
2.5501
0.0305
0.3148
0.0133
0.0067
0.0033
0.4095
0.4168
0.0043
0.0002
0.2105
0.0183
0.1117
0.1157
0.4604
0.0003
0.0727

0.122

0.105
0.001
0.629
2.31
0.029
0.28
0.022
0.025
0.004
0.40
0.53
0.007
0.004
0.13
0.016
0.11

0.18
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scribe wave functions for these excited states adequately.
Concerning the oscillator strength for the El transi-

tions considered in this ion, the RCI fr values for all the
transitions except the n =2~5 ones are consistent with
those with other theoretical methods [34], where the fr
values for the 2p~3s and 2p~3d transitions listed in
the last column in the table are the RRPA ones of Shor-
er.

cited states with J=1 and odd parity will be shown in
the following section.

It is seen from the table that the calculated oscillator
strengths between the RCI and other theoretical methods
[37] for various transitions in the ion agree well, although
some discrepancies of the fI values for several weak
transitions between these two calculations are observed.

E. Mo ion

D. ~j18+ j

In Table VI, the RCI and experimental transition ener-
gies [37] for the same transitions in Ni' + are compared.
The experimental data for the transitions up to n =4 in
this ion are also complete. Because of more increase of
relativistic efFects on binding energies for inner-shell elec-
trons than outer-shell ones in heavier elements, the order
of the excited states having electrons in the shells with
n =4 and 5 are reversed in Fe and Ni ions. Good agree-
ment between the theoretical and experimental transition
frequencies are seen in the table except those for two ex-
cited states arising from the 2p 3/p + 5d 5/2 and

2p)/2 —+5d3/2 transitions. The errors of the RCI energies
for the states arising from the excitations of 2s to 4p, /2
and 4p3/2 states become small compared with those for
the 2s~4p transitions in Fe' ion in Table V. One of
the reasons for it may be due to strong mixing between
these and 5d higher excited states in the RCI calculation
because the level crossing between the 2p-5d and 2s-4p
states happens in this ion. The level crossing for the ex-

In Table VII, we compare the RCI and experimental
transition energies [40] for the El transitions in the
Mo + ion. Accuracy of the transition energies observed
is not so good as those for other ions listed in Tables
III—VI. It seems that the differences between the RCI
and experimental transition energies for some transitions
do not remain within a maximum allowed error which
has been confirmed in other systems discussed above,
where not only are the signs of the errors irregular but
also their absolute values for some transitions are too
large. However, one can observe good agreement be-
tween the RCI and the experimental transition energies
for the resonance 2p ~3d transitions having large oscilla-
tor strengths.

Calculated fi values for the five n =2~3 transitions
by the RCI and RRPA methods are on the whole in
agreement with each other. It is interesting to see that
the values of the oscillator strength between the two
2p —+3s transitions and also between the two 2p~3d
ones are reversed in this ion, respectively. This is not the
case for other ions with smaller Z than the Mo ion.

TABLE VI. Transition energies and oscillator strengths with the length form fi for the El transi-
tions from the ground state in neonlike Ni(Z =28).

State RCI
Transition energy (cm ')

Expt. ' RCI Others'

2s 2p'3s ( ——')'
2s 2p'3s (2, 2)1

22p 53d (
3 3 )o

s 2p'3d ( ——)

2s 2p 3d ( —' —)'

2s2p 3p ( —', —)1

$22p54$ (
3 1 )o

2$ 2p 4$ ( 2, 2

s 2p 4d ( ——)

2s 2p'4d ( —' —)'
2$22p54d (

1 3 )o

2 22 5 (3 1)o

2s 2p '5s ( 2 ) 2 )1

s2p5d( ——)

2s 2p'5d ( —' —3)'

2s2p 4p ( —', —)1

2s 2p 5d ( —' —)'

2s2p 5p (2, 2)1

'Reference [37].

7 132 277
7265 147

7 818 116
7 915 807
8 063 485
8 652 757
8 698 186
9 605 323
9 742 996
9 870 679
9 911954

10041 487
10676 730
10 814 261
10 821 863
10 871 744
10 942 650
10958 022
11025 999
11 980 054
11 987 818

7 121 000
7 257 400
7 805 200
7 901 400
8 041 800
8 621 400
8 666 300
9 585 000
9 725 000
9 845 000
9 891 000

10023 000

10 797 000
10 806 000
10925 000
10941 000
10942 000

11 277
7 747

12 916
14 407
21 685
31 357
31 886
20 323
17 996
25 679
20 954
18 487

24 863
65 744
17 650
17022
83 999

0.0861
0.0386
0.0053
0.8201
2.4635
0.0401
0.3210
0.0142
0.0057
0.0041
0.4456
0.3780
0.0048
0.0466
0.1156
0.0884
0.0138
0.1027
0.2183
0.0109
0.0734

0.125
0.098
0.009
0.80
2.2
0.038
0.29
0.023
0.024
0.003
0.43
0.49

0.12
0.020
0.12
0.18
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F. Z-dependent behavior of the transition frequencies
and oscillator strengths in neonlike systems

It is interesting to examine the Z dependence of the
transition frequency and the oscillator strength in an
isoelectronic sequence because the variation of the vari-
ous relativistic and QED eifects on the energies and wave
functions in each system leads to a systematic change of
the transition energy and the oscillator strength in
isoelectronic atomic systems [41].

In Fig. 4, the variation of the order of excited levels for
odd-parity states with J=1 in neon isoelectronic se-
quence considered here is shown schematically to see
where level crossings occur in the isoelectronic sequence.
In the figure, each excited state is designated by a main
configuration obtained for Ar + as the LS coupling re-
gion and for U + as the j-j coupling region in the left
and right sides, respectively. Main CSF s in j-j coupling
obtained for corresponding excited states are not always
outstanding in the LS coupling region, whereas each ex-
cited state in neonlike systems with Z )40 can be well be
designated by a main CSF in j-j coupling obtained with
RCI calculation. For the excited states expressed by the
single-excitation CSF's of the n =2~3 and n =2~4
transitions p np

&
pd p and np ~' states in the LS

coupling region correspond to 2p, /2 3/2 +ns,
2p3/2~nd3/2 5/2 and 2pi/z~nd3/2, and 2s~np&/2 3/2
states in the j-j coupling region, respectively. However,
for the n = 5 excited states, this correspondence between

the two coupling regions does not hold for the Sd, Sd
5p, and 5p states, where the level crossings between
the Sd and 5d and between the Sp and 5p states
occur as the atomic number increases. As the basis set
used is not enough to obtain accurate excitation energies
for the n =5 excited states, we do not discuss the energies
for the n =2~5 excited states further.

It is seen from Fig. 4 that many level crossings appear
when Z becomes large. The level crossing depending on
Z shows that the magnitude of the relativistic effects on
the binding energy for each electron increases in a
different way when the atomic number increases. In a
system at a crossing point in the figure, the wave func-
tions between the two states mix largely. This leads to a
sudden change in the oscillator strength for a transition
in a certain specific position of an isoelectronic sequence.
This type of anomaly in the oscillator strength has been
explained as the CI effects for the wave functions as a re-
sult of drawing the two levels in a system of an isoelec-
tronic sequence [42]. Such an anomaly in the oscillator
strength for the E1 transitions of n =2~3 and n =2—+4
in neon isoelectronic sequence wi11 be shown in the fol-
lowing part of this section.

Shorer [35] has shown the Z-dependent behavior of the
oscillator strength for the five E1 transitions of n =2~3,
that is, two 2p~3s and three 2p~3d ones, in neon
isoelectronic sequence with the RRPA calculation, where
some anomalies in the oscillator strength for the E1 tran-
sitions in this sequence have been shown. We have

TABLE VII. Transition energies and oscillator strengths with the length form fL for the E I transi-
tions from the ground state in neonlike Mo(Z =42).

State RCI
Transition energy (cm ')

Expt. ' RCI RRPA

$22p53$ (
3 1 )o

2$22 53$ (1 1)o

2s 2p'3d ( ——)'
22p53d (

3 5 )o

22p 53d (
1 3 )o

2s2p 3p ( 2, 2 )1

22p 54$ (
3 1 )0

2$22p54d (
3 3 )o

2s 2p 4d ( ——)

2$ 2p 4s
2s'2p'4d ( —' —')'

2s2p 4p ( —,—)1

$22p55S (
3 1 )o

2$22p55d (
3 3 )o

22p 55d (
3 5 )o

2$22p55S (
1 I )o

2s 2p 5d ( —' —)'

2$2p65p (
1 3 )o

'Reference [40].
Reference [35].

19211 890
20 063 934
20 590 301
20 825 558
21 600 506
22 434 767
22 674 560
26 120 752
26 664 600
26 752 892
26 988 471
27 581 464
29 016 609
29 114983
29 223 160
29 455 799
29 494 374
30 093 277
30 348 908
31 976 186
32 025 472

19220 000
20080 000
20 612 000
20 814000
21 593 000
22 398 000
22 634 000
26 250 000

27 140000
26 570000
27 500 000

29 200 000

30 100000

—8 110
—16066
—21 699

11 558
7 506

36 767
40 560

—129 248

—387 108
418 471

81 464

294 374

248 908

0.0960
0.0171
0.0005
1.9454
1.6837
0.0976
0.3473
0.0174
0.0002
0.5110
0.0158
0.2826
0.0439
0.1108
0.0032
0.0009
0.2144
0.0052
0.1073
0.0166
0.0394

0.132
0.084
0.001
1 ~ 82
1.62
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5pu

5pL

4pl/

4pL
5dU

5dM

5SU

5d'
5$"
4du

4dM

4 L

2S~SPs/s
2S~Spi/s
2p i/ Sds/s

2p~/~SS
2S~4Ps/s
2S~4pi/s
2pi/~4ds/s
2p&/~4S
2ps/z 5ds/s

2ps/ Sds/s

2ps/ 5S
2ps/a 4ds/z

2 ps/~4ds/s
2$~3Ps/s
2Ps/~4S
2pi/ 3ds/s

2$~3ps/s
2p s/~3S
2ps/~3ds/s
2ps/2 3ds/2

2ps/ 3S

100

20

LlJ

LLI

15-0
LLI

UX
IJJ

10-
G
CC
LLJ

C5
CC0 3dU

3dM

3dL

3$U

3$L

0 10 20 30 40
I

50 60 70 80 90
Z

FIG. 4. Order of the excited levels with J= 1 and odd parity
from lower to higher states in neon isoelectronic sequence.
ns ', nd '~', and np ' in the LS coupling region stand for
the lower and upper 2p~ns, the lower, middle, and upper
2p~nd, and the 1ower and upper 2s —+np excited states for
n =3~5, respectively. In the j-j coupling region, main
configurations for the states are given by the single-excitation
states as 2p3/&~ns, 2plz~~ns, 2p3/&~nd3/~, 2p3/&~nd5/z,
2p&z& —+nd3/p 2s~np&z&, and 2s~nplz& for n =3—+5.

shown in the preceding section that our fL values for the
same n =2~3 transitions in some neonlike systems agree
well with those of Shorer.

In Fig. 5, the RCI fL values for the seven El transi-
tions of n =2~3 in 12 neonlike systems between Ar +

and U + are shown as a function of Z. The magnitude
of the f value for the 2p&/z~3d3/p transition, which is
the largest for the systems with around Z &40, has a
maximum at Z =22 and decreases monotonously as the
atomic number Z increases. On the other hand, the f
value for the 2p3/z ~3d5/z transition grows drastically as
a function of Z up to 47 and decreases slightly at around

Z =56. However, it keeps the largest value for all the E1
transitions in systems with Z &40. It is also seen in the
figure that the oscillator strengths for the rest n =2~3
transitions are small compared with those for the two
2p ~3d resonance transitions described above and
change little all over Z except that for the 2p&/z~3s
transition which suddenly increases for Xe + and Ba
in the isoelectronic sequence. This anomaly in the oscil-
lator strength for the 2pi/z~3s transition is closely con-
nected with the decrease of those for the two 2p-3d reso-
nance. The reason for this can be clarified by finding the
level crossing in the isoelectronic sequence. In Fig. 4, one
sees that the energy level for the 3s state, which corre-
sponds to the 2p&/&~3s transition state, crosses the lev-
els for the two excited levels corresponding to the
2p 3/p ~3d 5/z and 2p i/z ~3d 3/p transition states in
Xe + and Ba +, respectively. In these systems, the
mixing of the wave functions for these excited states be-
comes large so that the redistribution of the oscillator
strength among these E1 transitions occurs.

For the n =2—+4 transitions in the same neonlike sys-
tems, the RCI fL values are plotted as a function of Z in
Fig. 6. The f values for the n =2—&4 transitions are
about a quarter as small as those for the corresponding
n =2~3 transitions in the isoelectronic sequence shown
in Fig. 5. However, it seems that the Z-dependent behav-
ior for the oscillator strength between the n =2~3 and
n =2~4 transitions in this sequence is similar, although
the curves of the f value as a function of Z for all the
n =2~4 transitions are slightly shifted to the lower Z
direction compared with those for the n =2~3 transi-
tions. So it is seen in the figure that there is no maximum
of the f value for the 2p&/z~4d3/p resonance transition
in elements heavier than Ar. On the other hand, the os-
cillator strength for this resonance transition in neon
isoelectronic sequence decreases significantly in W
and recovers a normal value in U +. This anomaly in
the f value can also be explained as the CI effects be-
tween this state and the n =5 excited one under con-
si.deration, since it is seen in Fig. 4 that the excited level

2.5

2.0

I—
(3z
LLI

1.5
CD

CC
D

1.0-
O
CD0

2Ps/s - 3S
2pa/s - 3S
2ps/s - 3ds/s

2ps/s - 3ds/z

2pi/s - 3ds/s
2S - 3p~/s
2S - 3ps/s

0.6—

0.5
I-
Z',
UJ 0.4—
CD

K
I- 0.3—

C3
CO
O 0.2—

2Ps/s - 4S
2pi/s - 4S
2ps/s - 4ds/s

2ps/s - 4ds/s

2p~/s - 4ds/s
2S - 4Pi/s
2S - 4ps/z

0.5
0.1

0.0
10 20 30 40 50 60 70 80

z

I

90 100

FIG. 5. Variation of the oscillator strength for the n =2—+3
transitions in neon isoelectronic sequence.

0.0
0 10 20 30 40 50 60 70 80 90 100

Z

FIG. 6. Variation of the oscillator strength for the n =2~4
transitions in neon isoelectronic sequence.
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corresponding to the 2p&/2~4d3/p transition goes up
gradually as the Z increases and crosses some n =5 excit-
ed levels at around Z =70 near tungsten. The CI effects
for the oscillator strength also cause the change of f
values for the n =2~5 transitions, which is not shown
here. One also sees in Fig. 5 that the oscillator strength
for the 2p, /2~4s transition has two small peaks at
Z =22 and 42. These changes of the oscillator strength
are expected since the 4s level which corresponds to the
2p&/2 —+4s excited state crosses the 3p state near Z =22
and the 4d level near Z =42 in Fig. 4. In fact it is
found in Figs. 5 and 6 that the oscillator strengths for the
2s —+3p&/2 transition in Ti' + and for the 2p3/2 +4d5/2
one in Mo + are diminished slightly in neon isoelectron-
ic sequence.

IV. SUMMARY AND CONCLUSIONS

We have presented the relativistic configuration-
interaction theory for atomic systems with an analytical
relativistic Hartree-Fock-Roothaan function as a basis
set. The basis set for constructing CSF's consists of all
real and virtual RHFR one-electron functions expanded
in terms of Slater-type orbitals. The total wave function
is written as a linear combination of CSF s. The Breit in-
teraction operator is treated by the first-order-
perturbation theory.

In order to see the effectiveness of the method, numeri-
cal application of it to various neonlike atomic systems
has been carried out. It has been shown that the RCI
method yields good excitation energies in the systems by
comparing the calculated results with experiment. Small
discrepancy between the calculated excitation energies
and experimental ones is due not only to the limited basis
set used but also to the lack of the Lamb shift or the
QED corrections in the RCI theory. The present RCI
method has the merit that one can save much computa-

tion time when obtaining a large number of multiplet
states in atomic systems because of an analytical form of
the basis set. The theoretical transition energies and os-
cillator strengths for various transitions obtained for an
atomic isoelectronic sequence will be very useful in iden-
tifying the lines observed.

As has been mentioned above, comparison of the RCI
excitation energies with experiment in various neonlike
systems shows the importance of the Lamb shift or the
QED effects in obtaining a good energy with high accura-
cy. However, the method of calculating such higher-
order correction energies for many-electron systems has
not been established yet. Another important effect on the
total energy in many-electron systems is the electron
correlation effect. In the relativistic case, it is impossible
to treat the two effects separately in the theory because
they are coupled in various ways through the interaction
between electrons.

In the RCI method, the calculated results for a system
deeply depend on the basis set used especially for higher
excited states. This means that it is important to examine
the completeness of the basis set used in the RCI calcula-
tions. In order to obtain an accurate electron correlation
energy for a system in the calculation, more one-electron
functions must be included in the basis set. After the
electron correlation effects on the energy in an atomic
system are suKciently taken into account in the calcula-
tion, an accurate QED correction energy in it could be
estimated by subtracting the calculated energy from the
experimental one.
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