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Information and quantum nonseparability
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An information-theoretic inequality analogous to the well-known result of Bell [Physics I, 195
{1964)]is formulated using the concept of information distance. This inequality, like Bell s, is true
for all local-hidden-variable theories, but not for quantum mechanics. The metric space structure of
this new inequality suggests a reformulation of familiar Bell inequalities in terms of a "covariance
distance. " Quantum nonseparability can be demonstrated through violations of these inequalities
even in cases where the correlation between two systems is extremely weak. The connection be-
tween nonseparability and complementarity is also briefly discussed in this paper.

PACS number(s): 03.65.BZ

I. INTRODUCTION

In a famous paper, Bell' demonstrated that no local-
hidden-variable theory can reproduce all of the statistical
predictions of quantum theory. In particular, he showed
that highly correlated states of quantum systems have
properties that are fundamentally nonclassical. Bell's ar-
gument is notable for its simplicity. Suppose that a quan-
tum system consists of a pair of spin- —,

' particles. The
pair of spins constitutes the simplest possible compound
quantum system. The spins are prepared in a singlet
state

Observables are taken to be compounds of the individual
spins measured in units of A'/2, so that each observable
can have the values +1 or —1. In the singlet state, the
expectation values & A ) = &8 ) =0, so that the covari-
ance

cov( A, B)=&(A —
& A ) )(& —&& &) &

=
& A& )

For example, if A and B represent parallel components of
the spin & AB ) = —1.

The predictions of quantum theory are probabilistic,
but the nature of the indeterminacy in the theory is not
immediately obvious. It might be supposed that the re-
sults of the spin measurements are determined by the
values of unknown "hidden" variables. Further, it might
seem reasonable to expect that these variables should
function "locally" —that is, that the result of the spin
measurement on one system is not inAuenced by the
choice of spin observable measured on the other system.
Under these innocent sounding assumptions, Bell demon-
strated the following inequality:

~& Aa &
—

& Ac&~ & I+&ac& .

This inequality can, in fact, be violated in the case of a
singlet state, given a judicious choice of spin observables.
In other words, quantum mechanics is incompatible with
the idea that measurement results are due to the values of

local-hidden variables.
The profoundly nonclassical character of the correla-

tions in such quantum states has been termed "nonsepar-
ability". Experiments to date give strong evidence that
the Bell inequality is violated in nature exactly as predict-
ed by quantum mechanics. Thus, every 1ocal-hidden-
variable theory can be excluded as the possible
"machinery" behind quantum mechanics.

The remarkable scope of Bell's proof has led to intense
discussion about the nature of quantum correlations. In
this paper, I hope to further this discussion by shedding
light on the structure of the Bell inequality. I will use the
notion of "information distance" to derive an
information-theoretic inequality that, like the Bell in-

equality, holds for local-hidden-variable theories but is
violated in certain quantum-mechanical situations. This
information-theoretic result is closely related to an in-
equality derived by Braunstein and Caves, but has a
geometrical meaning.

The geometrical interpretation of this new inequality
will suggest a new understanding of Bell's result in terms
of a "covariance distance. " Finally, I will show that the
nonclassical properties of quantum correlations are evi-
dent not only in a highly correlated state like the singlet

~ lb), but in every pure state having any nonzero degree of
correlation (that is, every state that is not a product of
subsystem states). Quantum nonseparability is the rule,
not the exception.

II. COVARIANCE BELL INEQUALITIES

In this section I will discuss a variant of the Bell in-
equality first proposed by Clauser, Horne, Shimony, and
Holt. Consider, as before, a system composed of two
spins denoted S, and Sz. The observables are com-
ponents of one spin or the other in units of A/2. The sys-
tem is prepared in a singlet state. On S& we perform a
measurement either of observable A or B, and on Sz we
measure either C or D. The spectrum of each observable
is the set I+1,—1I. The measurement results are as-
sumed to be governed by some hidden variables that
function locally. The values of these variables are statis-
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tically distributed in some fashion, and this distribution
of values gives rise to the randomness in the measure-
ment results.

Since the results of all possible measurements are sup-
posed to be determined by hidden variables, it is mean-
ingful to consider quantities constructed from the results
of several difFerent measurements. For instance, one can
construct /2

M= A(C D)+—B(C+D) . m'/2

M is constructed so that M =+2. It follows that

—2+ (M) =( AC) —( AD )+(BC)+(BD) ~+2,

where the expectations are averages over the distribution
of the values of the hidden variables. If the assumption
of locality holds, then each term in (M ) can be experi-
mentally determined. Each pair of observables is mea-
sured on an arbitrarily selected subensemble of an ensem-
ble of similarly prepared systems. Since the choice of ob-
servable on S, does not affect the results of Sz measure-
ments (and vice versa) the observed subensemble statistics
will probably represent accurately the statistics of the
hidden variables. The terms in (M ) individually involve
observables on different subsystems; the simultaneous
measurement of such pairs of observables affords no obs-
tacle.

Now examine the predictions of quantum mechanics
for the singlet state. Let 8 be the angle between the
directions along which the components A and C of the
spins are measured. Then the probabilities of the four
possible outcomes of the joint measurement of A and C
are

m'/4

~/4

FIG. 2. Spin measurement axes yielding ( AC) —( AD)
+ (BC)+ (BD ) =2&2 for a singlet state

p(++ ) =p( ——
) = —,'sin 0

p(+ —) =p( —+ ) = —,'cos 0

E.

where, for example, p(+ —
) is the probability that the re-

sult of the A measurement is + 1 and the C measurement
is —1. The covariance ( AC ) = —cos8.

Consider the directions for A, B, C, and D shown in
Fig. 1. When the spin observables for the two systems
are chosen in this fashion, ( AC) = (BC ) = (BD )= —I/&2 and ( AD ) = I/&2. Thus, (M ) = —2&2,
which violates the covariance inequality derived above.

The meaning of this fact is fairly easy to see. Evidently
the quantum-mechanical anticorrelation of "nearby" spin
observables (i.e., those pairs for which 8 is small) is
stronger than the positive correlation of "distant" spin
observables can permit in a hypothetical local-hidden-
variable theory. The reverse is also true. Consider the
spin observables indicated in Fig. 2. In this case,
(M ) = +2+2 9 2. Hence, the positive correlation of dis-
tant observables is greater than can be accounted for in a
local-hidden-variable theory, given the strong anticorre-
lation of nearby observables.

Finally, it is useful to point out the role of the locality
assumption. The covariance inequality itself follows from
the hidden variable assumption alone. Locality is an aux-
iliary condition which ensures that the covariances in
(M) (which are defined relative to the distribution of
hidden variables) are the same as the statistical covari-
ances measured by an experimenter. Some such auxiliary
condition must be imposed if the inequality is to be test-
able.

III. INFORMATION DISTANCE

FIG. 1. Spin measurement axes yielding ( AC ) —( AD )
+ (BC ) + ( BD ) = —2&2 for a singlet state.

Information theory was developed by Shannon in 1948
as a mathematical description of communication. Since
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that time, its concepts have found wider application, re-
cently in various aspects of quantum theory. The funda-
mental quantity of information theory is the information,
or entropy, associated with a probability distribution,

H(X) = —gp(x, )lnp(x; ) .

(In this definition 0 ln0=0. ) The information H(X)
satisfies the following properties.

(1) H(X) ~ 0, with equality if one outcome has proba-
bility unity.

(2) H(X) ~ lnN, where N is the number of possible out-
comes for X, with equality if each outcome has probabili-
ties 1/N.

(3) H(X, Y) ~H(X), where H(X, Y) is the joint infor-
mation for X and Y.

(4) H(X, Y) ~H(X)+H( Y), with equality if X and Y
are independent.

H (X) is a measure of the uncertainty associated with the
probability distribution over X. It corresponds to the
quantity of additional information required to specify the
value of X, given the a priori probability distribution.
Unlike other measures of uncertainty such as the covari-
ance, H (X) depends only on the probabilities of distinct
events, not on their numerical values. Because it requires
less mathematical "structure" for its definition and inter-
pretation, the information is in some sense a more funda-
mental description of uncertainty.

Shannon's information can be used to define several
information-theoretic quantities of interest. For example,
the conditional information is H(X~ Y)=H(X, Y) H( Y). —
This is a measure of the average uncertainty in X that
remains after Y is known. If X and Y are not indepen-
dent, then knowledge of Y will tend to reduce the uncer-
tainty in X. This suggests a natural measure of the mutu-
al dependence of X and Y, called the correlation informa-
tion (or mutual information),

H(X:Y)=H(X)—H(X~ Y)

=H( Y)—H( Y~X)

=H(X)+H(1') H(X, Y) . —

Two variables are correlated in an information-theoretic
sense if a knowledge of one provides information about
the other. Both correlation and anticorrelation (in a co-
variance sense) corresponds to a positive correlation in-
formation.

Zurek has used information-theoretic quantities to
define an information distance 5(X, Y) between two ran-
dom variables X and Y,

5(X, Y)=H(XI Y)+H( YIX)

=H(X, Y) —H(X:Y)

=2H(X, Y) H(X) H( Y) . — —

The information distance is a symmetric measure of the
lack of correlation between X and Y. Zurek's informa-
tion distance satisfies the axioms for the abstract concept

of a metric, provided that we note that it measures the
distance between equivalence classes of variables. If X
and Y are variables that provide exactly the same
information —for example, if Y is a one-to-one function
of X—then the information distance 5(X, Y) =0.

With this proviso in mind, it is instructive to verify
that 5 is a metric. The properties of positive definiteness
and symmetry follow directly from the definition. Only
the triangle inequality remains to be proven. Suppose
that X, Y; and Z are random variables with a joint proba-
bility distribution, and note that

H(X, Y,Z) ~H(X, Z),
2H(X, Y, Z) H(X—) H(Z—) ~5(X,Z) .

Now add the term H(X, 1') H(X,—Y)+H( Y,Z)
H( Y,—Z) =0 to the left-hand side of the inequality, ob-

taining

H(XI Y,Z)+H( YIX)+H(ZIX, Y)+H( YIZ) &5(X,Z) .

Since H(X~ Y,Z) ~H(X~ Y) and H(Z)X, Y) ~H(Z
~
Y),

5(X, 1')+5( Y, Z) ~5(X,Z),

which is the desired inequality.
From the triangle inequality one can prove a whole

host of additional metric relations, such as the following
"quadrilateral inequality":

5( W', X)+5(X,Y)+5( Y,Z) ~ 5(8', Z) .

In fact, for any set t A, B,C, . . . , Y,Z ) of random vari-
ables, it is easy to prove the polygon inequality

5(A, B)+5(B,C)+ . +5(Y,Z)~5(A, Z) .

IV. INFORMATION- THEORETIC BELL INEQUALITIES

Consider once again the pair of spins in a singlet state,
with spin observables A and 8 defined on S

&
and C and D

defined on S2. If the observed probabilities of the various
measurement outcomes were in fact due to some statisti-
cal distribution of deterministic hidden variables, then a
joint distribution would exist over all measurement re-
sults for all four observables. According to the quadrila-
teral inequality mentioned above,

5( A, C )+5(B,C ) +5(B,D ) ~ 5( A, D ) .

If the hidden variables are local in character, then the
various probabilities involved in the above inequality can
be determined by observing the statistics of actual pair-
wise measurements of the observables. Thus, in a local-
hidden-variable theory this inequality is subject to experi-
mental test.

This inequality, like the Bell inequality, is violated in
quantum mechanics. Consider the observables 3 and C,
which represent components of spin along axes separated
by an angle 8. Then the information distance 5( A, C) is
just

5( A, C) =2f 0
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where f(P) = —cos P ln cos P —sin P ln sin P. Choose
the four observables as indicated by the four axes in Fig.
3. Then

8(B,c}

5( A, C)=5(B,C) =5(B,D) =2f =0.323,
D

5(A, D)=2f =1.236 .
16

Since 0.323+0.323+0.323 & 1.236, the information-
theoretic Bell inequality is violated for this combination
of measurements on the singlet state.

In other words, the information distance defined by
Zurek is not a metric at all in the quantum-mechanical
case. A diagram of the situation is given in Fig. 4.
and D are "further apart" (in information distance) than
the information quadrilateral inequality permits, given
the "closeness" of 3 to C, C to B, and B to D. Since in-
formation distance measures the lack of correlation be-
tween observables, we can say that A and D are less
correlated than would be possible in a local-hidden-
variable theory, or, conversely, that the nearby pairs of
observables are more correlated than would be possible.

In a similar way, Braunstein and Caves derived an in-
equality based on the conditional information

H(A [B)+H(B)C)+H(C[D)~H(A [D) .

Since the information distance is a "symmetrized" form
of the conditional information, it is clear that this in-
equality is closely related to the ones described in this pa-
per. In fact, this conditional information inequality im-
plies the information-distance quadrilateral inequality;
thus, the quantum violation of the quadrilateral inequali-
ty discussed here implies the quantum violation of the
conditional information inequality discussed by Braun-
stein and Caves.

Why does quantum mechanics violate information-
theoretic Bell inequalities? The key assumption in the
derivation of the triangle inequality for information dis-
tance was the existence of joint probability distributions
over triples of random events. Quantum theory does not
provide such distributions in the situation described here,

A

8(A, D}

FIG. 4. Schematic representation of quantum nonseparabili-
ty. The information distance 6( A, D) is greater than is allowed
by the (classical) metric properties of information distance.

since this would involve joint probability distributions for
incompatible observables ( A and B on 5&, for example).
The violation of this inequality is an expression of com-
plementarity.

Further information-theoretic Bell inequalities can be
constructed as metric inequalities for information dis-
tance. For instance, if parallel components of spin are
measured on S& and Sz, the information distance between
the observables will be zero. Thus, a degenerate quadrila-
teral inequality can be written 5(A, Bz)+5(B„C)
~ 5( A, C), where B, and B2 are parallel spin observables
on the two subsystems. We can also construct experi-
mentally testable polygon inequalities for larger sets of
observables. The failure of the triangle inequality due to
complementarity will lead to the possibility of violating
these further inequalities in quantum mechanics.

V. COVARIANCE DISTANCE

These considerations give a simple geometric interpre-
tation to quantum nonseparability as the failure of the in-
formation distance triangle inequality due to complemen-
tarity. I will now show that it is possible to develop a
similiar geometric understanding of the familiar covari-
ance Bell inequalities. Let X and Y be two random vari-
ables that take on the values +1 and —1. Define the co-
Uariance distance b(X, Y)=1—(XY). (Strictly speaking,
(XY) is the covariance of X and Y only if one of the
variables has an expectation value of zero. However, the
terminology seems natural. ) The covariance distance is
clearly a symmetric function of X and Y. It is also
positive-definite,

A(X, Y)=1—(XY)
=1—p(++ )

—p( ——)+p(+ —)+p( —+ )

=2p(+ —)+2p( —+ )

~0.
FICz. 3. Spin measurement axes yielding a violation of the in-

formation distance quadrilateral inequality for a singlet state.
[Here p(+ —

) is the probability that X= + 1 and
Y = —1, etc.]
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As before, proof of the triangle inequality follows from
considering three random variables X, F, and Z, each
variable taking on values of +1, with a joint probability
distribution p(xyz). Then

h(X, Y) =2[p(+ —+ )+p(+ ——)

+p( —++ )+p( —+ —)],
b, ( Y;Z)=2[p(++ —)+p( —+ —

)

+p (+ —+ )+p( ——+)],
h(X, Z) =2[p(++ —)+p(+ ——)

+p( —++)+p( ——+)] .

The triangle inequality can now be checked directly,

b(X, Y)+b(Y,Z)=2[p(++ —)+p(+ ——)

+p( —++ )+p( ——+ )]

+4[p(+ —+ )+p( —+ —)]

~b(X,Z) .

From the triangle inequality one can derive all of the
polygon inequalities. Among these is the quadilateral in-
equality

b(A, C)+b(B,C)+6(B,D) ~ b( A, D),
which reduces to the form

( AC) —( AD)+(BC)+(BD) ~+2 .

This can be recognized as one of the covariance Bell ine-
qualities discussed above, which can be violated in quan-
tum mechanics. All of the usual Bell inequalities can be
cast in the form of metric space inequalities using covari-
ance distance.

VI. BEYOND THE SINGLET STATE

In elementary discussions like this one, quantum viola-
tions of Bell inequalities are usually presented using the
singlet state of a pair of spins. Nonseparability, however,
is not a property peculiar to the singlet state. The singlet
state represents a "maximally correlated" state, so that
the nonclassical character of quantum correlations is par-
ticularly obvious; but such states comprise a set of mea-
sure zero among the set of all possible states of the spins.
If Bell inequalities were only violated in maximally corre-
lated states, the violation would be of little real
significance, since the slightest variation from maximal
correlation (which any actually achievable state must
have) would hide it. Nonseparability, to be observable,
must be "robust. "

Of course, this is, in fact, the case. Since the quantum
violations of the Bell inequality are fairly large, small
departures from maximal correlation do not bring the
correlations into the classical domain. Clauser, Horne,
Shimony, and Holt, for example, considered realizable
experiments involving the imperfect correlation that are
observable between photons produced in an atomic cas-
cade. Because of the complications of this realistic situa-

tion (e.g. , the recoil of the atom), the photon pair might
not even be in a pure state.

In this paper, a di6'erent situation will be considered.
We suppose that the pair of spins is prepared in a pure
state other than the singlet state. Small departures from
the exact singlet state would produce correspondingly
small differences in the covariance and information dis-
tances between the various observables. Covariance and
information-theoretic Bell inequalities should therefore
be violated for pure quantum states which lie close to, but
are not exactly equal to, maximally correlated states such
as the singlet.

How close, then, is close enough? It is clear that not
every quantum state of a pair of spins will show non-
separability. For example, consider a product state
~g) = g, ) gz). Since no correlation at all will be
present between the results of S, measurements and S2
measurements, it will not be possible to construct a viola-
tion of any Bell inequality. How strongly must the two
spins be correlated before it is possible?

Consider a state of the form

~lt(a)) =cosa~a, a2) —sina~b, b2),
where ~a, ) and ~b, ) form a set of basis states for S„as
do ~az) and ~b2) for Sz. The parameter a determines
the degree of correlation of the state P(a)): For a=0
the state is a product state, and for o:=~/4 the state is
maximally correlated. It turns out that any state of the
pair of spins can be written in this way with a suitable
choice of basis states with 0 ~ a ~ 7r/4 (Ref. 9); the singlet
state, for example, corresponds to

l a, &
=

l bq ) =
l

l' ) ~

~a, ) =Ib, &= I& &, and a=ir/4.
Observables for each spin are taken to have eigenvalues

+1, as usual, and are specified by writing the eigenstates
in the ~a ), ~b ) basis. It will suffice for our purposes to
consider only real linear combinations of ~a ) and

~
b ),

~+ ) =cosO~a ) +sinO~b ),
~

—) = —sinO~a )+cosO~b ) .

0 is the angle in Hilbert space between the correlation
basis [ ~a ), ~b ) ) and the observable basis ( ~+ ), ~

—) ]. If
we fix 0, and 02 for the observables on S, and S2, we find
that

&+i+2lg(a) & =cosa cosO, cosO, +sina sinO, sinOz,

& + i 2lg(a) ) = —cosa cosO, sinOz+sina sinO, cos82,

( —,+2~/(a) ) = —cosa sinO, cosO2+sina cosO, sinOz,

( —,—~ ~ it (a ) ) =cosa sinO, sin O~+ sina cosO, cosO~ .

The probabilities are p (+ i + ~ ) = ~ ( +
&
+ 2 ~ P(a ) ) ~, etc.

Fix some angle 0 and define observables 2 and B on Si
and C and D on S2 by the angles

0~ = —
OD =0,

0~ —Oc —0 .

The structure of
~ g(a ) ) defines a "joint correlation axis"

(really a pair of axes, one for each spin). Observables B
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and C lie along this joint axis, while 3 and D are tilted by
a spatial angle 8/2 (and thus a Hilbert-space angle 8) on
opposite sides of the joint axis. The covariance distances
can now be calculated,

b, (B,C)=0,
b(A, C)=b(B,D)=2sin 8,
6(A, D)=4(cosa+sina) cos 8sin 8 .

The quadrilateral inequality for covariance distance,
which is a covariance Bell inequality, states that

b, ( 3,C )+ b, (B,C)+ h, (B,D ) ~ b, ( A, D ),
4sin 8~4(1+2cosasina)cos 8sin 8,
1~(1+sin2a)cos 8.

(8 is assumed to be nonzero. ) For a given correlation pa-
rameter a in the range (O, vr/4j, it is always possible to
find some small nonzero value for 0 which will violate
this inequality. Thus, it is possible to find sets of observ-
ables that violate a covariance Bell inequality no matter
how small a is, provided that it is not zero.

When e is near to zero, the range of values of 0 which
give Bell inequality violations is quite small. Neverthe-
less, the range is finite for any o.)0. Numerical calcula-
tions also show that it is also possible to find sets of ob-
servables which violate information-theoretic Bell ine-
qualities even if the correlation parameter a is exceeding-
ly close to zero.

VII. REMARKS

In this paper, I have aimed to clarify the Bell inequali-
ties in several ways, with the hope of better understand-

ing the significance of their failure in quantum mechan-
ics. The essential form of these inequalities is geometri-
cal, as polygon inequalities in a metric space of random
variables. The distance function can be either covariance
distance or information distance, leading to inequalities
of various kinds. In each case, quantum-mechanical situ-
ations can be constructed that contradict the inequality.

The proofs of the polygon inequalities in a metric space
rest on the triangle inequality. For covariance distance
and information distance, the proof of the triangle in-
equality rests in turn upon the existence of joint probabi1-
ity distributions. In quantum mechanics, complementari-
ty precludes the existence of joint distributions over in-
compatible observables. Complementarity is thus the
source of the violation of the Bell inequalities and of the
general quantum property of nonseparability.

This property is not a strange, special property of only
a few states like the singlet state. Instead, nonseparabili-
ty can be seen, through the violation of Bell inequalities,
in almost all quantum states. Only product states, which
have no correlations at all, are "non-nonseparable. " Just
as complementarity is a very general situation, describing
almost any pair of observables, so also nonseparability is
a very general property, true for almost any state of a
compound system.
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