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One way to reduce the large degeneracy of the hyperspherical-harmonic basis for solving few- and
many-body bound-state problems is to introduce an optimal basis truncation called the potential-
harmonic (PH) basis. In this paper we introduce various potential-harmonic truncation schemes and as-
sess their accuracies in predicting the energies of the helium and H ground states and the excited 2 'S
level of the helium atom. We first find that the part of the PH basis that accounts for one-body correla-
tions gives a better ground-state energy for He than Hartree-Fock (2.8790 a.u. versus 2.8617 for
Hartree-Fock and 2.9037 exact). When an orthogonal complement is introduced to the basis to account
for e-e correlations, we find that the error in the binding energy is 0.00025 a.u. , and 0.00015 a.u. for
ground-state and excited helium, and 0.00035 a.u. for H . Furthermore, the PH truncation is about
99.9% accurate in accounting for contributions coming from large values of the global angular momen-
tum. This PH scheme is also much more accurate than previous versions based on the Faddeev equa-
tions. The present results indicate that the PH truncation can render the hyperspherical-harmonic
method useful for systems with X)3.

PACS number(s): 31.15.+q

I. INTRODUCTION

The hyperspherical-harmonic (HH) method [1] is an
elegant tool for reducing the partial differential equations
describing a many-body system to coupled ordinary
differential equations. Unfortunately, the method suffers
from two serious deficiencies: (1) The convergence of the
HH expansion is rather slow when potentials are singular
(e.g., 1/r ad r —&0) or nonanalytic, because of the
mismatch between the analytic structure of the exact
wave function and that of the basis set [2]. (2) The size of
the basis set grows exponentially with the number of par-
ticles. Both of these deficiencies seriously hinder the
technique s usefulness in solving the Schrodinger equa-
tion for atomic, molecular, and nuclear systems.

Recently Haftel and Mandwlzweig [3] have successful-
ly attacked the convergence problem in three-body atom-
ic systems by incorporating Jastrow correlation functions
along with the HH expansion. Still, the problem of
basis-set degeneracy remains for X&3. The main pur-
pose of this paper is to propose an approach to this prob-
lem based on the potential-harmonic (PH) approach [4]
and to assess the success of this method compared to pre-
vious techniques also based on potential harmonics.

The basic idea of potential harmonics is to limit the
HH basis to those harmonics that appear in the expan-
sion of the interparticle potential. In the simplest form,
only one harmonic appears for each value of the global
angular momentum K. Since for an N-body system the
corresponding number of harmonics in the full basis set is

-K, this technique leads to a drastic reduction in

computation. The simplification not only reduces the
number of coupled equations to be solved, but it also
dramatically reduces the number of matrix elements to be
calculated, which can be huge if, as for nuclear poten-
tials, they must be computed for each value of the hyper-
radius r. The very important question remains: How ac-
curate is the PG method?

Erens, Visschers, and van Wageningen [5] demonstrat-
ed in a model triton problem that the simplest PH ap-
proach [sometimes called the optimal subset (OS) ap-
proach] led to only a 0.00l%%uo error in the energy. In a
careful comparison between OS and full-basis-set (FS)
calculations for the ground and excited Helium atoms,
Haftel and Mandelzweig [6] found the OS method accu-
rate to 0.2% and 2%%uo for the ground and 2'S excited
states, respectively. Given the high standards of accura-
cy in variational atomic calculations, this type of accura-
cy is not satisfactory for simple atomic and molecular
bound states. Neither does it bode well for extension to
many-body (X) 3) systems.

Since these early calculations, the PH method has been
considerably refined. Fabre and coworkers [7—9] have
developed PH methods, based on the Faddeev equations,
that can be summed over all K by means of a two-
dimensional integrodifferential equation. The basis set in
this case is capable of including all two-body correlations
in the wave function. At the same time, in the three-body
problem, a maximum of three equations occur (less if
there are identical particles) for each K. Like reductions
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occur for many-body problems. While this method has
been extensively employed in nuclear bound-state prob-
lems [8,9] (e.g., H, He, ' 0), its accuracy is unclear be-
cause the results are compared with other methods where
the accuracy is also quite approximate. In this paper we
assess the accuracy of the total energies of the helium
atom and H ion predicted by PH methods. Here both
very accurate variational [10] and full-set [11] calcula-
tions exist for comparison.

Section II of this paper summarizes the mathematical
development of the PH approach. Starting with the
Schrodinger equation for two independent electrons (as in
the helium atom), we show that the summed potential
harmonics, relevant for nucleus-electron interactions,
give an exact solution of this problem. The equations are
then modified to take into account the e-e repulsion. To
this point the PH method take into account one-body
correlations —but not two-body correlations —and is
similar in spirit to the Hartree-Fock approach. We cal-
culate the helium ground-state energy as functions of the
maximum global angular momentum for this PH expan-
sion both with and without the e-e repulsion, and also ex-
trapolate our results to infinite maximum global angular
momentum. We find that the extrapolation is very accu-
rate (to eight significant figures), and that the PH expan-
sion gives a better ground-state energy than the Hartree-
Fock method [12].

In Sec. III we introduce two-body (e-e) correlations by
an addition to the PH basis relevant for e-e repulsion,
with these basis functions orthogonalized with respect to
the PH basis relevant for e —nucleus attraction. We
show by numerical calculations that the PH approxima-
tion yields underbinding by about 0.01% for the He
ground and excited 2 'S states and for the H ground
states. We then describe the relationship between the
present PH method and the underlying PH method lead-
ing to the integrodifferential equation approach (IDEA)
developed by Fabre de la Ripelle and coworkers [7]. Fi-
nally, we carry out parallel calculations using the PH
basis underlying the IDEA technique (which are derived
on the basis of the Faddeev equations). This version of
the PH is much less accurate than the PH previously de-
scribed.

Section IV contains concluding remarks. We conclude
that the proposed PH expansion is the most accurate,
giving the best results in our test cases involving helium
and H . We also conclude that the PH method is a
better starting point for the many-body problem then the
Hartree-Fock method. Finally, the PH method is an
eKcient means to reduce the huge degeneracy of the HH
basis for many-body problems and obtain accurate bind-
ing energies.

of single-electron correlations (similar to the Hartree-
Fock method), and how an enlargement of the basis then
takes into account all two-body correlations.

The Schrodinger equation for two independent elec-
trons is (in atomic units h =m =e = 1)

—
—,'(V, + V2) —Z +2 2

1 2

Ef—(x)=0,

where r, = ~x, ~, r2= ~xz~, Z is the nuclear charge, x
denotes the six-dimensional position vector, and V, is the
Laplacian for x, .

As is well known, the Schrodinger equation (1) is separ-
able and the exact solution has the (anti)symmetrized
product form

y(x], xp) =/ /(x] )yp(xp)+$2(x] )IP](x2), (2)

where the + sign holds for electron spin singlet, and the
—sign holds for electron spin triplet. For total angular
momentum zero, which we consider in this paper, x, and
x2 above can be replaced by the scalars r, and r2. The
exact solution is thus also expressible in the form of a
summation

Q(x), xq) =F) (r ), r ) F2(r2, r ), (3)

where r is the hyperradius r =(r, +r2) . We now con-2 2 1/2

sider the expansion of (3) in the basis of potential har-
monics.

We now introduce the hyperspherical coordinates, co&,

co2, and P such that co, and co@ are the usual angular coor-
dinates for x& and x2, and

r, =r cosP,

rz=r sing . (4b)

The kinetic energy operator, expressed in the hyperspher-
ical coordinates, becomes

a' 5 a L(Q)
2 Qr2 r ~r r

then

TF(r ~, r ) =— 1 8 X(Q)+ U(r„r),
2r Br r

(7)

where 0 stands for the angular coordinates (co„co2,$),
and L (0) is the grand orbital operator [4] for the angu-
lar coordinates. If we let

U(r, , r)F(r„r)=

II. POTENTIAL-HARMONIC BASIS WITHOUT
TWO-BODY CORRELATIONS

Our starting point is the Schrodinger equation for two
independent electrons interacting with a nucleus of
charge Z. As we shall show, the potential harmonic basis
expansion is exact in this case. We will then show in the
presence of e-e repulsion how the PH basis first takes care

where the eigenfunctions of X (Q)—Y(1)(Q)—are the
so-called hyper spherical-harmonic functions. These
functions are characterized by the grand orbital quantum
number L, and r Y(L)(Q) is the associated harmonic po-
lynomial of degree L satisfying

[X (0)+(L +
2 )(L +

& )]Y(1)(Q)=0

(The symbol [L) indicates that the set of quantum num-
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bers includes projections as well as the grand angular
momentum I.).

For total angular momentum zero (S states), the PH
functions are defined in terms of the kinetic rotation vec-
tors

1 16&Fr

r,. r
(k+1)

(Zk +1)(2k +2)

(15)

R(y) =x,cosy+xzsiny,
As a consequence of the parity relation Pzk(Q, m/2)
=( —1)"P2k(Q,O), the symmetric combination

where y is a parameter. The basis of PH functions

P~k(Q, qr)=m ~ Ck(2R (qr)!r 1), — (10)
1 1 32&+ (k+1)

r k „,„(2k+1)(2k+3)

2R (0)/r —1 =cos(2$) =z, (1 la)

where Ck is a Gegenbauer polynomial of degree k, is
complete for functions of ~R(y)~. Hence for jp=O, the
P2k(Q, O) constitute a complete basis for functions of r„
and for y=~/2 the Pzk(Q, r//2) constitute a complete
basis for functions of r2. The individual PH functions
P zk ( Q, y ) are expressible as linear combinations of
hyperspherical-harmonic functions of grand orbital angu-
lar momentum I. =2k, so they are also eigenfunctions of
the grand orbital angular momentum. Finally, since

(16)

(k"= Ik —k'I, lk —k'1+2, . . . , k+k'),
we obtain

(P (Q, O) ~P „-(Q,O) ~P „.(Q, O) ) =m.

(17)

contains only harmonic for even k. Making use of the re-
lationship [4]

P2k(Q& ) 2k'(Q&0) ~ XP2k" (Q&
k"

and

2R (m/2)/r . 1=——cos(2$) = —z,
(k +k', k" even, ~k —k'~ ~ k" & k+k'),

(1 lb) and we derive the matrix element (for k +k' even)

and Ck( —z)=( —1)"Ck(z), the PH basis for functions of
r, and r2, respectively, difFer trivially by only a phase fac-
tor. Therefore the function U(r&, r) [or F(r„r)] is ex-
pandable in terms of the PH functions

P2k(Q, O) + P~k (Q, O) = Skp 1 1 p 32
7"

i T2 ~r

where

U(r„r)= y uk(r)Ppk(Q, O),
k

(12) (k"+1)
k„(2k"+ 1)(2k"+3)

V(r, ) = g P,'„(Q,q, ) Vk(r), (13)

where

Vk(r)= I V(r cosg)Pzk(Q, y;)dQ, (14)

and where the integral is taken over the surface of the
unit hypersphere with d Q =—„'sin 2P d P de, dco2, and

y; =0, m/2 for i = 1,2. One finds

with U(r2, r) having the same expansion except
Uk (r)~(—I )"uk (r). Furthermore symmetric (antisym-
metric) combinations of U(r„r ) and U(r2, r) are like-
wise expanded with contributions coming only from even
(odd) k. Since the product forms like P, (r, )Pz(rz) are
also expandable as products of Gegebauer polynomials,
and since products of Gegenbauer polynomials are ex-
pressible in terms of single Gegenbauer polynomials, the
products in Eq. (2) are fully expandable in PH functions
(as are their symmetrized and antisymmetrized forms).
Note that the independent electron solution is only a spe-
cial case of Eq. (3), so that the PH expansion implied by
Eq. (3) allows a more general description of the wave
function, mainly through the dependence on the collec-
tive coordinate r.

In order to solve the Schrodinger equation (1) we ex-
pand the Coulomb potential in potential harmonics. Ac-
cording to Ref. [4] the PH expansion of a potential V(r,).
is given by

(k"= Ik —k'I, Ik —k'1+2 k+k') . (20)

Substituting the expansion (12) into the reduced
Schrodinger equation

8 Q+ +2Z + +2E U(r&, r ) =0,
Br l' r& r2

(21)

and taking the inner product with P2k(Q, O), one obtains
the coupled equations for uk(r)

d2 (2k + —,
' )(2k+ —', )

+2E uk(r)
r

where

+ g Uk uk.(r)=0,
k'

64ZSk

T
(23)

For singlet states k and k' are even, and for triplet states
they are odd.

Table I contains the value of the energy ~E~ when Eq.
(22) is truncated to k, k'~k, „, for increasing values of
k,„up to k,„=36. Of course, ~E~ must converge to
the exact independent-electron value of 4.0 a.u. Table I
also contains an extrapolated value of ~E~ for k
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TABLE I. Potential-harmonic predictions of the ground-
state He atom total energy for independent electrons (no e-e
repulsion). The units are atomic units (a.u.). The extrapolated
value is to k,„—+ ~, carried out as described in the text.

TABLE II. Potential-harmonic predictions of the ground-
state He atom total energy using the P&k(0, 0) basis only, where
e-e repulsion is included. The Hartree-Fock result is from Ref.
[1&].

kmax

20
24
28
32
36

Extrapolated

Total energy (a.u. )

3.998 906 42
3.999 326 21
3.999 556 23
3.999 692 55
3.999 778 35
4.000 000 00+0.000 000 05

kmax

20
24
28
32
36

Extrapolated
Hartree-Fock

Total energy (a.u. )

2.877 013 59
2.877 774 70
2.878 197 22
2.878 449 86
2.878 609 91
2.879 028 76+0.000 000 06
2.8617

Since theoretically b.E(k)=E(k) E(k ——4) should de-
crease as k [13] for large k, we obtain the extrapolated
value by making a least-squares fit of bE(k) to the form
[k (A+Bk+Ck )] ' using the results for k (i.e., k,„)
of 24, 28, 32, and 36 as input. We see that with the calcu-
lations just for k,„~36 we can extrapolate to the exact
result with an error only in the eighth decimal place. The
accuracy of this type of extrapolation will be more than
enough to assess the quality of our other PH calculations.

We now introduce the e-e repulsion 1/r&2, but retain
the structure (3) of the wave function. This procedure is
similar in spirit to the Hartree-Fock approach, but some-
what more general in that it allows an r dependence. To
compute matrix elements of 1/r&2, we utilize Eq. (17) and
the relationships [4]

j. /2
1 16 m k (k+1)

r, 2 r 2 k (2k + 1)(2k +3)

82

r 2
+ (1—z )W(z), W(z) az

' 'az
2&2

r
z z

&1+z &I —z
1

&I+ fz[

U(z, r) =0, (29)

volved in the Hartree-Fock method, we get a much better
variational energy. Indeed, even truncation at low k
(like k,„=20, which involves solving only ten coupled
equations), the PH method gives a lower energy than that
of the Hartree-Fock.

The solution of (22) with the potential matrix (28) does
not contain the two-body correlations produced by 1/r, 2.
In a previous work [14] one of us (M.F.R.) has shown
that the k,„~~ limit of (22) is equivalent to the two-
variable partial differential equation

XP ~k (0, 3m /4),

(P2k(Q, O)iP2k, (0,3m/4) )

0 (k odd)

~kk'

(24)

(25)

where W(z)=(1 —z )', and where we express the re-
duced wave function U(r„r) as a function of z =cos2$
(and r) instead of r, (and r). The Z/&1+z and the
Z/&1 —z terms are the e-nucleus Coulomb potentials,
while the 1/&1+ ~z~ term is the angle average e-e repul-
sion

to obtain
1 ~ 1

1 —x+1—z

v'2

&I+/z/
' (30)

P2k(Q, O) P2k. (Q, O) = o k(
0 1 0

r2 nr
(26)

where

o.
q

= g ( —1)" ~ /[(2k" + 1)(2k"+ 3 ) ]
k"

(27)

with k"=~k —k'~, ~k —k'~+2, . . . , k+k', and with k,
k' both having the same parity. Equation (22) still holds,
but with

where x is the cosine of the angle between the electrons,
and the integrand is the repulsive potential I lr, z. Since
Eq. (29) ignores the x dependence of the e-e potential, ex-
cept to average over it, it ignores the feature of the poten-
tial that produces two-electron correlations. So we con-
clude that Eq. (22) [or (29)] represents the wave function
in the absence of two-body correlations. We now proceed
to include these correlations.

Uk = ZSI, — ok' (k+k' even) .
64 k 2
n.r 4

(28)

III. THE POTENTIAL-HARMONIC BASIS WITH
TWO-BODY CORRELATIONS

To fully include all two-body correlations in the wave
function, one must extend the ansatz (3) to include a term
F,(r,2, r). This is equivalent to supplementing the
Pzk(Q, O) harmonics with the harmonics P2k(Q, 3m/4),
which describe functions of r, 2 and r in the wave func-
tion, not just in the potential. From a practical

Table II gives the convergence of the energy with k
as in Table I, but with the e-e repulsion included. We ob-
tain an extrapolated energy of 2.87902876 a.u. , com-
pared to the Hartree-Fock result of 2.8617 a.u. [12].
Therefore, with no more computational difhculty than in-
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viewpoint, we need only introduce that part of the basis
which is orthogonal to the P2k(Q, O). We will call this
orthogonal part Pzk(Q)2), where Q,2=(Q, 3'/4) .Since
according to Eq. (25) P2k=(Q, O) and P2k(Q, 3'/4) are
already orthogonal for odd k, we need only orthogonalize
for even k. Hence Pzk(Q)2)=Pzk(Q, 3m/4) for odd k,
and for even k

P k(Q, )=Ck[P k(Q, 3m. /4) —(Oi 12)P „(Q,O)], (31)

F, (r)~, r)=r yP2k(Q)2)uk(r) .
k

The coupled Schrodinger equations now become

( 2k + —,
' )( 2k + —,

'
)

+2E uk(r)
r

(34)

where the correlation amplitude F,(r,z, r) is expanded
[14]

where (0~12) is the overlap integral given by Eq. (25),
and Ck is the normalization constant

k+1
&k(k+2)

d2

+ X[Uk uk'(r)+ Uk uk'(r}l
k'

(2k +—', )(2k +—', )
+2E uk(r)

(35a)

The PH form of the wave function is now (for singlet
states)

g(x), xz) =F(r), r ) +F(r2, r ) +F, ( r)2, r ),

+ g [Uk)uk. (r)+ Ukj uk (r)]=0, (35b)
k'

where Uk is given by (23), and

16/2 E(k')(k'+1) (
—1)" k (

—1)" k, 0 k, (
—1) Sk

v'k'(k'+2) (k + 1) (k'+ 1) " (k + 1)

Uk' Ukikl k'

U = 0(k}0(k') Zo" — Sk
'

(36a)

(36b)

k' k'+2+ 0 (k)E(k'), Sk '+ 0 (k')E(k) Sk(k'+1) 4 (k+1)

(k) (k, )
(k + 1)(k'+ 1)

&k(k +2)k'(k'+2)
. Z ki

( 1 )(k+k')/2
gk'

(k + 1 }(k'+1)

11—
(k+1}

1

(k'+ 1)

XSk +( 1)(k+k )/2
k

k'
k

(k +1)(k'+1) (36c)

where k and k' are even, and k~ and k~ may be even or
odd. In Eq. (36), 0 (k) is 1 for odd k, zero for even, and
E(k) is 1 for even k, zero for odd. The uk(r) states range
over even k only (for S states), while the uk(r) states
range over all k except k =0, which has only one har-
monic [i.e., Po(Q)2) does not exist].

Table III contains the energies of the He ground state,
the excited 2 'S state, and the H ground state, as pre-
dicted by the PH expansion, as functions of k „—the
maximum k, k' retained in Eq. (35). This table also shows
the full set (FS) results [11]for each k,„,i.e., the energy
when all harmonics for k ~k,„are retained, and also
the best correlation-function hyperspherical-harmonic
(CFHH) [3] and variational energies [10]. The extrapola-
tion to k,„~~ proceeds as previously described in Sec.
II.

The accuracy of the principal assumption of the PH

method —the ansatz of Eq. (33)—is tested by comparing
the PH result with the FS result at given values of k,„,
or by comparing the extrapolated result with the best
available energies calculated by other methods —namely,
variational calculations. The error introduced by the PH
approximation, so judged, is approximately 0.01% and
0.05/o for the ground-state He and H systems, respec-
tively. For excited He, the error is about 0.017%%uo for
k,„=14 (the highest k,„ for which we performed FS
calculations), but is only 0.007%%uo when comparing the ex-
trapolated energy with the "exact" (variational) result.
So for He*, the discrepancy between the PH and FS re-
sults actually decreases with k,„. The success of the PH
expansion in reproducing FS results for the He* bodes
well for the prospects of this method for excited states.

Another important result of Table III is that the PH
reduction of the full basis very accurately approximates
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TABLE III. Potential-harmonic (PH) and full-set (FS) predictions of the total energy of the ground-state He atom (He), excited
2 '5 He atom (He*), and ground state H ion (H ). The PH results are with the full PH basis. Results from the correlation-function
hyperspherical-harmonic method (CFHHM) (Ref. [3]) and from the best variational calculations (Ref. [10])are also included.

kmax He(PH) He(FS) He (PH) He*(FS) I-I-(PH) H-(FS)

8
10
14
16
20
24
28
32
36

Extrapolated
CFHHM

Variational

2.887 296 35
2.893 334 46
2.898 757 86
2.900 056 43
2.901 523 00
2.902 259 77
2.902 668 47
2.902 912 72
2.903 067 40
2.903 471 79+0.000 000 01
2.903 724 37
2.903 724 38

2.887 543 91 1.947 278 48
2.893 584 42 1.994 11884
2.899 009 20 2.051 11276

2.068 961 37
2.093 13478
2.108 152 49
2.117993 35
2.124 713 73
2.129 457 19
2.145 825+0.000 007
2.145 974
2.145 974

1.947 697 49 0.517 474 31
1.994 575 30 0.520 529 59
2.051 451 11 0.523 701 27

0.524 571 06
0.525 671 06
0.526 244 90
0.526 604 44
0.526 832 71
0.526 984 24
0.527 427 5+0.000 000 6

0.527 751 10

0.517 796 76
0.520 856 00
0.524 030 00

(T E)F(r;,r)= —g —(i =1,2),=z
r)

(37a)

the inAuence of all the harmonics coming from large k.
The fact that the PH approximation accounts for about
99.9%%uo of the FS di(ferences in energy between successive
values of k,„ in all three systems (for k,„)8) evidences
this. This property suggests the following systematic im-
provement of the PH method: Include the full basis up to
a certain maximum value of k, and use the PH basis for
all k's greater than this. One could then get a very accu-
rate value of the energy in this way while avoiding most
of the problems caused by the huge degeneracy in the
many-body problem, which is especially acute for large
values of k. We concede that while the type of accuracy
that the PH approach gives in the two-electron atom
problem (four —six significant figures) is not competitive
with most modern variational methods, this type of accu-
racy is desirable for a many-electron system. The accura-
cy of the PH approach should not seriously degrade with
more electrons, nor do the computations grow prohibi-
tively with the number of particles [8,9].

In previous work [7] one of us (M.F.) has shown that
an ansatz like Eq. (33) leads to a transformation of the
Schrodinger equation into a integro-differential equation
(IDE) for the one- and two-body amplitudes [i.e., the F's
of Eq. (33)]. For two-electron atoms, the basic equation
that leads to the IDE is

F(r„r ) = ' (z =2r, /r —1),U(z, r)
5/2 (38a)

U, (r)
F, (rip, r)=,~2 (z=ri2/r —1),5/2 (38b)

wave function generated by the solution of Eqs. (37)
satisfies the form (33), it is not equivalent to our previous
substitution of (33) directly into the Schrodinger equation
[leading to Eq. (35)]. In Eqs. (37) we are explicitly
demanding that each Faddeev component have a particu-
lar form involving its pair label, a restriction not implicit
in the form (33). The substitution of (12), (33), and (34)
into the Schrodinger equation amounts to an expansion
of the wave function in orthogona1 basis functions, which
guarantees that the energy E is variational. This means
that the error in the energy estimate will be of second or-
der in the error in the wave function, and, for the ground
state, will be an upper bound to the true energy. This
variational property fails to hold for the Faddeev equa-
tions (37). The advantage of (37) is that it leads to an
integrodifferential equation that sums the PH over all k.

The IDE's are derived by projecting Eqs. (37a) and
(37b) onto the r, and r, z spaces, respectively, i.e., onto the
Pzk(Q, O) and Pzk(Q, 3m. /4) basis. [Henceforth we will

denote Pzk(Q, 3m/4) as Pzk(Q, 2)]. With the definitions

( T E)F,(r,2, r ) =——1

r&2
(37b)

where U(z, r) has a definite z parity, we obtain [8] the
projection of U, (z, r) on the r, space given by the integral

This is the Faddeev decomposition of the Schrodinger
equation. The amplitudes F(r„r ), F(r2, r), and
F,(r,2, r ) play the roles of f('I t)'j( ', and P( ' in the usual
Faddeev notation, with the additional assumption that
the Faddeev amplitude labeled by a certain pair only de-
pends on the relative distance of the pair and on the hy-
perradius r. If this assumption were exact, the Faddeev
equations (37) would be equivalent to the Schrodinger
equation, as summing (37) over labels would verify. The
correlation amplitude I, is generated from the one-body
amplitudes (F) through the e-e interaction. While the

1 0
&r, ~F,(r„,r)) = dz' U, (z', r ),i c 12' 2„5yz~( 1 P)

(39)

1 Z

&ri, lF(r„r)) = f dz'U(z', r) .
2r 5/2+ 1 2 —zo

The coupled IDE's for U and U, then follow

(4O)

where zo =')/1 —z, while the projection of U(z, r) on the
r&z space yields
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(T, E—) U(z, r) = ~ZZ
r 1+z U(z, r)+ f dz'U, (z', r)

Zp

2 1 —z

( T, E—) U, (z, r) =
r 1+z

Z

U, (z, r)+ f dz'U(z', r )
2 1 —z '0

(41)

1 a'
T

Bl'
(1—z') W(z)r2 r2W(z) Bz Bz

The coupled equations (37), when expanded in PH,

F(r„r)= QPzk(Q, O)uk(r)lr
k

—16&2 „+„„(~k—~kk ~3)
Uk, = (

—1)"+
m.r

(k' even)

(46c)
F,(r,2, r ) = y P~k(Q, ~)uk(r)/r

k
(42b)

converge to solutions identical to the IDE (41) by project-
ing (37a) onto the P2k(Q, O) basis, and (37b) onto the
Pzk(Q&z) basis. As a consequence, coupled equations like
(35) result, except the symbol c replaces l with the poten-
tial matrix

Uk' Zg k'
[( 1 )k ( 1 )k'] (43a)

32 k, Sk
Uk '= Z( —1)", (k, k' even),

nr k'+1
SkU" = —

( —1)"+" (k' even)

Uk'c
(

1)k+k'gk'
mr k

(43b)

(43c)

(43d)

Z Vp(r)
[ T E+ Vp(r) ]F(r—;,r ) = —+ (44a)

[T E+Vp(r)]F, (r,z, r)=—
12

Vp(r)+ (44b)

where Vp(r) is the total potential averaged over the hy-
perangles [Q]

( )
32 8 2

37TP' 3&7"
(45)

Table IV gives the energy, as a function of k,„,for the
Faddeev potential harmonics [i.e., Eqs. (37) with the ex-
pansions (42), or, equivalently, Eq. (35) with the matrix
elements (43)], and the corresponding full-set result. The
column labeled distorted Faddeev PH indicates the ener-

gy when a set of Faddeev equations, alternative to (37)
[9].

U"' 64 ZS ~

16 2( 1)k+kSk
kc 3

kk' k
77K

(46d)

IV. SUMMARY AND CONCLUSIONS

We have found that the potential-harmonic approxi-
mation is an efficient method of calculating the effects of
one- and two-body correlations in three-body atomic sys-
tems. When only one-body correlations are included [i.e.,
when only the P2k(Q, O) states are included in the basis
set], a better total energy (2.8790 a.u. ) is obtained for the
He ground state than in the Hartree-Fock method
(2.8617 a.u. ). The PH expansion achieves this with ap-

TABLE IV. Total-energy predictions for the ground-state He
atom as calculated with the potential-harmonic expansion of the
Faddeev equations (37), the PH expansion of the distorted Fad-
deev equations (44), and with the full set.

The Faddeev PH gives poor agreement with the full-set
results. For k,„=14 the Faddeev PH overshoots the FS
energy by l%%uo. Furthermore, the Faddeev PH overshoots
the FS differences in energy between successive values of
k,„by about 20%%uo. The distorted Faddeev PH do much
better, giving about O. l%%uo less binding than the FS result,
accounting for about 97% of the FS energy difFerences
between successive values of k,„. These trends follow
those obtained in nuclear-binding calculations [15],where
inclusion of Vp(r) in Eq. (44), when solved as an
integrodifferential equation, leads to much more accurate
binding energies. However, when the PH ansatz (33) is
applied to the wave function itself (Table III), rather than
to the Faddeev components, the error in the energy is re-
duced by yet another factor of 10, no doubt due to the
variational nature of the energy in this case.

k,„Faddeev PH Distorted Faddeev PH Full set

64 k „(~k okk ~3)—Uk'c
( 1 )k'/2

~r k'+ 1
(k, k' even),

is applied. One can still use Eq. (35) (with l replaced by
c) by using the matrix elements

(46a)

2
4
6
8

10
12
14

2.797 863 83
2.872 812 91
2.903 072 28
2.916906 14
2.924 266 02
2.928 427 18
2.930 984 40

2.783 921 09
2.847 97
2.873 050 15
2.884 249 37
2.890 103 21
2.893 366
2.895 351

2.784 370 36
2.850 215 63
2.876 008 22
2.887 543 94
2.893 584 42
2.896 955 73
2.899 009 21
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proximately the same amount of computation as the
Hartree-Fock method. By solving only 18 coupled equa-
tions (k,„=36)the PH expansion, as applied in the usu-
al hyperspherical-harmonic method, one accounts for
about 99.99% of the binding (2.8686 a.u. ). One can ob-
tain the full k „~~ limit by either solving a two-
dimensional partial differential equation or by extrapolat-
ing the k,„36 energies to infinity. This latter pro-
cedure is rather accurate, yielding a final energy accurate
to seven to eight significant figures. The desirability of
the PH method over the Hartree-Fock method probably
stems from allowing the wave function to have variations
with a collective coordinate r —the hyperradius —in ad-
dition to the usual electron-nucleus correlations. More-
over, the PH expansion might be a better starting point
for many-electron atom calculations than the Hartree-
Fock method.

When the full PH basis is employed, including the full
effect of e ecorre-lations through the Pzk(Q, z) functions,
the error in the total energy is about 0.01% compared
with the best full-set calculations. We have confirmed
this type of accuracy for a tightly bound ground-state
system (the He ground state), a loosely bound ground-
state system (H ), and for a loosely bound excited system
(He* 2'S). Extrapolations to k,„—woo agree with the
best variational calculations [10] (themselves precise up
to 12 significant figures) to within 0.01%, with the extra-
polations themselves accurate to six —seven significant
figures. In addition, the PH basis accounts for about
99.9% of the increase in energy coming from higher hy-
perspherical harmonics (k )8). This property suggests
that the PH method can be improved by including the
full set up to a certain k and using the PH basis for larger
k.

The version of the PH basis proposed in this paper,
based on the PH expansion of the wave function itself
rather than the Faddeev components, and using an ortho-
normal basis, is at least one order of magnitude more ac-
curate than previous versions. Furthermore, it appears
possible to extrapolate to k —+~ to high accuracy by
solving relatively small systems of ordinary differential
equations as in the hyperspherical-harmonic method.

The main utility of the PH method is not in the three-
body problem, where many extremely accurate methods
exist, especially in atomic physics. The results of the
present paper indicate that the PH expansion is an
effective way to drastically reduce the degeneracy of the
hyperspherical-harmonic basis with only a small loss in
accuracy. The reduction in the number of harmonics be-
comes an extremely important feature in many-body sys-
tems with X)3, where full-set calculations are prohibi-
tive. At the same time, the standards of precision are not
as stringent in these many-body calculations, so the type
of accuracy obtained in the PH method, which we expect
wi11 not seriously degrade in going to many-body calcula-
tions, should be quite satisfactory. Finally, a marriage
of the PH method with the correlation-function
hyperspherical-harmonic method [3], which itself yields
up to significant ten-digit precision for the He atom,
could lead to still more accuracy for many-body systems.
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