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Modified Riccati approach to partially solvable quantum Hamiltonians. II.
Morse-oscillator-related family
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We extend the scope of the modified Riccati approach to partial solubility in quantum mechanics
introduced in a previous work [L.D. Salem and R. Montemayor, Phys. Rev. A 43, 1169 (1991)].
With the use of adequate mappings u(z), we show the convenience of the modified Riccati approach
to analyze potentials that can be written as rational functions on u. The necessary conditions
for a Hamiltonian to be solvable are discussed in detail. By considering the exponential mapping
u = e, we construct a family of potentials related to the exactly solvable Morse oscillator. Within
this family, we have identified a three-parameter quasiexactly solvable potential, which, depending
on the value of its coupling constants, leads to a symmetric or asymmetric confining potential,
with a single-well or a double-well structure. Explicit expressions for the energies and eigenfuctions
are given for particular cases. The analytic continuation of the symmetric subset gives rise to a
quasiexactly solvable periodic potential.

PACS number(s): 03.65.Ge, 03.65.Ca, 03.65.Fd

I. INTRODUCTION

Since the advent of quantum mechanics exactly solv-
able Schrodinger equations have been the subject of in-
tense research. Historically, however, the most fruitful
formalism for obtaining exact solutions for second-order
diAerential equations was stated before the quantum era
by Darboux over a century ago [1]. The Darboux factor-
ization method was rediscovered by Schrodinger himself
in the quantum-mechanics context [2], and some years
later thoroughly exploited by Infeld and Hull in a re-
markable paper [3], where they classified most of the
exactly solvable (ES) Hamiltonians. Two decades ago
Natanzon obtained the most general form of the poten-
tial for which the Schrodinger equation reduces to hyper-
geometric form [4]. Group-theory techniques have also
been applied to study the solubility problem, providing
an algebraic approach [5] to obtain the spectrum and ma-
trix elements for solvable potentials from the dynamical
groups. Another interesting contribution for construct-
ing exactly solvable potentials is based on the Gelfand
and Levitan equation [6]. On this basis Abraham and
Moses [7] and Pursey and collaborators [8] developed a
procedure to insert and delete some bound states from
a given Hamiltonian. More recently, supersymmetric
(SUSY) theories motivated the extensive use of SUSY
transformations in quantum mechanics [9]. Several au-
thors recognized that SUSY transformations are related
to the Schrodinger factorization method and therefore to
the Darboux procedure. It was Gendenshtein who intro-
duced the concept of shape invariance in SUSY quantum
mechanics and showed [10] that this is a sufficient condi-
tion to have exact solubility. Later on it was proved [11]
that shape invariance and the condition of factorization
of Infeld and Hull are equivalent.

In summary, exact solubility is found only for very few
potentials. Most of them are contained in the Infeld and
Hull classification [3], and have as a common feature that
they can be written as simple rational functions in terms
of u(z), where u(z) is an exponential, circular, or hy-
perbolic function or, at most, a simple combination of
them.

On the other hand, in recent years there has been a
growing interest in a wider category of potentials, with
only a solvable subset of eigenfunctions. There are some
examples of such potentials [12], but it is not obvious
how to state the general conditions to guarantee this re-
stricted solubility. Certainly the understanding of this
problem would allow us to gain insight into the whys of
the exactly solvable models and, what is more attrac-
tive, to construct new solvable potentials with a priori
specified features.

This is the second paper of a series dealing with partial
solubility (PS) and quasiezact (QES) solubility in quan-
tum mechanics. In a previous work [13] (hereafter to
be referred to as paper I), we presented a general for-
malism to analyze solubility based on a modified Riccati
equation for the regular component of the logarithmic
derivative of the wave function. There [13] we fully de-
veloped the simplest version of the method, which proved
adequate to investigate solubility in the family of Rnite
Laurent-series-type potentials. These include, among
others, the Coulomb potential, one-dimensional (1D) and
three-dimensional (3D) harmonic and anharmonic poly-
nomial oscillator potentials, inverse power potentials, and
the Coulomb plus polynomial terms.

Generalizing what was anticipated in paper I, the mod-
ified Riccati approach is also suitable for investigating a
more general class of potentials, namely, those which can
be written as rational functions of u(z), provided that
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(du/dz)2 is a polynomial in u. In fact, this is the only
restriction we shall consider on the transformation u(z).
These two conditions are certainly satisfied by the ex-
actly solvable potentials discussed by Infeld and Hull [3]
and Natanzon [4] which then should emerge as particular
cases in the solubility analysis considered here. An exam-
ple of such a mapping was explicitly considered in paper
I, where we chose u = z [(du/dz)2 = 4u], a transfor-
mation that is adequate to consider reflection symmetric
potentials V(z) = V(—z). In this family we recognized
both the ES members, i.e. , the 1D and 3D harmonic os-
cillators, and the QES members, i.e. , the 1D and 3D
sextic polynomial oscillators [1'2]. Besides these we also
found an infinite number of partially solvable (PS) po-
tentials. From this perspective each of the well-known
ES potentials [3] turns out to be a member of a family
characterized by one of the simplest transformations u(z)
satisfying the previously mentioned restriction.

In this and forthcoming papers we shall use the gener-
alized modified Riccati approach to construct the poten-
tial families related to well-known exactly solvable po-
tentials [3] identifying the corresponding QES members
ill each family.

This paper is organized as follows. In Sec. II we extend
the scope of the modified Riccati approach for a quite
general transformation u(z). In Sec. III we discuss the
conditions for solubility. In Sec. IV we consider the family
of potentials related to the Morse oscillator, using the
exponential mapping u = e, and analyze in detail the
ES (Morse oscillator) and QES members. Finally, in Sec.
V we summarize and discuss our results.

II. EXTENSION OF THE MODIFIED
RICCATI APPROACH

In the following we extend the scope of the modified
Riccati approach presented in paper I. When consider-

ing the quantum description of a particle in a potential
V(z), we are interested in closed-form solutions of the
1D Schrodinger equation

where

We can always decompose

ds 2 du
(2.3)

(2.4)

C(u) = (u —uj)—:C(u; N) . (2.5)

We should remark that some of the zeros of C(u; N) may
fall outside the u-physical domain and thus, only rn ( N
of those zeros correspond to nodes of the wave function
g(z). In that sense, for a fixed value of N, Eqs. (2.4)
and (2.5) can represent more than one wave function de-
pending on where the zeros uj are located.

From Eqs. (2.4) and (2.5), it follows that

@(u) oc 4(u) (u —u )
j=i

where the factor i'(u) is defined to have no zeros in the u-

physical domain and satisfies the appropriate boundary
conditions at u(z ) and u(z+). On the other hand, the
nodal structure of the wave function is embodied in C(u).
For a given transformation u(z), the number of nodes
of @(z) is related to the number of simple zeros that
C(u) has in the u-physical domain [15]. For instance if
V = W(u = z2) and @(z) has n nodes in the z-physical
domain spanning the whole real axis —oo & Re(z) & oo,
the factor C(u) has [n/2] simple zeros in 0 & Re(u) & oo.
The node at the origin that odd-parity eigenfunctions
have is outside the u-physical domain and thus must be
provided by the factor i'(u).

We shall assume that the nodal structure of the eigen-
function @(z) considered can be represented by a finite
number of simple zeros in the u-physical domain. Under
this assumption one can always write the nodal factor
C(u) as a polynomial of degree N in u:

d2@

d, + [E —V(z)]@=0. (2.1)
= exp du' G(u') + ) u —

B& )
(2.6)

(
d' d

o(u)d, + p(u)„+ E —W(u) i
i'(u) = 0,

2u du )
(2.2)

The wave function g(z) satisfies the appropriate bound-
ary conditions, e.g. , if V(z) is a potential well, the
bounded eigenfunction vanishes at the boundaries zy of
the z-physical domain [14] z & Re(z) & z+.

Let us now consider a mapping u(z), regular in the
physical domain. It is useful to define the u-physical do-
main as the image of the z-physical domain, excluding
the zeros of (du/dz). Eventually such a mapping will al-
low us to obtain closed-form solutions of the Schrodinger
equation (2.1) for a given potential V(z) = W(u), or
alternatively, will allow us to construct potentials from
given closed-form eigenfunctions. Both goals can be eas-
ily achieved within the formalism developed below. For
@(z) = @(u) the Schrodinger equation (2.1) reads

~
i

G'+ i+ —„G+2nF = W —E,(-2 dGi 1do. —

where

1 d
G(u) + — ln cx —I Nj

y(u) ~ 4 du
u —u'j=l

(2 7)

(2 8)

N

INj =)
kyE:j

j =1,2, . . . , N &2. (2.9)

where G(u) is the logarithmic derivative of @(u) and thus
is, by definition, regular in the u-physical domain. The
substitution of Eq. (2.6) into Eq. (2.2) leads to the equa-
tion [13]
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To be consistent we define F(u) = 0 for X = 0 and
I ivy —0 for N = 0, 1. Some useful relations involving
the I ~& are derived in the Appendix.

Provided that W(u) is regular in the u-physical do-
main, the left, -hand side of Eq. (2.7) must also be regular
in this domain. Therefore, as both G(u) and n(u) are
regular there, the folloioing relation must hold:

1 d
G(u)+ — lno. (u) ~

= I'~.
4 du j =1,2, . . . , N.

1
G(u) —= G(u) + — In n, (2.11)

which is also regular in the u-physical domain, as n(u)
has no zeros there. Equation (2.7) now takes the form of
the modified Riccati equation [see Eq. (2.9) in paper I],

(2.10)

This set of nonlinear equations relates the zeros (ui} of
C(u; N) to the regular component G(u) = d[ln 4(u)]/du.

Let us introduce the function

u(u„u„. . . , u~) = ) in ~u, —u, ~+ )
j=1

1V

=) u,.„(h,&)+) u-""(,),
kgj i=1

du' G(u')

(2.16)

and constrained to move along a line [the image of the
open interval (z, z+) by the transformation u(z)]. The
N positive "unit charges" with coordinates u1, u2, . . . , u~
interact through a tno-body repulsive force in the pres-
ence of the external attractive field J du'G(u'). Hence,
the number of solution sets to Eq. (2.13) is equal to the
number of equilibrium configurations of this N particle
system. This very intuitive picture was first noticed by
Stieltjes in relation to the position of the zeros of 3acobi
polynomials [19]. Our Eq. (2.13), as well as the inter-
pretation given in (2.16), generalizes such a finding for
polynomials not so well known in mathematical physics
[13,20].

df+7'+ ',
dtt

where p(u) = 4idPn n(u)]/du. From Eq. (2.10)

G(u, ) = I'pg, , j = 1, 2, . . . , N

and therefore, F(u) becomes

Q —
Zl~

Q —ZL
'

j—1

g(z) oc [n(u)] i C(u; N) exp du' G(u') .

Finally, in terms of G(u), the wave function reads

(2.12)

(2.13)

(2.14)

(2.15)

III. SOLUBILITY ANALYSIS

From now on, and generalizing the discussion in Sec.
II of paper I, we focus our study on potentials for which
a mapping u(z) exists such that (i) U(z) = W(u) is a
rational function of u, and (ii) a(u) = (du/dz)2 is a
polynomial in u. In such a case, the modified Riccati
equation (2.12) is particularly well suited to relate the
functional form of G(u) and W(u) by simple inspection.

According to Eq. (2.15), given the transformation u(z),
the regular component G(u), and N, one can always con-
struct a wave function @(z). This is so because the poly-
nomial C(u; N) (or equivalently its zeros (uz}) is speci-
fied by G(u) and X through the set of Eqs. (2.13). The
wave function constructed in this way, is an eigenfunc-
tion of the Schrodinger equation with the potential W(u)
given by

W(u) = &+~ G'+ +2& — V'+ —

l
(3.1)

dG
duThis particular form of writing the wave function is rem-

iniscent of the uniform semiclassical approximation as
proposed by Miller and Good [16]. In that sense, the
modified Riccati approach provides a clear understand-
ing about the relationship between the Coulomb, Morse
oscillator, and harmonic oscillator with centripetal bar-
rier problems [17], and thus sheds light on the origin of
the Langer correction [18].

We note in passing that Eqs. (2.12)—(2.15) reduce to
the plain modified Riccati approach presented in Sec. II
of paper I when u(z) = z.

To conclude this section it is very important to point
out that, given the regular component G(u) and N, the
system of nonlinear equations (2.13) can have more than
one solution set (uz }.A simple visualization of this fact
relies on an electrostatic analogy. The set of Eqs. (2.13)
can be read oA' as the equilibrium condition of a system
of N particles with a potential energy

As remarked at the end of Sec. II, given G(u) and K,
more than one wave function in the form of (2.15) can be
constructed, provided that the nonlinear equations (2.13)
can have more than one solution set (uz }.Let us suppose
for the moment that, given G(u) and N, we have already
found the (u~( l},where the superscript m labels the mth

solution set of Eqs. (2.13). In principle each set {u }
can lead to a difFerent function F(u; N, (u( ~})= F (u)
and hence the left-hand side of Eq. (3.1) can accordingly
change. There are three possibilities.

(a) If the functions nE corresponding to distinct so-

lution sets (u( l}differ from each other in their u depen-
2

dence, the resulting wave functions correspond to difer-
ent potentials. These potentials belong to the class of PS
H amiltonians.
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(b) Another much more interesting possibility is that
the nF corresponding to distinct solution sets (u~( l}
differ from each other only by an additive constant. In
this case the different wave functions correspond to eigen-
states of the same Hamiltonian, with different energies.
We have then a QES potential. The solution sets (u
differ from each other in the number of zeros inside the
u-physical domain. Correspondingly, the different wave
functions have a different number of nodes. At most there
can be N + 1 of these eigenfunctions.

(c) Finally if the difference between the nF~ (corre-
sponding to two possible solutions sets) vanishes, both
eigenfunctions would have the same energy. Being both
eigenstates of the same Hamiltonian, this is in contra-
diction with the well-known fact that degeneracy cannot
occur for 10 bound states due to time reversal symme-
try. Hence, there must be only one solution set (uz} for
each value of N This .is the case for ES potentials.

In summary, the recognition of PS, QES, or ES of the
Schrodinger equation (2.1) with V(x) = W(u) derives
from the analysis of nF . The necessary conditions for
the three cases just discussed require the possibility of
writing

Eq. (3.2) is pertinent here. When the potential is PS, the
coefBcient 2F depends on the particular solution to be
found (see Appendix B in paper I), and the determination
of the coe%cients cy from (3.4) is a formidable task due
to the high nonlinearity of the problem, unless N is small.

For the QES case, Eq. (3.4) can be cast as a finite
eigenvalue problem for the coefficients ct [see Eq. (3.2)],
and thus the determination of energy levels and wave
functions is completely algebraic.

Lastly, when the potential is ES, Eq. (3.4) results in
one of the well-known difFerential equations of mathemat-
ical physics, e.g. , a confluent or a hypergeometric differ-
ential equation with polynomial solutions.

In the next section we shall use the modified Riccati
equation (2.12) to construct families of partially solvable
potentials starting from a given form for G(u). Using
the solubility analysis here presented we shall determine
whether the necessary conditions for PS, QES, or ES
hold.

IV. MORSE-OSCILLATOR-RELATED FAMILY

~e propose here to investigate a family of potentials
that include as a special case the Morse oscillator [21],

&(u;N, (u~ ~})—K(N, (u~ 1}) for PS,
2&+m = & X(u;N) —K(N, {u~ ~}) for QES,

P(u; N) —K(N) for ES,

&~o(z) = S (e —e ),
for which the transformation

u(z) = e

(4.1)

(4.2)

where we have made explicit the following.
(i) The u-independent term of 2o;F, namely, —K.

This term is, up to an additive constant, the energy of
the eigenfunction with zeros at (u 1}.

(ii) The dependence of the u-dependent term of 2nF
namely, X, on the difFerent solution sets (u~ l} of Eqs.

(2.13) for a given G(u) and ¹

From a computational perspective, in order to specify
completely the eigenfunctions and eigenergies there is a
more convenient alternative to the nonlinear equations
(2.13) for the (uz}. This is true at least for the more
interesting cases, namely, the QES and ES potentials. It
consists in finding the coeKcients (ci }of the polynomial

C(u; N):—Q„o cy u". Replacing 2Ii(u) = C(u; N) 2Ii(u)
in the Schrodinger equation (2.2), we obtain

— d~C ( d4 1dn - dC
niIi + 2n +-

du2 ( du 2 du j du

+ l ~&, + —„„+(&—W)@ C=0. (33)
d @ 1dnd@

Factorizing 4(u) = exp J"du'G(u') and taking into ac-
count Eqs. (2.7) and ('2.11), we obtain a second-order
difFerential equation for the polynomial C(u; N),

provides closed form solutions [21, 22]. For the mapping
(4.2) we have a(u) = uz, and p(u) = (2u) i. Hence,
the modified Riccati equation (2.12) [more conveniently
written as in (3.1)] reads

dG
W(u) = E+ 4+u G + +2F

)
(4 3)

Following Sec. VI of paper I, we construct a family
of potentials that has as a particular member the Morse
oscillator. On the basis of the mapping (4.2), we consider

G(u) = G~o(u)+ ~G(u) (4 4)

M

G(u) = ) ai u" (4.5)

with both L, M ) 0. From Eq. (2.14) and with the
particular finite Laurent-type form of G(u) given in
Eq. (4.5), we find F(u) to have also a finite Laurent series
form [13]. Explicitly

where G~o(u) = ao+ a iu has the functional form
that solves Eq. (4.3) for the Morse oscillator (4.1), and
bG(u) is a finite Laurent series in u, regular in the u-
physical domain. Therefore,

n~l ~+2G —2FC) =0(dzC - dC
(3.4) (4.6)

The result of the analysis of solubility summarized in where the coe%cients fP are given by [13]
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N ) a ((u
~ i)) foro&k&M —1,

(4.7)
N—) a ((u

" ')) for —L & k& —1,

and we have introduced the kth moment of the set (uz },

2M

W(u) = ) mqu"+ = e
k= —2L

2M

k=-2L
(4.9)

Using Eqs. (4.5)—(4.8) in (4.3), we obtain a family of
potentials related to the Morse oscillator. This family
comprises the finite Laurent potentials in u,

1
((u")) =—

N ) .(u~)"
j=1

(4 8)
where the coupling constants tug, for k g —2, are given
by [13]

t' I+L

) a&ay z, 2L&—k& L —2—,

—1

La —L+ aj a L—1j )

j=—L

2' + (k + 1)ay+i +
m lIl(L+ k, M)

~=—min(L, M —a)
M

) a~ay z, M&k&2M.
, j=k-M

a& ay —X&I &M —1,
(4.10)

In principle, the constant m 2 can be arbitrarily chosen
as it only fixes the energy origin. Thus, for k = —2, we
obtain a relation between the energy and the coefFicients
(ag} and f~, :

j=min(L —2,M)

~ =—min(L, M+2)
ag a

(4.11)

M

(z;N) = C(u;N) u -' '~' exp ) " u"+',
; &+1

kg-1

(4.12)

where the coefficients a~ can be chosen with the only
requirement of making the wave function (4.12) normal-
iz able.

The solubility analysis presented in Sec. III relies on
the particular functional dependence of nI'" in terms of
the zeros (uz }.In fact, to perform such an analysis, there
is no need to determine the set (nQ hot only its moments
((u")) on which the coefBcients f& depend, according to
Eq. (4.7). Taking the r th moments of (2.13), one obtains

It is clear from (4.9) that the potentials thus con-
structed have no singularities in —oo & Re(z) & oo
and thus the u-physical domain is the open interval
0 & Re(u) & oo. Therefore, if C(u; N) has m zeros
on Re(u) ) 0, the wave function has m nodes and thus
corresponds to the mth excited level. Explicitly

tl Q

j=1
1"-=

N ) (,)"r, = (( "r))
j=1

r)D. (4.13)

The weighted moments ((u"I)) are evaluated in the Ap-
pendix. For the particular finite Laurent-type form of
G(u) given in Eq. (4.5), the set of Eqs. (2.13) is equiva-
lent to

'0 for r=D,
(N —I)/2 for—r = 1,

~k+t' ) p Pf
2 .=0

fore�&2.

(i) a i g 0, ao g 0, and ay = 0 otherwise,

(ii) a i g 0, a q g 0, and aq ——0 otherwise,

(iii) ao g 0, ai g 0, and a~ = 0 otherwise.
(4.15)

(4.14)

I et us now isolate the more interesting members of the
family, namely, the ES and the QES potentials.

(a) If we were able to eliminate the dependence of cyF
on the moments ((u")), then we would have satisfied the
necessary conditions to have an exactly solvable poten-
tial [see Eqs. (3.2)]. From the system of Eqs. (4.14) one
can solve the moments ((u~)) completely in terms of the
coeKcients ap, only when
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Case (iii) is a spurious situation that gives rise to non-
normalizable eigenfunctions. For the first two cases [(i)
and (ii)], the function rxF becomes

(i) n F = Napu,

(ii) n F = 2N(N —1) + Wa
(4.16)

and hence, according to Eq. (3.2), we have a QES poten-
tial.

(c) Any other set of values for the ax leads to a PS
potential.

Until now, we have applied the solubility analysis to
identify the ES (M = 0, I = 1) and the QES (M =
0, I = '2) members of the family defined by Eq. (4.9). In
the following subsections we pursue the analysis of such
cases provided that the functional form of GEs and 6'gEs
is known.

A. The Morse oscillator (M = 0, I = 1)

First we consider the best known representative of this
family, the Morse potential (M = O, I = 1). Although
its features are well known [22], we find it instructive to
analyze it from the present perspective. In this case we
have G(u) = ap + a iu i, and thus

F(u) = lilapu ' (4.18)

does not, depend on the ((u")) with k g 0. From Eqs. (4.9)
and (4.10) the resulting potential is

corresponding to the Morse oscillator potential as given
by Eq. (4.1), and its mirror image VMo( —z), respectively.

(b) l,et a z g 0, a i g 0, ap g 0, and at. ——0 other-
wise; then, from the system of Eqs. (4.14) we find

n F = Napu+ qN(N —1) + Na i+ Nap((u)),

(4.17)

From Eq. (4.19) the potential has a minimum at zp ——

ln[—ap/(N + a i)]. We can always fix the origin of coor-
dinates at z0 so that

%+a ~+a0 ——O. (4.23)

Therefore, the potential has only one free parameter, e.g. ,
S ) 0 in terms of which ap ——S and a i —S —N
are defined. The potential (4.19) then takes the usual
expression for the Morse oscillator with a minimum at
z = 0 and dissociation energy Sz,

V(z) = Sz (e ' —2e ),
with an energy level at [see Eq. (4.21)]

E~ = —(S —K ——)2

(4.24)

(4.25)

dC dC
u + (2S —2N —2Su) + 2SNC = 0 .

dQ lt
(4.26)

This is the well-known Kummer's equation [23] and its
regular solution is proportional to the I,aguerre polyno-
mial I~ (2Su) with all its N zeros in IR(u) ) 0.
In summary, the Nth excited wave function of the Morse
oscillator potential is

For a given value of N we have obtained only one dis-
crete level which mnst be nondegenerate, since it corre-
sponds to a bound state. Thus, only one wave function
in the form g~(z) oc C(u; N) us I exp( —Su) can be
obtained associated with that level.

Notice that the potential thus written does not depend
on the particular value chosen for ¹ Hence, we are free
to choose the value of X in the range 0 & N & N
S —i in order to satisfy Eqs. (4.2'2) and (4.23). The
Morse oscillator potential has then al/ its discrete energy
levels given by Eq. (4.25).

To completely determine the wave functions, we have
to look for the polynomial solution C(u; K) of the differ-
ential equation (3.4)

0

W(u) = ) xone u
+ =(ap) u + 2ap(N+ a i) u

= (ap) e + 2ap(N + a i)e
(4.19)

where we have fixed the energy origin so that m 2
—O.

We remark that this is the only potential within the fam-
ily that has no constraining relations between the coe%-
cients of W(u).

The closed form eigenfunctions and corresponding en-
ergy levels [see Eqs. (4.11) and (4.12)] are

g~(z) oc I-~ (2Se ) exp[—(S—N i )z —Se —],
{4.27)

with energy given by Eq. (4.25) for % = 0, 1, . . . , N
2'

B. The QES xnexnber (M = 0, L = 2)

The other example that we will develop here corre-
sponds to the case M = 0, L = 2, e.g. ,

@(z) oc C(u N) u'-' 'l e"", (4.20) G(u) = ap+a iu '+ a ~u (4.28)

E = —(a, —-') (4 21) and thus from Eq. (4.17)

a0 &0, %+a (4.22)

The wave function given in Eq. (4.20) can only repre-
sent a bound state because it has only a 6nite number
of nodes, and therefore must vanish at the boundaries
z ~ +oo. This requires

F(u) = Napu '+ [2iN(N —1)+%a i+ Nap((u)))u

(4.29)

which explicitly depends on the first moment ((u)). Ac-
cording to Eqs. (4.9) and (4.10) the associated potential
1S
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W(u) = (ap) u + 2ap(N + a i)u
+2a z(a i —1)u + (a z) u

= (ap) e + 2ap(N + a i)e
+2a g(a i —l)e + (a 2) e (4.30)

As before we have chosen the energy origin fixing m
0. In particular for a 2

——0 or ao ——0 we recover the
Morse-oscillator potential.

The closed-form eigenfunctions and corresponding en-
ergy levels are

g(z) oc C(u; N) u'-' '~ exp(apu —a 2u '),
E = —

4
—a i(a i —1) —2apa g —N(N —1)

—2Na i —2Nap((u)) . (4.32)

The potential (4.30) is a confining one as V(~z~
oo) ~ oo and thus, all the eigenstates in such a po-
tential are bound. Therefore, the eigenfunctions (4.31)
must vanish at (z( ~ oo. This imposes a restriction on
t, he values that ap and a 2 can take, say ap ( 0 and
a 2 ~ 0. As was previously noted, for a given value of N
the closed-form solutions mentioned above can represent,
at most, the first N + 1 states.

Unlike what happened with the Morse oscillator, there
is no way to avoid the explicit dependence on N in the
potential (4.30), and hence W(u) = W(u; N). In other
words, among all the potentials P& &

tpyu"+, we can
obtain closed-form solutions as given by (2.4) and (2.5),
only when the constraint relation

+2(N+1) = 0
gB) 4 gtOp

(4.33)

between the coupling constants is satisfied. As in the case
of the QES potential considered in paper I, e.g. , the sym-
metric sextic polynomial potential, the constraint (4.33)
on the couplings depends on N, but not on a particu-
lar solution set (uz). Hence, if Eqs. (2.13) have more
than one solution, all the eigenstates (4.31) and (4.32)
correspond to the same potential.

Choosing the origin of coordinates such that the poten-
tial becomes asymptotically symmetric [(ap) = (a 2) ],
we introduce a parametrization

a 2 ———ao=—g) 0, u, —= —,'(S —N+1) . (4.34)

The parameter L clearly gives a direct measure of the
asymmetry of the potential which results in a single well
or a double well, depending on the values of the param-
eters. In particular, when A = 0 (symmetric case) the
potential develops two wells when g ( il, = (N + 1)/4,
and only one otherwise [24]. The wave functions (4.31)
now read

@(z)~ C(u; N) u-~"-~&~' .xp[—&(u-'+ u)]

= C(e; N) e exp[—2/c h(z)] .

The three-parameter potential (4.30) now reads

V(z; N) = 2qz cosh 2z —2g(N + 1) cosh z + 2gb, sinh z .

(4.35)

As given in Eq. (4.32), the energy level of this wave func-
tion depends both on N and the first-order moment ((u))
of the zeros of C(u; N).

To specify completely the wave functions and energy
levels, we need in addition the polynomial solutions
C(u; N) of the second-order diff'erential equation (3.4),
which in this case reads

N

Hk, l cl —F ek
1=0

(4.38)

where the only nonzero elements of the matrix Hy ~ are

Hy y i ——2il(N + 1 —k),
H, , = 2q' —[k ——,'(N —a)]',
Hp i+i ———2rI(k + 1),

(4.39)

for k = 0, 1, . . . , ¹ The coefFicients of the tridiagonal
matrix satisfy Hp @+~H@+i p & 0. This property allows
us to transform the matrix Hy ~ into a symmetric real
one by a similarity transformation, and therefore, all the
(N + 1) eigenvalues are real. From each eigenvector we
can reconstruct a polynomial C(u; N) or equivalently a
wave function @(z) as given in (4.36). These (N+ 1) dis-
tinct eigenfunctions have at most N nodes and therefore,
the associated eigenvalues are the N + 1 lowest-energy
levels of the spectrum.

In other words, the potential given in Eq. (4.35) is
QES, with its ground and N first excited states belong-
ing to the solvable Hilbert subspace. The complete spec-
ification of closed-form eigenfunctions and corresponding
energies only involves a finite-matrix diagonalization.

In the general (nonsymmetric) case the eigenvalue
problem (4.38) can be solved explicitly up to N = 3.
For larger values of N we must resort to a numerical
diagonaliz ation.

In the symmetric situation V(z) = V(—z), or equiv-
alently W(u) = W(u i), the parity of a wave func-
tion with m nodes (m zeros in 0 ( IR(u) ( oo) is

(—1) . From Eq. (4.36) with A = 0, we have C(l/u) =
(—1) u C~(u) and hence c& ——(—1) c~ &. This
symmetry allows us to reduce the order of the eigenvalue
problem, and explicit analytical expressions can be ob-
tained up to N = 7.

In the following we obtain explicitly the closed-form
eigensotutions for the potential (4.35) with (a) N = 1

2d C 2 dC
u + [2g —(N —1 —A)u —2rlu ]

GtL GD

+ [E —2g + 4(N —A) + 2gNu]C = 0. (4 37)

For the very particular symmetric case 4 = 0, Eq. (4.37)
was first studied by Ince before the Schrodinger formu-
lation of quantum mechanics, in relation with the vibra-
tional modes of a membrane with variable density [20].
Thus, our Eq. (4.37) gives rise to a generalization of the
Ince polynomials.

In terms of the coefBcients ek of the po1ynornial
C(u; N) = Q& p cq u~, the second-order diff'erential
equation (4.37) can be read off'as a finite eigenvalue prob-
lem of order (N + 1):
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and (b) N = 3. In the first case (N = 1) the potential
reads

2)1-' —
4 (4 —1)~2 —29

2q" —4'(d + 1)2) (4.41)

This leads to the ground-state and first excited energy
levels,

Ep i —2q —
4 (1 + As) P (4rI + -'6 )

') '; (4.42)

V(z; N = 1) = 2il cosh2z —4rjcoshz+2gAsinhz .

(4.40)

The 2 x 2 matrix H to be diagonalized is

(4.43)

([-,'~+ («'+ —,'~')'~'] "~' —».— ~')

xC(z;il, 4),
where 4(z) = exp[—2g cosh z —(A/2) z]. The well-
defined even- and odd-parity eigenstates are recovered
when 4 = 0. Moreover, if we let il ~ 0 (so the condition

g ( )k is fulfilled and the potential has a double-well
structure) a pair of nearly degenerate levels results, as
expected [24].

I et us now consider N = 3 for which the QES potential
(4.35) becomes

V(z; N = 3) = 2g cosh 2z —8rj cosh z + 2@A sinh z .

the corresponding eigenfunctions are In this case, the matrix H is

—6g
0
0

—29
2@~ —~(A+ 1)2

—4g
0

0
—4g

2g' ——,'(W —1)'
—29

0
—6g

2g' ——,'(0 + 3)')
(4.45)

As before, when g ~ 0 the energy levels are degenerate
in pairs. Finally, the corresponding eigenfunctions are

i))p 2(z) oc [27] cosll 2 z
—(&p,2+ -',

gi s(z) oc [2g sinh 2 z
—(Ei s+ -'

—2' ) cosh ~z]e
(4.47)

—2g ) sinh 2iz]e

with apparent well-defined parity.

V. CONCLUDING REMARKS

In this paper we have extended the scope of the mod-
ified Riccati approach developed in paper I, to treat a
more general class of potentials by introducing a coordi-
nate transformation u(z). The modified Riccati equation
was shown to be particularly well suited to investigate,
as well as to construct, solvable potentials which can be
written as rational functions of the mapping u(z), pro-

leading to a quartic secular equation for the solvable en-

ergy levels. The explicit expressions for the eigenvalues
and eigenfunctions, although algebraic, are rather cum-
bersome, and we do not present them here. For the par-
ticular symmetric case (A = 0) the problem decouples in
the even- and odd-parity sectors, and the secular equa-
tion factorizes into two quadratic equations, whose solu-
tions are

Ep g —2'(rI —1) —
4 P (1 —4@ + 16)1 )

(4.46)
Ei s —2'(g + 1) ——p (1 + 4@ + 16' )'~

vided that (du/dz) is a polynomial in u. We have refined
the solubility analysis for this kind of potentials by look-
ing at the functional form taken by 2nF [see Eq. (3.2)].

Iiaving noticed that all the exactly solvable potentials
classified by Infeld and Hull [3] and Natanzon [4] satisfy
the above-mentioned requirements, we have proposed [13]
to construct PS and QES potentials classified in families
related to the already well-known ES ones [3]. These
families are generated by the addition of regular terms
to the logarithmic derivative of the wave functions of the
exactly solvable potentials, for which the identification of
the mapping u(z) is evident [13].

In particular, we have explicitly constructed and ana-
lyzed the Morse-oscillator-related family using the expo-
nential mapping u = e . Within this family we have
identified a three-parameter QES potential which, de-
pending on the value of its coupling constants, leads to
a symmetric (A = 0) or asymmetric (4 g 0), and a
single-well or a double-well potential.

We want to emphasize that the existence of exact and
closed form solutions to such a versatile model, with a
symmetric or asymmetric bistability and a phase tran-
sition to monostability when the confro/ parameters g,
A and N are varied, is of great interest. Certainly, it
allows us to check and compare difFerent approximations
schemes to tunneling rates in such systems. This has
motivated a much more detailed analysis of the QES po-
tential found here. Our research along these lines is out-
side the scope of this paper and is planned to be given
elsewhere [24].

To conclude we address some interesting points related
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V(z; N) = 2g(N + 1)cos z —2g cos 2z (5.3)

is also QES. The energy levels obtained from the eigen-
value problem (4.38) correspond to some of the band
edges of the spectrum [24]. The analytic continuation
procedure is equivalently found when considering the
mapping u = cos z. Consequently, the band-edge eigen-
functions in the periodic potential (5.3) are also obtained
from Eq. (4.38) with 4 = 0. It can be shown that the
two parameter (rI,N) periodic potential (5.3) has a fi-
nite number of gaps and thus can be of interest in solid-
state physics as a model which, while still simple, is much
more realistic than the well-known Kronig-Penney poten-
tial [25].

We postpone the use of the transformations u = cosh z

to the same QES problem. First, the syniinetric subset
of the QES potential given in (4.35) suggests another
possible mapping. Instead of the transformation u = e
we could have used

u = coshz, n(u) = (u —1)(u+ 1) . (5.1)

The mapping (5.1), like u = z treated in paper I, is
only appropriate for considering reflection symmetric po-
tentials. With this mapping the potential (4.35) in the
symmetric case takes the form

V(z; N, g, A = 0) = 4iI u —2g(N+ 1) u —2g

(5.2)

which is also suitable for treatment by means of the mod-
ified Riccati approach.

Second, a related interesting problem arises from the
analytic continuation of the QES member (or any other
symmetric member in the family). It is easy to show that,
if Qz(z) is an eigenfunction of the Schrodinger equation
(2.1) with V(z), then P, (z)—:@~(iz) is an eigenfunction
of the same equation with the potential U(z) = —V(iz)
and the corresponding eigenvalue is I = —E. Vfhen this
transformation is applied to the QES potential given in
Eq. (4.35), we find that the periodic potential

and u = cosz, for the analysis of the family related to
the Poschl-Teller potential, to a planned future work [24].
The symmetric QES member found here, and the QES
periodic potential (5.2) will be obtained there, as partic-
ular cases of the QES member in the new families.
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APPENDIX

In this appendix we derive some simple and useful re-
lations satisfied by the coeKcients

j=1,2, . . . , N &2, (Al)

defined in Sec. II. From symmetry considerations, we can
evaluate the successive toeigh/ed moments defined as

1 ) w ) w (u)) (uj)
2N . uy —uj=l kgb j

In particular, for r = 0 and r = 1, we have

(A2)

(A3)
(A4)

respectively. These relations have been used in Sec. IV
to simplify the expressions in evaluating nI" in order to
determine PS, QES, or ES solubility in the potentials
there considered.

For the higher moments (r & 2), we have

=0
(A5)

where ((u)) = (I/N) P& o(up)" are the nonioeighted moments as defined in Eq. (4.8).
In summary, only the r = 0 and i = 1 weighted moments do not depend on the position of the zeros (u&} of

c(u; N).
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