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Ground-state correlation energies for two- to ten-electron atomic ions

Ernest R. Davidson, Stanley A. Hagstrom, and Subhas J. Chakravorty
Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Verena Meiser Umar and Charlotte Froese Fischer
Department of Computer Science, Vanderbilt University, ¹shville, Tennessee 37235

(Received 21 June 1991)

Improved estimates of the nonrelativistic stationary nucleus correlation energies of the ground-state
atomic ions with three to ten electrons and Z up to 20 are derived by combining experimental data and
improved ab initio calculations. Unlike previous work in this area, we focus on the correlation contribu-
tion to individual ionization energies, computed by comparing experimental data with relativistic
complete-valence-space Hartree-Fock energies.
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INTRODUCTION

The exact ground-state eigenvalues E(N, Z) of the
nonrelativistic, stationary nucleus, Coulomb field Hamil-
tonian for atomic ions in Hartree units,

N
H= g —,'V; Z/r, +—g—1/r, (1)

i=1 j( (i)
where X is the number of electrons and Z is the nuclear
charge, are of considerable interest as calibration points
for ab initio and density-functional calculations of atoms
and molecules. Estimates for E can be obtained from
spectroscopic data corrected for relativistic effects.
Scherr, Silverman, and Matsen [1] were the first to use
the tabulations of Moore [2(a)] to obtain values of the rel-
ativistic corrections for the ground-state energies of 3- to
10-electron atomic ions. Their results are surprisingly ac-
curate, considering that their analysis was entirely empir-
ical. Clementi [3] estimated correlation energies of atoms
by subtracting from the experimental ground-state ener-
gies obtained from Moore's tabulations [2(a)] the values
of the corresponding Hartree-Fock energy EH„and rela-
tivistic corrections [4] from Breit-Pauli perturbation
theory. Even though the HF energies were calculated
with adequate accuracy, the relativistic corrections, espe-
cially the radiative terms, were not available with
sufficient accuracy. Recently, Anno and Teruya [5] have
suggested a semiempirical refinement of relativistic ener-
gies for Z up to 20, and they have computed nonrelativis-
tic energies and correlation energies using Moore s re-
vised tables [2(b)]. With the advent of accurate relativis-
tic corrections [4,6,7] and fully relativistic numerical
Dirac-Fock computations, reasonably accurate estima-
tions of all higher-order radiative corrections have be-
come possible [8—12]. In this paper, we have examined
the problem of estimating an accurate correlation energy
E„where

E,(N, Z) =E (N, Z) EHF(N,Z)—
following an approach somewhat different from Anno
and Teruya.

THE NQNRKLATIVISTIC TOTAL ENERGY

E,'(N, Z) =E(N, Z) EcAs(N, Z), — (3)

where Ec~s is the complete-active-space (CAS) self-
consistent-field energy, viz. , a multiconfiguration calcula-
tion including all possible valence-electron —valence-
orbital configurations.

One approach to finding E would be just to solve the
Schrodinger equation to the desired accuracy. This can
be done exactly for %=1 and to more accuracy than
needed for our purposes [13]for N=2 for all Z. In Table
I, we list the total energies for N=1 and 2 along with
EH„(2,Z) and E, (2,Z). Beyond N=2, the accuracy ob-
tainable is less than is desired and decreases with increas-
ing N. Also little work of any kind has been published
for Z )&N.

Another related approach is based on extending the re-
sults to high Z based on the formal Laurent series in
Z ', where E/Z has a power series [1,14,15] in Z
For closed-shell systems where a single configuration is
an adequate zeroth-order approximation to the wave
function, E, has a series in Z beginning with a con-
stant term. For other systems the Hartree-Fock approxi-
mation is not a good zero-order approximation due to the
inherent multiconfiguration nature of the ground-state
configuration, e.g. , the 2s -2p near degeneracy mixing in
a Be atom [16]. In hydrogenlike atoms, the 2s and 2p or-
bitals are degenerate; in many-electron systems this exact
degeneracy is lifted due to electron-electron repulsion.
The effect on the energy of the near degeneracy of atomic
configurations in many-electron systems has been calcu-
lated for a number of atoms of the first and second period
by Clementi and Veillard [17]. For example, the Be atom
has two important configurations, viz. , 1s 2s and 1s 2p,
which are nearly degenerate and therefore need to be
treated as equally important in deriving a zeroth-order
approximation to the wave function and total energy
[18]. The Laurent series of E, for such systems begins
with a linear term in Z. This problem is circumvented
with the use of a modified correlation -nergy E,'
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TABLE I. Total energies for X= 1 and 2, along with
E»(2,Z ) and E,(2,Z ). All values are in hartrees.

mine E(N, Z), since

Z —E(1,Z) —E(2,Z) —EHF(2, Z) —E,(2,Z) E (N, Z) =EcAS(N, Z) + g bE,'(n, Z) .

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

2.00
4.50
8.00

12.50
18.00
24.50
32.00
40.50
50.00
60.50
72.00
84.50
98.00

112.50
128.00
144.50
162.00
180.50
200.00

2.903 724
7.279 913

13.655 566
22.030 972
32.406 247
44.781 445
59.156 595
75.531 712
93.906 807

114.281 884
136.656 948
161.032 003
187.407 050
215.782 091
246. 157 126
278.532 158
312.907 186
349.282 211
387.657 234

2.861 680
7.236 415

13.611 299
21.986 234
32.361 193
44.736 164
59.111 143
75.486 126
93.861 113

114.236 103
136.611094
160.986 087
187.361 081
215.736 075
246.111071
278.486 067
312.861 063
349.236 060
387.611057

0.042 044
0.043 498
0.044 267
0.044 737
0.045 054
0.045 281
0.045 452
0.045 586
0.045 693
0.045 781
0.045 854
0.045 916
0.045 969
0.046 015
0.046 056
0.046 091
0.046 123
0.046 151
0.046 177

bE(N Z)= I(N, Z)=—E(N, Z) E(N —1,Z—) . (4)

Thus, the Hartree-Fock AEH„(N, Z) is

bEH„(N, Z) = IH„(N, Z) =—EHP(N, Z) EHP(N —1,—Z),

the CAS AEis

b EcAs (N, Z) = IcAs (N, Z)—
=EcAs(N, Z) EcAs(N —1,Z—),

and the modified correlation contribution to the energy
increment is

bE,'(N, Z)=E,'(N, Z) E,'(N —1,Z) . —

Since E, has a series expansion in Z beginning with
a constant term, so does hE,'. In this study, we focus on
AE,' as the primary quantity to be estimated by examin-
ing its dependence on Z '. This correlation contribution
to the ionization energy is also the theoretical quantity
most directly related to the experimental data. As we
will see, careful attention to trends in this quantity make
discrepancies in the experimental data very apparent.
With the determination of this primary quantity,
b,E,'(N, Z) the other quantities of interest, viz. , E, (N, Z)
and E(N, Z), are easily obtained. However, it is essential
that b,E,'(N, Z) be known for n =2 N in order to deter-—

We now define a few quantities that will be used in our
subsequent analysis and calculations. The energy incre-
ment b,E(N, Z) is the difFerence of the N-electron energy
and its N —1-electron counterpart, i.e., the negative of
the ionization potential I(N, Z), —

EXPERIMENTAL IONIZATION ENERGIES
AND RELATIVISTIC CORRECTIONS

bE (N&Z) = AECAs(N&Z) I(N&Z) (9)

Since AE,' is a very small part of the total ionization ener-

gy, its dependence on Z provides a sensitive test of the ex-
perimental data and of the deperturbation procedure.

We will correct for nuclear motion by multiplying the
experimental ionization energy by a factor of

1+m, /Mz=m, /p .

This correction is needed because the energy from the ex-
perimental Hamiltonian with nonstationary nucleus in-
cludes a reduced-mass factor p/m, . The nuclear mass
was obtained for the most common isotope of each Z by
subtracting Zm, from the atomic masses given in Ref.
[19]. No corrections for other mass-polarization effects
were made. This scaled ionization energy can then be
converted to Hartree units by dividing by 2R . We note
that this procedure is numerically equivalent to dividing
the unscaled ionization energies by 2Rz.

The relativistic correction was estimated from a CAS
Dirac Fock including the Breit correction and Lamb shift
using Czrant's multiconfiguration Dirac-Fock program
GRAsP [10]. All configurations contributing to the
ground J level were included from all arrangements of
the valence electrons among the valence orbitals. Table
II gives the resulting relativistic corrections to the ioniza-
tion energy from the CASDF energy, Ec~sDF

b E„i(N& Z) = [ECASDF (N& Z) ECAS(N, Z)]—
[ECASDF(N 1& Z) ECAS(N

(10)

In order to obtain the nonrelativistic ionization energy
I(N, Z) from the experimental atomic spectra, we use the
table of experimental energies [2(b)], I,„„,(N, Z), in cm
obtained by extrapolating Rydberg series for the atoms to
the ionization limit. Moore has also estimated the uncer-
tainties for these limits. For Z »N, both the ionization
energy and the uncertainty in its magnitude become
large. In some of the past works [3,5] on this subject, the
ionization energies were summed to give an estimate of—E, which was then deperturbed by correcting for rela-
tivistic effects, nuclear motion and quantum electro-
dynamics. The value of EHF was then subtracted to ob-
tain E, . Scherr, Silverman, and Matsen [1] instead deper-
turbed each ionization energy and then fit I(N, Z) to a
series in Z for each X. We also deperturb each ionization
energy individually, but then subtract Ec~s to obtain
b,E,'(N, Z), the correlation contribution to the ionization
energy before fitting to a series. From Eq. (8), the rela-
tion between AE,' and I is
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TABLE II. Relativistic corrections to ionization energies for N=3 through N=10. See Eq. (10) of text. All values are in har-
trees. These values include the Breit correction and quantum electrodynamic corrections with a nucleus of finite radius.

Z

3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

E„i(3,Z)
—0.000 011
—0.000092
—0.000 348
—0.000 937
—0.002 061
—0.003 975
—0.006 984
—0.011441
—0.017 753
—0.026 379
—0.037 820
—0.052 648
—0.071 462
—0.094 946
—0.123 798
—0.158 808
—0.200 794
—0.250 672

E„,(4,Z)

—0.000 024
—0.000 154
—0.000 514
—0.001 274
—0.002 654
—0.004 922
—0.008 393
—0.013430
—0.020 448
—0.029 911
—0.042 331
—0.058 274
—0.078 360
—0.103 260
—0.133699
—0.170464
—0.214 393

E„,(5,Z)

0.000 034
—0.000 047
—0.000 366
—0.001 112
—0.002 526
—0.004 897
—0.008 568
—0.013933
—0.021 437
—0.031 577
—0.044 903
—0.062 015
—0.083 568
—0.110270
—0.142 882
—0.182 220

E„i(6,Z)

0.000 200
0.000 356
0.000483
0.000497
0.000280

—0.000 325
—0.001 519
—0.003 559
—0.006 762
—0.011 S19
—0.018 302
—0.027 673
—0.040 287
—0.056 903
—0.078 374

E„,(7,Z)

0.000 647
0.001 320
0.002 325
0.003 747
0.005 678
0.008 226
0.011 515
0.015 694
0.020 934
0.027 433
0.035 412
0.045 107
0.056 760
0.070 594

E„)(8,Z)

—0.000094
—0.000 394
—0.001 070
—0.002 311
—0.004 342
—0.007 424
—0.011 855
—0.017 966
—0.026 118
—0.036 694
—0.050095
—0.066 721
—0.086 954

E„„(9,Z)

0.000 741
0.001 104
0.001 414
0.001 594
0.001 556
0.001 204
0.000 440

—0.000 833
—0.002 702
—0.005 244
—0.008 523
—0.012 589

E„l(10,Z )

0.001 988
0.003 176
0.004 641
0.006 388
0.008 409
0.010683
0.013 182
0.015 865
0.018 683
0.021 577
0.024477

The CAS energies, EcAs were obtained from the same
program using the same configuration list just by setting
the speed of light to a large value and omitting the Lamb
shift. There is a positive increment in the relativistic
corrections as some of the p electrons are added because
of increased shielding of the 2s electrons. Table III gives
the numerical Hartree-Fock energies for all the ions, and
Table IV gives the CAS energies where they are different.
For N=4, 5, 6, the configuration p"+ mixes with s p" to
cause the CAS energy to be lower. For %=8, there is no
possible LS configuration except p P2, but in j-j cou-
pling, the p3/2 and p&&2 orbitals are not constrained to
have the same radial parts. This allows some radial
correlation to be included, at the expense of mixing in a
little D2 character, even in the nonrelativistic limit.

Finally, we may obtain the "adjusted" nonrelativistic,

stationary nucleus I(N, Z) employing the relation

I(N, Z) =I,„p,(N, Z)/2Rz+b, E„,(N, Z) .

These are listed in Table V. We can also determine the
"experimental" correlation contribution to the ionization
energy b,E,'(N, Z) by using Eq. (9). Table VI gives the re-
sulting experimental estimate of b E,'(N, Z). For Z
greater than 18, the data in Table VI shows erratic be-
havior. But for Z in the range 11—18, the data shows sys-
tematic deviation from the expected Laurent series be-
havior. Figures 1—8 show plots of this data against 1/Z
to make the anomalous behavior more obvious. These
plots show no sign of approaching a constant value of
hE,' for large Z.

It is traditionally assumed that relativistic corrections

TABLE III. Hartree-Fock energies for atomic ions. All values are in hartrees.

EHp(3~Z ) EHp(4~Z ) EHp(S~Z ) EHp(6~Z ) EHp(7~Z) EHp(S~Z ) EHp(9~Z ) EHp( 10)Z )

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

7.432 727
14.277 395
23.375 991
34.726 061
48.326 851
64.178 046
82.279 494

102.631 109
125.232 840
150.084 656
177.186 536
206.538 464
238.140431
271.992 428
308.094 449
346.446 491
387.048 551
429.900 624

14.573 023
24.237 575
36.404 495
51.082 317
68.257 711
87.934 053

110.111013
134.788 397
161.966 085
191.643 998
223.822 084
258 ~ 500 303
295.678 629
335.357 042
377.535 524
422.214 066
469.392 656

24.529 061
37.292 224
52.815 792
71.094 705
92.126 768

115.910851
142.446 309
171.732 744
203.769 901
238.557 603
276.095 730
316.384 193
359.422 927
405.211 882
453.7S 1 020
505.040 31 1

37.688 619
53.888 005
73.100 193
95.319608

120.543 566
148.770 578
179.999 746
214.230 491
251.462 429
291.695 287
334.928 873
381.163 043
430.397 689
482.632 729
537.868 097

54.400 934
74.372 606
97.608 978

124.104 215
153.855 294
186.860 443
223.118550
262.628 875
305.390 907
351.404 281
400.668 729
453.184052
508.950 094
567.966 737

74.809 398
198.831 720
126.372 113
157.423 729
191.982 930
230.047 540
271.616 155
316.687 824
365.261 878
417.337 831
472.915 321
531.994 074
594.573 875

99.409 349
127.817 814
159.997 400
195.940 465
235.642 844
279.101 985
326.316215
377.284 380
432.005 655
490.479 434
552.705 257
618.682 774

128.547 098
161.676 963
198.830 810
240.000 348
285.180931
334.369 660
387.564 603
444.764 406
505.968 090
571.174 928
640.384 362
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4 14.616 845
5 24.296 378
6 36.480 9S6
7 51.167 806
8 68.355 869
9 88.044 654

10 110.233 903
11 134.923 468
12 162.113257
13 191.803 212
14 223.993 291
1S 258.683 467
16 295.873 720
17 335.564 035
18 377.754 399
19 422.444 806
20 469.635 247

24.563 760
37.335 038
52.866 452
71.152 975
92.192 488

115.983 910
142.526 627
171.820 262
203.864 573
238.659 396
276.204 615
316.500 148
359.545 933
405.341 925
453.888 087
505.184 392

37.706 287
53.909 762
73.125 570
95.348 405

120.575 677
148.805 942
180.038 323
214.272 256
251.507 362
291.743 375
334.980 106
381.217 412
430.455 189
482.693 355
537.931 845

74.809 550
98.831 840

126.372 219
157.423 827
191.983 023
230.047 629
271.616 241
316.687 908
365.261 961
417.337 912
472.915401
531.994 153
594.573 954

are additive with the correlation energy. However, it
may be noted that this assumption must break down with
increasing Z. Generally it is believed that it would be
reasonable to use this approximation for Z values up to
18. The figures make clear a point noted by Anno and
Teruya [5] for the total correlation energy. For Z be-
tween 10 and 15, it is clear that there is a systematic devi-
ation from the expected behavior of the AE,' curve. Nev-
ertheless, because this data deals with correlation-energy
increments, it should be relatively less sensitive to the
filtering out of large relativistic and Lamb shifts of the 1s
core electrons. Anno and Teruya [5] had assumed that
the strange behavior for Z between 8 and 15 of the total
correlation energy was due to an inadequate estimate of

TABLE IV. CASSCF energies for atomic ions. All values
are in hartrees.

z —ECA$(4, Z) —ECA$(5, Z) —ECA$(6, Z )
—ECA$(8, Z )

the relativistic operator, but the presence of this same be-
havior in AE,' makes that explanation unlikely. A second
possibility is that the experimental extrapolations of the
Rydberg series has some systematic error. Another pos-
sibility would be that the implied assumption of additivi-
ty of relativistic and correlation effects has broken down.
The correct explanation, however, is that in Moore's data
[2(b)], the ionization energies beyond a Z of 10 are not ex-
perimental but Edlen's theoretical estimates [20] based on
his extrapolation formulas for the relativistic correction
and Lamb shift. The Lamb shift he has added in is
different from the one we have subtracted out. This ex-
plains satisfactorily the anomalous behavior beyond
Z=10, but leaves us without real experimental data for
larger Z.

As proposed, we used the tabulation of bE,'(X,Z) in
Table VI to fit the low-Z data for %=3—5 satisfactorily to
a three-term series in Z ' of the form a+&/Z+c/Z .
The fits are

b,E,'(3,Z) = —0.007 18028+0.017 161 3/Z
—0.003 380 10/Z

bE,'(4, Z) = —0.008 569 78+0.029 544 3/Z
—0.031 447 4/Z

(13)

BETTER ESTIMATES QF EXPERIMENTAI.
IQNIZATIQN ENERGIES

The data in Table I for two electrons, extended to
Z = 144, can be fit by the equation

bE,'(2, Z) = —0.046 670914+0.009 880741/Z
—0.000 852 948/Z —0.000 795 98/Z

TABLE V. Rydberg constants and nonrelativistic, stationary-nucleus ionization potentials. See Eq. (10) of text. All values are in
hartrees.

Z

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

2Hz

219 457.467
219461.269
219463.692
219464.595
219466.031
219 467.102
219468.292
219468.607
219469.392
219469.610
219470.167
219470.326
219470.743
219470.864
219471.187
219.471.617
219471.540
219471.617

I(3,Z)

0.198 146
0.669 197
1.393 646
2.369 279
3.595 476
5.071 993
6.798 687
8.775 520

11.002 918
13.480 730
16.208 579
19.186 399
22.414 451
25.893 014
29.621 793
33.578 S84
37.799 578
42.269 633

I(4,Z)

0.342 597
0.924 315
1.759 410
2.845 937
4.183 199
5.770 956
7.609 061
9.695 441

12.032 245
14.618 094
17.453 429
20.537 181
23.869 693
27.450 243
31.279 019
35.404 080
39.731 547

I(S,Z)

0.304 996
0.896 064
1.743 430
2.843 887
4.19S940
5.799 122
7.653 093
9.758 263

12.114 153
14.721 214
17.579 770
20.689 259
24.050 352
27.663 253
31.S27 739
35.612 841

I(6,Z)

0.414 027
1.088 226
2.019401
3.202 918
4.638 756
6.326 298
8.265 229

10.455 266
12.896 577
15.589 193
18.532 679
21.727 803
25.173 907
28.870 766
32.817 907

I(7,Z)

0.534 787
1.291 900
2.306 881
3.572 822
5.091 581
6.862 478
8.884 247

11.157 519
13.682 437
16.458 316
19.486 257
22.766 041
26.297 520
30.081 764

I(8,Z)

0.500 377
1.284 797
2.330 926
3.632 820
5.187 265
6.992 616
9.048 140

11.353 025
13.906 028
16.707 645
19.756 566
23.052 906
26.59S 312

I(9,Z)

0.641 036
1.506 518
2.634 127
4.016 273
5.650 615
7.537 075
9.674 166

12.061 816
14.699 456
17.586 553
20.723 550
24.110348

I(10,Z)

0.794 491
1.740 981
2.949 969
4.416 099
6.137255
8.111535

10.337 559
12.815 267
15.543 697
18.523 292
21.753 482
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TABLE VI. Experimental estimate of correlation-energy contributions to ionization energies. See Eq. (9) of text for details. All
values are in hartrees.

Z —5E,'(3,Z ) —hE,'(4, Z ) —hE,'(5, Z ) —hE,'(6, Z ) —hE,'(7, Z ) —hE,'(8,Z ) —AE,'(9,Z) —hE,'( 10,Z)

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.001 835
0.003 101
0.003 889
0.004 411
0.004 790
0.005 089
0.005 320
0.005 524
0.006 181
0.007 168
0.008 130
0.009 016
0.010095
0.011 657
0.013410

—0.006 845
—0.012 913
—0.019934

0.003 147
0.003 928
0.004 515
0.004 981
0.005 376
0.005 796
0.006 267
0.004 813
0.003 644
0.001 418

—0.001 398
—0.005 855
—0.011 599
—0.019 342
—0.028 889

0.007 825
—0.003 076

0.037 615
0.041 982
0.044 784
0.046 781
0.048 106
0.049 115
0.049 934
0.051 258
0.052 792
0.055 110
0.058 622
0.062 831
0.068 453
0.075 727
0.084 457
0.063 696

0.042 778
0.044 915
0.046 805
0.047 002
0.046 990
0.046 983
0.047 168
0.047 583
0.048 611
0.050 433
0.052 722
0.056 324
0.060 643
0.065 499
0.070 454

0.043 615
0.044 865
0.046 308
0.044 284
0.042 229
0.040 357
0.037 953
0.036 006
0.034 905
0.034 141
0.034 940
0.037 178
0.040 780
0.046 871

0.063 433
0.061 935
0.062 922
0.064 287
0.064 686
0.063 537
0.060 773
0.056 024
0.048 348
0.038 462
0.025 217
0.008 847

—0.011 904

0.063 505
0.060 906
0.060 539
0.058 817
0.055 388
0.051 319
0.045 848
0.039 385
0.031 702
0.022 509
0.012435
0.001 516

0.065 224
0.061 433
0.059 638
0.058 607
0.058 321
0.058 101
0.057 348
0.056 528
0.055 051
0.053 632
0.051 905

b,E,'(5, Z) = —0.055 6462+0.039 979 8/Z

+0.251 176jZ (15)

The expression in Eq. (13) agrees with the experimental
data for X=3 and Z from 3 to 9 within 1 phartree. Simi-
lar agreements occur for N=4 and Z between 4 and 8
with Eq. (14). For N= 5, the fit is not quite as good and a
maximum error of 6 phartrees occurs at a Z of 8 for Z in
the range of 5 to 11. For X equal to 6 and larger, no sa-
tisfactory fit to the data for low Z could be found with
any series in Z

To check these estimates of bE'(3, Z) and bE'(4, Z) in
Eqs. (13) and (14), we performed some ab initio calcula-

tions. For the general configuration-interaction (CI) cal-
culations, we have employed the ATQMcI program of
Sasaki et al. [21]. Recently, Rizzo, Clementi, and Sekiya
[22] have calculated the correlation energies of atomic
ions with 2, 3, 4, and 10 electrons with large sets of
geometrical basis functions. Their emphasis was on the
use of Gaussian-type orbitals (GTO's) and the accurate
computations of E, . In this work, we have used Slater-
type orbitals (STO's) and have computed b,E,'(3,Z) and
bE,'(4, Z). It is essential for the present analysis to use
the same basis set for difFerent X. The basis set used in
the computations was an lls, 10@, 9d, 8f, 6g, 4h, 2i
STO set. The exponents for the s functions were opti-
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FIG. 1. The CAS correlation contribution to the ionization
energy for three electrons, hE,'(3,Z). Data shown are from
Moore [2(b)] (~ ), our CI (4 ), and Eq. (16) ( ).

FIG. 2. The CAS correlation contribution to the ionization
energy for four electrons, bE,'(4, Z). Data shown are from
Moore [2(b)], our CI, and Eq. (14).
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FIG. 3. The CAS correlation contribution to the ionization
energy for five electrons, 4E,'(5, Z). Data shown in this and all
following figures are from Moore [2(b)] (~); Scherr, Silverman,
and Matsen [1] (&); Clementi [3] (~); Anno and Teruya [S]
(+ ), and the fit we have used in this paper ( ).

mized at the HF level using the brute-force algorithm of
Roothaan and Bagus [23,24]. For the orbitals of higher
angular momentum, the optimization was done using the
same procedure, however, at the single- and double-
excitation configuration interaction (SDCI) plus selected
triples and quadruples level.

The configurations for the CI calculations for the
three- and four-electron ions were determined by making
all possible single and double excitations from
( ls2s2p3s3p3d ) and ( ls2s2p3s3p3d ) configurations.
For the two-electron ions, we performed a full CI calcula-
tion. In order to follow the convergence of the three- and

FIG. 5. The CAS correlation contribution to the ionization
energy for seven electrons, hE,'(7, Z ).

four-electron CI calculations, we list the correlation ener-
gies obtained at the SDCI, SDTCI, and SDTQCI levels.
In Table VII, S, D, T, and g denote all single, all double,
selected triple, and selected quadrupole excitations from
the Hartree-Fock configuration, respectively. From the
table, we can see that E,S(3,Z) slowly increases to about
1 mhartrees for Z=72. Single excitations from the HF
configuration of the form 1sns 2s (2aaP —a/3a —Paa )

connect with the HF configuration because these "single"
excitations are actually double excitations from the 1s
and 2s spin orbitals. Moreover, we note that the SDCI
result is almost 1OO%%uo of the SDTCI correlation energy
for the three-electron atomic ions. On the other hand,
the convergence of E, for the four-electron ion sequence
is slower. With this basis set, the numerical Hartree-
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FIG. 4. The CAS correlation contribution to the ionization
energy for six electrons, hE,'(6, Z).

FIG. 6. The CAS correlation contribution to the ionization
energy for eight electrons, AE,'(8,Z).
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FIG. 7. The CAS correlation contribution to the ionization
energy for nine electrons, AE,'(9,Z ).

FIG. 8. The CAS correlation contribution to the ionization
energy for ten electrons, AE,'(10,Z).

Fock results agree with our EH„(N, Z) in Table III to
within a few phartrees. As shown in Table VIII, this
basis reproduces the exact two-electron energies within a
fraction of a mhartree. Since the core correlation energy
almost cancels in computing the CI value of AE,', this
should be adequate.

In Table IX, we list our CI correlation-energy incre-
ment b E,'(3,Z ) along with some of the best ab initio cal-
culations [25—32] and empirical estimates [1,5] from the
literature. Since some of these calculations in Table IX
have been done systematically so that the error is nearly
independent of Z and others have been pushed to ap-
parent convergence, a subjective estimate of the correla-
tion contribution to the ionization potential can be made.
This is listed in Table IX and has been fit by the equation

bE,'(3, Z) = —0.006902 12+0.015 061 458 /Z

+0.000 595 561/Z (16)

which divers slightly from the purely empirical fit in Eq.
(13). Equation (16) and our CI results are also plotted in
Fig. 1. It is believed that this represents the exact solu-
tion from the Schrodinger equation to within a few hun-
dreths of a mhartree.

In Table X we list b,E,'(4, Z) from our CI calculations.
For comparison, the results of Rizzo, Clementi, and Seki-
ya [22] are also given. For Z=4, these are still 0.1 mhar-

tree from the best results in the literature. Also, the
values for b E,'(3,Z ) from Eq. (16) are given to emphasize
the strong resemblance to b,E,'(4, Z). Our CI results are

TABLE VII. Correlation-energy results for three- and four-electron systems for various classes of
configurations. All values are in hartrees.

Z —E,SDTQ(4, Z) —E,SDT(4,Z) —E,SD(4,Z) —E,SDT(3,Z) —E,SD(3,Z} —E,S(3,Z)

4
5
6
7
8
9

10
12
14
16
18
30
36
72

144

0.093 976
0.110827
0.125 672
0.139734
0.153 277
0.166 261
0.179 121
0.204 099
0.228 698
0.252 938
0.277 058
0.419 737
0.490 588
0.913 503
1.758 626

0.090 085
0.107 255
0.122 456
0.136 800
0.150498
0.163 621
0.175 936
0.201 274
0.226 313
0.250 603
0.274 757
0.416 630
0.487 629
0.911410
1.756 253

0.089 887
0.106 973
0.121 968
0.136 126
0.149 738
0.162 780
0.175 678
0.200 719
0.225 358
0.249 630
0.273 770
0.416 522
0.487 390
0.910360
1.755 387

0.047 081
0.048 221
0.048 903
0.049 564
0.050 091
0.050 396
0.050 737
0.051 153
0.051 483
0.051 671
0.051 870
0.052 388
0.052 517
0.052 476
0.052 559

0.047 044
0.048 194
0.048 882
0.049 548
0.050 078
0.050 385
0.050 728
0.051 147
0.051 479
0.051 667
0.051 867
0.052 386
0.052 516
0.052 476
0.052 558

0.000 191
0.000 297
0.000 367
0.000 417
0.000 473
0.000 498
0.000 516
0.000 552
0.000 605
0.000 576
0.000 598
0.000 989
0.000 654
0.001 101
0.001 382
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4
5
6
7
8
9

10
12
14
16
18
30
36
72

144

Ecr(2,Z)

13.655 303
22.030 614
32.405 746
44.781 012
59.156238
75.531 313
93.906 463

136.656 605
187.406 735
246. 156783
312.906 862
881.407 028

1 273.657 072
5 139.156 837

20 646.156 815

Eci(2~Z) E (2~Z

+0.000 263
+0.000 358
+0.000 501
+0.000 433
+0.000 355
+0.000 399
+0.000 344
+0.000 343
+0.000 314
+0.000 344
+0.000 323
+0.000 349
+0.000 355
+0.000 704
+0.000 809

TABLE VIII. Two-electron energies employing CI and error
compared with the Kinoshita energies from Table I.

also plotted in Fig. 2 along with the empirical Eq. (13).
While our CI results are probably off'by 0.5 mhartree for
large Z, they do verify that the long extrapolation from
low Z given by Eq. (13) is behaving reasonably. Equation
(13) is probably in error by no more than 0.5 mhartree at
large Z.

In spite of obvious uncertainties in AE,' for high N, we
have made our best estimate of the true correlation ener-

gy based on the available experimental and theoretical
data. The calculation of Ivanova and Safranova [33) is
particularly useful since it gives the leading terms
E&Z +E2 in the Laurent series for the correlation energy
for two —ten electrons. By subtracting a Z ' series for
the difference between the CPS and HF energies, we ob-
tained the infinite-Z limit of AE,'. The result agreed well
with the results from our empirical procedure for up to
six electrons and was used to fix the high-Z limit for more
than six electrons. Truncation of the Laurent series for
low Z introduces additional errors, so we have chosen to
retain the experimental values for small Z —N, and use
the series only where we felt it was more reliable than the

TABLE IX. Correlation contribution to the ionization energy of three-electron atoms. —AE,'(3,Z)
as defined in text in mhartree units.

Z

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
36
54
72

144

1.65
3.03

5.34

5.93

6.17
6.36
6.52

3.08
3.84
4.35
4.72
4.99
5.21
5.39

5.64

5.83

5.96

6.07

6.40
6.48

6.65
6.75

1.78
3.06
3.83
4.35

1.81
3.06
3.83

1.70
2.91
3.63
4.10
4.44
4.69

1.78
3.04
3.79
4.30
4.66
4.93

1.83
3.10
3.89
4.41
4.79
5.09
5.32
5.52

1.84
3.16
4.05
4.67
5.11
5.44
5.71
5.90
6.07
6.20
6.32
6.43
6.50
6.58
6.65
6.71
6.76
6.81

1.9
3.2
3.9
4.3
4.5
4.7
4.8
4.9
4.9
5.0
5.0
5.2
5.0
5.1

5.2
5.2
5.2
5.3

1.83
3.09
3.85
4.36
4.73
5.00
5.22
5.40
5.51
5.65
5.75
5.84
5.90
5.97
6.03
6.08
6.12
6.16
6.41
6.49

6.66
6.76

'Rizzo, Clementi, and Sekiya [22].
Present CI calculations.

'Muszynska et al. [32].
Pipin and Woznicki [31].

'Perkins [29].
Ho [28].
~Experimental estimate based on the data of Moore.
"Scherr, Silverman, and Matsen [1].
'Anno and Teruya [5].
'Best estimate from trends in other columns.
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TABLE X. Correlation energy increment for three- and
four-electron atomic ions.

Z

3
4
5

6
7
8

9
10
12
14
16
18
30
36
72

144

—AE,'(4, Z )

0.003 068
0.003 801
0.004 304
0.004 677
0.005 026
0.005 268
0.005 496
0.005 771
0.006 009
0.006 176
0.006312
0.006 715
0.006 822
0.006 986
0.007 390

—AE,'(4, Z )

0.002 944'

0.005 536

0.006 S08
0.007 046
0.007 061

—AE,'(3,Z)

0.001 82
0.003 10
0.003 87
0.004 38
0.004 74
0.005 01
0.005 22
O.OOS 39
0.005 64
0.005 82
0.005 96
0.006 06
0.006 40
0.006 48
0.006 69
0.006 80

'Rizzo, Clementi, and Sekiya [22].
From Eq. (16}of text.

empirical estimates in Table VI. Hence, we have used
Eqs. (16), (14), and (15) for N=3, 4, and 5, respectively
and Z & N+2. For N=6, we have fit the data for Z =6,
7, and 8 to a straight line in Z ' and used the equation

hE,'(6, Z) = —0.058 777 311+0.096 275 35/Z

for Z & 8. Similarly for N =7, we have used the equation

hE,'(7,Z) = —0.061 601 749+0. 180 539 978/Z
—0.380 330 18/Z

for Z &9. For higher N, no reliable or otherwise trends

can be deduced from the data. Consequently, we have re-
placed all bE,'(N, Z) by linear fits that agree with Ivano-
va and Safronova at high Z and the experimental data at
low Z. For N = 8 and 9

hE,'( 8,Z) = —0.0691+0.0618/Z,

hE,'(9, Z) = —0.0630+0.0209/Z

was used for Z & 10. For N=10 it was not possible to fit
the experimental data for Z=10, 11, and 12 by any
reasonable function. Finally we used

b,E,'( 10,Z) = —0.0584 —0.020/Z

for Z & 11. Table XI gives the resulting total correlation
energies E,(N, Z) reported in the conventional way
defined in Eq. (2). Finally, these are added to the
Hartree-Fock energies to obtain the estimated eigenval-
ues of Eq. (1) for the atomic ions shown in Table XII.

Tables XI and XII can be compared with previous esti-
mates in the literature. They agree to within +1 mhar-
tree the values given by Silverman [15] for the neutral
atoms. Compared with Scherr et al. , they differ by 30
mhartree for the ionization energy at Z =20 and N= 8.
On the other hand, they differ from the results of Anno
and Teruya [5] by 27 mhartree for a neon atom, and up to
70 mhartree for high Z. Compared with Veillard and
Clementi [17(b)], they are within 0.1 mhartree for neutral
atoms except for F and Ne, where they differ by 2 mhar-
tree. The difference from the older tables of Clementi [3]
for the total correlation energy reach a maximum of 57
mhartree at Z=20 and N=10. Rizzo, Clementi, and

TABLE XI. Estimated values for total correlation energy.

Z

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

—E,(3,Z)

0.045 33
0.047 37
0.048 63
0.049 43
0.050 02
0.050 46
0.050 81
0.051 08
0.051 31
0.051 50
0.051 66
0.051 79
0.051 91
0.052 01
0.052 11
0.052 19
0.052 26
0.052 32
0.053 57

—E,(4,Z)

0.094 34
0.11136
0.126 40
0.140 50
0.153 99
0.16708
0.179 90
0.192 52
0.205 00
0.217 35
0.229 62
0.241 81
0.253 95
0.266 04
0.278 09
0.290 10
0.302 09

—E,(5,Z)

0.124 87
0.138 74
0.15045
0.160 82
0.170 31
0.179 21
0.187 71
0.195 91
0.203 90
0.211 71
0.219 40
0.226 98
0.234 48
0.241 91
0.249 28
0.256 60

—E,(6,Z)

0.156 37
0.166 47
0.174 74
0.181 5
0.187 4
0.192 8
0.197 7
0.202 4
0.206 8
0.211 0
0.215 0
0.2190
0.222 8
0.226 5
0.230 2

—E, (7,Z)

0.188 32
0.194 22
0.198 97
0.202 7
0.205 8
0.208 4
0.210 6
0.212 5
0.214 1

0.215 6
0.216 9
0.218 0
0.219 1

0.220 0
0.238 3

—E,(8,Z)

0.2578
0.2610
0.2657
0.2693
0.272
0.275
0.277
0.279
0.281
0.282
0.284
0.285
0.286
0.307

—E,(9,Z}

0.3244
0.3265
0.3303
0.334
0.336
0.339
0.341
0.342
0.344
0.346
0.347
0.348
0.370

—E,(10,Z)

0.3917
0.3916
0.394
0.396
0.398
0.400
0.402
0.404
0.405
0.406
0.407
0.429
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TABLE XII. Estimated atomic energies, E(N, Z).

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

—E(3,Z)

7.478 06
14.324 76
23.424 62
34.775 49
48.376 87
64.228 51
82.330 30

102.682 19
125.284 15
150.136 15
177.238 19
206.590 26
238.192 34
272.044 44
308.146 56
346.498 68
387.100 81
429.952 95

—E(4,Z)

14.667 36
24.348 93
36.534 90
51.222 82
68.411 70
88.101 14

110.290 92
134.980 92
162.171 08
191.861 35
224.051 70
258.742 12
295.932 58
335.623 08
377.813 61
422.504 17
469.694 74

—E(5,Z)

24.653 93
37.430 96
52.966 25
71.255 53
92.297 07

116.09006
142.634 02
171.928 66
203.973 80
238.769 32
276.315 13
316.611 17
359.657 40
405.453 79
454.000 29
505.296 91

—E(6,Z)

37.8450
54.0545
73.274 9
95.5011

120.7310
148.9634
180.1975
214.4329
251.6692
291.9062
335 ~ 1439
381.3820
430.6205
482.8593
538.0983

—E(7,Z)

54.5893
74.5668
97.8080

124.3069
154.0610
187.0688
223.3291
262.8413
305.6050
351.6199
400.8856
453.4021
509.1692
568.1867

—E(8,Z)

75.067
99.093

126.638
157.693
192.255
230.323
271.893
316.967
365.543
417.620
473.199
532.279
594.860

—E(9,Z)

99.734
128.144
160.328
196.274
235.979
279.441
326.657
377.627
432.350
490.825
553.052
619.031

—E(10,Z)

128.939
162.069
199.224
240.397
285.579
334.770
387.967
445. 168
506.373
571.581
640.792

Sekiya [22] recently published an ab initio calculation for
the N=10 case. While they get only —0.380 for the
neon correlation energy, they predict that the correlation
energy changes by —0.014 for Z =18, in good agreement
with our estimate. Their value, —0.4125, for Z =54 also
agrees well with the result obtained by using the extrapo-
lation equations given here, —0.4207. The inAnite-Z
values in Table XII also agree within 1 mhartree with
Ivanova and Safronova.

From the work of Scherr, Silverman, and Matsen [1],
Clementi [3], and Anno and Teruya [5] it is possible to
extract AE,'. We have included their values and our own
along with the values based on Moore's tables [2(b)] in
Figs. 3—8. Only for )V=8 does our estimate at Z=20
differ greatly from the other papers. The %=8 nonrela-
tivistic ionization energies of Scherr et al. after subtract-
ing our EEcAs ionization energies give correlation ener-
gies that can be fit by the equation

bE,'( 8, Z) = —0. 15419+1.4363IZ —5.6692IZ

This equation would give —154 mhartree for AE,' at
infinite Z, which is more than twice our estimate. The
hE,' data for N =5, 6, 7, where the electron is removed
from a singly occupied p orbital, are all similar. Also, the
b,E,' data for N=%, 9, 10 (and the extrapolated data for
N=9 and 10) are all similar. Hence, the previous litera-
ture extrapolations for hE,' for N=8 do not seem plausi-
ble. In any case, Figs. 3—8 make it clear that extrapola-
tion to high Z from the few low-Z points is subject to
substantial uncertainty. This uncertainty is greatly re-
duced by use of the high-Z limit, but then no low-order
polynomial in Z ' will fit the data very well.

For low Z the atomic energies are known to better ac-
curacy than this procedure can give. For the lithium
atom, the exact energy is well established [34] to be
—7.478 062 in agreement with Table XII. Similarly,
Mkrtensson-Pendrill et al. [35] have extrapolated the en-

ergy of Be to be —14.66737, which differs from Table
XII by 0.000 01. This difference comes from the
differences between our estimate for the relativistic plus
Lamb correction between Be and Be + of —0.000116 in
Table II, and their estimate of —0.000 102. The Laurent
series coefficients for small X has also been extensively
studied by theoretical calculations. For N=3, the best
estimate is given by Yung, Sanders, and Knight [36].
When converted to AE,', their result is equivalent to

bE,'(3, Z) = —0.006976+0.015 61/Z

in good agreement with the first two terms of Eq. (16).

PAIR CORREI.ATION ENERGIES AND HIGHER-
ORDER ENERGIES

In our endeavor to understand the source of the
correlation-energy contributions in three- and four-
electron systems, we needed an adequate partitioning
scheme of the CI calculation into one-body, two-body,
three-body, and four-body contributions. We note the
earlier works of Nesbet [37], Sinanoglu [38] and Allen,
Clernenti, and Gladeney [39]. In their works, they have
proposed that one could meaningfully use the pair corre-
lation data to calculate the total correlation energy. Not-
withstanding the fact that this approach may lead to in-
correct estimation of the total correlation energy [40], the
practical utility of this partitioning has been reexamined.
The total correlation energy E,(4,Z) can be written as a
sum

E,(4, Z) =ei, i, + e2, 2, +4ei, 2, +2e„„2,
+262s, 2s, ls +61s, Js, 2s, 2s

where e&, „ is the 1s pair energy, e„2, is termed the
"average" e&, 2, pair energy, since it is composed of a
strong a-P spin interaction and a weak a-a spin interac-
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TABLE XIII. Pair correlation energies and higher-order corrections for four-electron atomic ions.
Subscripts refer to principal quantum number of s orbital. All values are in hartrees.

4
5
6
7
8
9

10
12
14
16
18
30
36
72

144

&&lZZ

—0.0004
—0.0004
—0.0002
—0.0001
—0.0001
—0.0001
—0.0007
—0.0004
—0.0001
—0.0001
—0.0001
—0.0008
—0.0007
—0.0001
—0.0003

0.0005
0.0007
0.0007
0.0007
0.0008
0.0008
0.0012
0.0010
0.0010
0.0010
0.0010
0.0014
0.0014
0.0011
0.0012

112

0.0000
0.0000

—0.0000
—0.0000

0.0000
—0.0000

O.OOOO

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

&lZ

—0.0015
—0.0021
—0.0024
—0.0027
—0.0029
—0.0031
—0.0032
—0.0034
—0.0035
—0.0036
—0.0037
—0.0039
—0.0040
—0.0041
—0.0042

—0.0424
—0.0422
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0420
—0.0417
—0.0416

—0.0461
—0.0613
—0.0751
—0.0882
—0.1010

0.1135
—0.1259
—0.1503
—0.1744
—0.1983
—0.2221
—0.3640
—0.4347
—0.8575
—1.7023

—0.0023
—0.0025
—0.0026
—0.0027
—0.0028
—0.0029
—0.0030
—0.0031
—0.0032
—0.0032
—0.0033
—0.0034
—0.0034
—0.0035
—0.0037

tion, and ~»»» and ~»»» represent the three-body in-
teractions like isa, lsP, and 2sa electrons. There is only
one pair-pair interaction term, viz. , e&, &, »». Adopting
Nesbet's [37] procedure of making only selected excita-
tions from the HF configurations, the six terms of the
correlation energy in Eq. (17) can be determined. A suit-
able notation we employ is an excitation operation, e&„
which means a single 1s electron is excited to any orbital
including itself to give an allowed configuration of I.S
symmetry. We have calculated CI energies for the fol-
lowing sets of configurations:

E{e„e&,e2, e2, (is 2s ))=EHF+e„„+e2 2 +4e)

+~1s, lsy2$»» i$

+~1s, 1s,2s, 2g

E(e»e2, ( ls 2s ))=EHF+4e&, 2, ,

E{e2,e2, (ls 2s ))=EH„+e2, 2, ,

E(e„e„(ls 2s2))=EHF+e„„,
E(e~,e2, e2, (ls 2s ))=EHF+2e2, 2, &

+4e& 2 +e2 2

E(e2, e&, e&, (ls 2s ))=EHF+2e&, „2,
+4@i,»+g(, ), .

(19)

(20)

(21)

(22)

(23)

EH„ is determined by a routine Hartree-Fock calculation.
The CI calculations for the above six sets of
configurations were done, and Eqs. (18)—(23) were solved
for the interactions. In Table XIII, we show the results.
Again, it is essential to note that the pair correlation
c»» contains a linear term in Z due to the so-called de-
generacy effect of the 2s and 2p orbitals, which when re-
moved by subtracting out the CAS correlation energy,
yields ez, 2„ the multiconfiguration pair correlation ener-
gy. From Table XIII, we also note that the valence-core

pair correlation 5&, » is a large contribution to the total
correlation energy E,'(4, Z). The three-body term e„„2,
is almost 0 in contrast to the e2, » i, effect which is posi-
tive, indicating that the pair energy model overestimates
the 2s, 2s, 1s interaction for the four-electron atomic ions.

Froese-Fisher and Saxena [14] carried out a similar
analysis for Be based on the CAS wave function. They
obtained essentially the same results for e„&, and e»».
They considered separately the results of correlating the
1s,2s and 1s,2p pairs and obtained —0.0045 for the sum
of these pairs. The 1s,2p pair in the present partitioning
is included in e„»» along with the effect of scaling
down e„» by the reduced 2s population. Hence, the
comparable ~e~~lt f«m T~bl~ XIII is 4~i.,»+2E'„»» or—0.0050. Their [41] total pair energy —0.0928 was
somewhat higher than the exact correlation energy—0.0943, while our pair energies sum to —0.0945 (but
note our calculated correlation energy including three-
and four-body effects is only —0.0939). The earlier work
by Nesbet [37], done in the same way as the present
analysis, was not as well converged and yielded a pair en-
ergy sum of only —0.0926 (after correcting an error in
their reported e2z2&). Byron and Joachim [42], by the
same method, obtained a pair sum of —0.0925. In earlier
papers Tuan and Sinanoglu [43] obtained a pair sum of—0.0944, Kelly [44] obtained —0.0909, and Geller, Tay-
lor, and Levine [45] obtained —0.0914. More recently,
Bunge [46] obtained a pair sum of —0.0945 and Pet-
tersson and Licht [47] obtained —0.0951.

Only Adams and Jankowski [48] and Pettersson and
Licht [47] report pair energies as a function of Z with the
earlier Pettersson work being more accurate for Be. Our
results for the change of e with Z are in good agreement
with these of Pettersson and Licht, except that they find a
slightly more rapid decrease in e»». At Z=4 they ob-
tain —0.0463 while at Z = 10 they obtain —0.1274.

A similar analysis for E,(3,Z) leads to the following
equations and configurations for the three-electron atom-
ic ions:
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4
5
6

8
9

10
12
14
16
18
30
36
72

144

—0.0029
—0.0028
—0.0025
—0.0020
—0.0030
—0.0029—0.0034
—0.0031
—0.0013
—0.0011
—0.0012
—0.0035
—0.0036
—0.0034
—0.0035

—0.0399
—0.0401
—0.0404
—0.0410
—0.0402
—0.0403—0.0399
—0.0403
—0.0422
—0.0424
—0.0424
—0.0401
—0.0401
—0.0400
—0.0398

—0.0020
—0.0025
—0.0028
—0.0030
—0.0032
—0.0033—0.0034
—0.0036
—0.0037
—0.0038
—0.0038
—0.0040
—0.0041
—0.0042
—0.0042

—0.0001
—0.0001
—0.0002
—0.0002
—0.0002
—0.0003—0.0003
—0.0003
—0.0003
—0.0003
—0.0003
—0.0004
—0.0004
—0.0004
—0.0004

E(e„e„e~,( ls 2s') ) =EHF+2e„+e„„
+2~ IS, 2S + ~2S, 1S, 1S

E(e„ez,( ls 2s')) =EH„+2@»+2e„2,

E(e„e„(ls 2s')) =E H+2e„+ „e„+2„e,2,

E(e/g(ls 2s ))=EHF+2&], .

(24)

(25)

(26)

(27)

The results for e„, F„,~„e„,„,and e2, )s „are listed in
Table XIV. If we neglect the one-, three-, and four-body
corrections, the increment to the correlation energy
b.E,'(4, Z), assuming transferability of pair correlations,

TABLE XIV. Pair correlation energies and higher-order
corrections for three-electron atomic ions. All values are in
hartrees.

would be

bE,'(4, Z) =2e„2,+e2, 2, ,

while

bE,'(3,Z)=2e„2, .

As noted earlier, b,E,'(4, Z) and b,E,'(3,Z) are nearly
equal, which suggested that ez, 2, was small. Close in-
spection of the pair energies, however, show that they
vary by amounts as large as AE,', and e„„2,is also large.
Thus there is no simple explanation for hE,' in terms of
pair energies. The very small magnitude of e&, 2, is not-
able, as this indicates that almost all of the 2s pair ener-

gy is recovered by the 2p CAS.

CONCLUSION

The correlation energy of ions with up to ten electrons
is estimated from experimental data and ab initio calcula-
tions. Because of lack of truly experimental data beyond
an atomic number of ten and lack of accurate ab initio
data beyond four electrons, these results still require fur-
ther careful exploration. Many of the entries in Moore's
tables are based on Edlen's extrapolation. These should
not be used to obtain experimental atomic energies.
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