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The concept of a traveling-wave free-electron laser (TWFEL) is presented. This hybrid device
consists of both a periodic waveguide and a planar wiggler. It combines the interaction mech-
anisms of both the traveling-wave tube (TWT) and the free-electron laser. This combination
produces a synergistic interaction. A linear model of the TEUFEL is derived in this paper. It
results in a general dispersion equation for the TEUFEL interaction. Coupling coefBcients are
derived for various ratios between the wiggler period A~ and the periodic waveguide period
AJ, . It is shown that when A~ = AJ, the parametric interaction is composed of a double FEL
interaction, a TWT interaction, and a hybrid interaction. All these are in resonance with three
different spatial harmonics. The coupling coefficient for this scheme is a complex sum of the
known FEL and TVTT terms, and of complex terms for their cross coupling. It is shown that
the coupling coefBcient of the synergistic TWFEL interaction (and consequently its gain) can
be larger than the sum of the two separate interactions. Simpler TEUFEL schemes in which

A~ g A„(single-harmonic interaction) and A|sr = 2A„(two-harmonic interaction) are pre-
sented first as an introduction for the analysis of the A~ = A„TWFEL interaction. A compact
TWFEL based on a miniature wiggler, which functions also as a periodic waveguide, is proposed
for operation in the millimeter-wave range with a tenuous low-energy e beam.

I. INTRODUCTION

The traveling-wave free-electron laser (TWFEL) is pre-
sented in this paper as a hybrid of the traveling-wave tube
(TWT) and the Ubitron-type free-electron laser (FEL).
The interaction of the electromagnetic wave and the elec-
tron beam in this device is a synergism of the known
TWT and the FEL mechanisms.

The traveling-wave tube has been known for the past
four decades as an eKcient amplifier of microwave fre-
quencies. The amplification mechanism of the TAT is
based on the electron-beam bunching by a longitudinal,
synchronized force. This traveling force wave is produced
by the axial electric field component of the slow electro-
magnetic wave, given by the first term of the Lorentz
equation, I", = —eE, . The TWT slow wave structure
is either a helix or a periodic waveguide. Both can sup-
port slow electromagnetic waves with phase velocity close
to the propagating velocity of the electron beam. This
synchronized velocity maintains the stationary phase of
the bunching force along the interaction. The bunched
e-beam axial ac current, J, , is coupled to the axial (em)
wave component E, . This coupling results in a station-
ary J,E, product, and it enables eKcient energy transfer
from the e beam to the em wave.

The Ubitron was developed as a millimeter-wave
high-power version of the traveling-wave tube. This de-
vice difI'ered from the TWT by its fast-wave interaction.
The amplified em wave propagates in a uniform wave-
guide while the e beam is subjected to an external undu-
lator field. The undulator had been used before to pro-

duce spontaneous radiation from fast electron beams.
It is constructed as a periodic array of static magnetic
poles, and it causes a wiggling motion of the e beam.
This motion leads to an axial bunching force due to the
second term of the Lorentz force, F, = —eV~~ x IIg,
where V~g is the perpendicular velocity component of
the wiggling motion and Hg is the transverse magnetic
component of the em wave. The consequence of this force
is an axial bunching, as in the conventional TWT. The
FEL amplification, however, is the result of the coupling
between the transverse wiggling of the bunched electron
beam and the transversely polarized em wave. This cou-
pling results in a stationary 3~ . E~ product and, con-
sequently, in energy transfer from the e beam to the em
wave.

The free-electron laser was proposed, and
approved, as a mechanism for emission and ampli-
fication of much shorter wavelengths, typically in the ir
range and shorter. It uses a relativistic high-energy elec-
tron beam injected into a wiggler. Due to the wiggling
motion, as in the Ubitron, the relativistic e beam inter-
acts with the optical wave, propagating on the same axis
in free space. The condition for a velocity synchronism
between the bunching force and the e beam leads in the
relativistic limit to the relation A = A1v jy, where A is
the optical wavelength, A~ is the wiggler periodicity, and

p is the relativistic factor.
The Raman FEL (Refs. 9 and 10) employs an intense,

high-current electron beam. Its typical e-beam energy is
much lower than that of the FEL in the Compton regime.
Consequently, its operating wavelength is longer, and is
typically in the microwave or the millimeter-wave regime.
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Space-charge eA'ects are dominant in the Raman FEL
interaction.

FEL schemes which do not employ a magnetic wig-
gler are based on Slow-wave interaction. These are the
Cerenkov FEL, the Smith-Purcell FEL, 2 ~~ and their
hybridization, the FEL in a periodic dielectric medium.

A free-electron laser which employs both a wiggler and
a slow-wave medium is the gas-loaded FEL.is Other pro-
posed hybrid devices consisting of wigglers and periodic
structures are the two-beam accelerator, the FEL eFi-
ciency enhancement by a slow rf field, the periodic di-
electric FEL, is and recently, the TWFEL (Ref. 19) and
the space-charge coupled FEL.~o

A unified theory for various fast mane -and slom-matre

FEL interactions2~ shows that a dispersion equation sim-
ilar to the Pierce cubic equation for TWT's (Ref. 1) is
valid also for various FEL schemes. The unified disper-
sion equation is written in the form

s(1+ y, ) —irr, g, = 0,

where 8 is the variation in the em wave wave number due
to the interaction, y, is the longitudinal susceptibility
of the e beam, and v is the coupling coefficient of the
interaction. Expressions for the coupling parameter x

and the FEL gain are given in Refs. 21 and 22 for various
types of interaction. A wide definition of the free-electron
laser could include the TVfT and the Ubitron, as well as
the various devices mentioned above, as versions of the
FEL.

The traveling-wave free-electron laser is a hybrid of
the TWT and the FEL schemes, and it operates as a syn-
ergism of both interactions. Figure 1 shows for compari-
son schemes of a TWT, a FEL, and the TEUFEL. The lat-
ter consists of both a planar wiggler and a periodic wave-

guide. The parametric interaction in the hybrid TEUFEL
device is composed of the two known mechanisms, the
TWT and the FEI., in addition to cross-coupled hybrid
interactions. In the TEUFEL, the Ubitron-FEL interac-
tion is performed by the transverse wave components of
the slow harmonics, while the TWT interaction is per-
formed simultaneously by the axial wave component. In
the case of Age ——A&, namely, when the wiggler period
equals the waveguide period, the combined TWT and
FEL bunching force is given symbolically by the three-
fold Lorentz force expression

+&(~ t rr) lvwr sr. = e@z lewd e+iv&+y +
IFer, r

(2)

(a)

(c)

TWT

FEL
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Wiggler

TEUFEL
Wiggler

periodic waveguide

where P„rojV, is the wave number of a spatial har-
monic of order n, in synchronism with the TWT inter-
action, and V, is the axial velocity of the electron beam.
The TWFEL-bunched e beam is driving the em wave by
two current components; one is the longitudinal current
(which causes a TWT-type excitation) and the other is
the transversal current (which causes an FEL-type exci-
tation). Each current component, however, is composed
of three terms for the diferent bunching forces in Eq. (2).
Hence the synergistic TEUFEL interaction may have a
stronger coupling (and consequently a higher gain) than
the uncoupled TWT and FEL interactions, because of
the possible additional contribution of the cross-coupling
interactions. Another advantage of the TEUFEL is that
it requires a lower e-beam energy than a Ubitron-FEL,
because of the interaction with slow waves.

A linear model of the TEUFEL is derived in the fol-
lowing sections. As expected, it results in a dispersion
equation similar to Eq. (1). The coupling parameter r is
derived for various schemes and is found to be composed
of terms related to the known FEL and TWT interac-
tions, in addition to cross-coupling complex terms. Some
features of the TEUFEL are demonstrated by numerical
examples. A TEUFEL based on a miniature wiggler is
proposed for the millimeter-wave regime. The minia-
ture wiggler in this scheme functions also as the periodic
waveguide, hence the condition A~ ——A& can be satisfied
in a simple structure.

PF'IQCllC Wa VQ g UICI8 II. A LINEAR MODEL OF THE
TWFEL INTERACTION

FIG. 1. Figurative schemes of (a) the TWT, (b) the FEL,
and (c) the TWFEL.

The model derived in this section assumes the TEUFEL
scheme shown in Fig. 2. Two regions are defined in the
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Region Ql —e beam

Region Q2
—grooves

O —Wiggler
pol es E„=Ao sin k(h —z), (4a)

where y„= QP2 —k2 is the harmonic decaying rate in
the z dimension. The harmonic wave number is P„=
Po+ nP&, where Pz

—2x/Az is the waveguide Periodicity.
Inside the groove ( b & z ( h) we assume a standing

TEM wave in the x direction, as follows:

/'/'//////'/// H„, = ig eo/p OA cosk(h —z). (4b)

W

FIG. 2. A scheme of the traveling-wave free-electron laser
(TWFEI ) model analyzed in this paper.

periodic waveguide. Region I is the channel (0 & z & b),
and region 2 is the groove volume (b & z & h). A trans-
versely uniform electron beam is propagating in the z
direction in the channel (0 & z & b), where an ideal
planar wiggler field, B (z) = yBivsin(k~z+ niv), is in-
duced. The angle n~ is the relative phase of the wiggler,
measured in the center of the first groove, in z = 0. It is
shown later that o.~ has an important role in tuning the
TWFEL interaction.

Using a known solution for the fields in the empty peri-
odic waveguide, we perform a perturbation analysis, as-
suming a slow varying amplitude interaction. This re-
sults in a general dispersion equation for the TWFEL
interaction, from which we derive the growth rates for
various TWFEL schemes.

A. Harmonics in a periodic waveguide

A known solution for the empty periodic waveguide
is assumed here as the zeroth-order solution for the fields
evolved in the TWFEL periodic waveguide shown in Fig.
2. The TM waves in the channel (0 & z & b) are de-
scribed (in the absence of the e beam) by a spatial har-
monic decomposition. The transverse field components
are written as

This description is limited to narrow grooves (b & A).
Otherwise, a multimode analysis for the periodic wave-
guide should be included in the model. 24

The wave continuity between regions I and 2 (in z = b;
—d/2 & z ( d/2) leads to a dispersion equation (u, Po)
from which the wave number Po is derived for a given an-
gular frequency u. It also determines the field coeKcient
e,„ for the various harmonics as follows:

e,„=sin k(h —b)
d sin(P„d/2)

(5a)

The coeKcients for the transverse field components are
related to e,„by

—2 n a„e,„, (5b)

—24) EOhy„— a„e,„,
7n

(5c)

The coeKcients 4„are defined for any n, rn by

(6a)

where the correction factor a„ is given in this case by
a„=cosh(y„b)/ sinh(y„b).

The average power Bow in the empty waveguide is the
sum of all the harmonic power, as a consequence of the
orthogonality of the spatial harmonics. Hence

A„b E,H„*,dz dz = Ao ) 4„„e„h„*„.
=0 x=O

E, = Ao ) e „P,„(z)e'P"', (3a)
bC„= P,„(z)P, (z)dz.

x=O
(6b)

Hy, ——Ao ) hy„g,„(z)e'P"',

and the longitudinal electric field component is

E„=Ao ) e,„P,„(z)e'P"'. (3c)

These coeKcients can be regarded as the harmonic filling
factors for C„„,and as the cross-overlapping terms for
the various harmonics, 4„~„~ . In a nonempty wave-
guide, as in the TWFEL, the various harmonics are cou-
pled by the interaction mechanism, and the cross terms
4„are used then. The solution of Eq. (6b) for the
functions P,„ in Eq. (3d) results in the expression

cosh(p„z)
cosh(p„b) ' (3d)

The transverse functions P,„(z), P,„(z) are given by b ( sinh(p„+ y )b
2cosh(p„b) cosh(p b) g (y„+p )b

+sinh(y„—p )b l
(~- —~-)b ~

sinh(p„z)
sinh(p„b) '

(6c)
(3e) The wave description given above for the empty periodic
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waveguide is used in the next section as a basis for the
perturbation analysis of the TWFEL interaction.

B. The TWFEL Quid equations

J = pi Viv cos(kyar z + ct'gr ). (8c)

The relation between the e-beam density p1 and the
e-beam axial current J, is approximated by the one-
dimensional (1D) continuity equation

We assume that, due to the TWFEL interaction, the
TM wave in the periodic waveguide is growing slowly in
the z direction. Hence the amplified fields are written as

-=1
P1 ——.

24) Dz
(8d)

E = A(z)E „ (7a)
assuming that 0J, /Bz )) 0J /Bx. The electron first-
order velocity v, 1 is found by the 10 Lorentz equation

H„= A(z)H„„

E, = A(z)E„,

(7b)

(7c)

XCc)Vz1 + +zO Volz

7'H„+k H„= — J + J, ,z Bx

where T = w +z , . The first-order components of the
e-beam current, J and J, , are given by the linearized
expressions

Jz —POVz1 + P1 VzO (8b)
I

where A(z) is a slowly varying amplitude and its ini-
tial value is A(0) = Ap. Hence the entire spatial har-
monic spectrum of the amplified wave is preserved along
z. Though the interaction occurs with a limited num-
ber of harmonics, all the other harmonics are amplified
as well, in order to maintain the boundary conditions on
the periodic waveguide walls.

A linear Quid model is derived for the TWFEL inter-
action in order to find the slowly varying wave amplitude
A(z). We begin with a standard set of linearized equa-
tions. The scalar wave equation, derived for the H& field
component, is given by

E, + Viv cos(kyar z+ nil)ppH„, (8e)

/PAL

I
where Vii = eBiv/ymk~. The axial relativistic factor
y, is defined as p, = (1 —P2) i~, where P, c = V, p is
the average axial velocity of the electron.

Under the assumption of a slowly varying amplitude
(7), we could replace Eq. (8a) by another scalar wave
equation, either for the E or the E, field components.
These equations (derived from V' E+ k2E = iupp —J +
V'V' J/i~op) are equivalent to (8a) and yield the same
results. Equation (8a) is preferred in this case because
its right-hand side (rhs) includes only first-order deriva-
tives of the transverse and the axial current components
(which correspond to the FEL and the TWT coupling,
respectively), while the other equations include second-
order derivatives.

The Laplace transform A(s) = I A(z) exp( —sz)dz is
performed on the equation set (8a)—(8e). After some al-
gebraic steps, Eqs. (8b) and (8d) yield an expression for
the axial bunching current,

J,(s) = . "
] E, (s) + [e' Hy(s+ ikg ) + e ' H„(s —ik~)] )

.
i~.p p/V, . & = pp V~

ZO
(9a)

Equation (9a) shows some of the differences between the
TWT, the FEL, and the TWFEL interactions. In the
TWT interaction V~ ——0, and only the E, field is in-
cluded in the large parentheses on the rhs of Eq. (9a). In
the FEL, only the force component V~H&(s+ ikiv) [the
second term in the large parentheses of Eq. (9a)] excites
the bunching. In the TWFEL, however, all the compo-
nents in Eq. (9a) may contribute simultaneously to the
bunching process.

The TWFEL concept is applicable in both the Comp-
ton and the Raman regimes. In the latter case, the col-

I

lective eA'ect is included in the model by incorporating
the axial space-charge field E, in the longitudinal field
component E, in Eq. (9a). Hence

E, =E, +E, (9b)
The space-charge electrostatic field, neglecting its trans-
verse components, is approximated for a slowly varying

=ES
amplitude by the 1D Poisson equation E, = J, /i&zap
The em field component E; = A(z)E„ is given by Eq.
(7c) for A'/A « Pp. Hence Eq. (9a) can be rearranged
now in the form

J,(s) = i~up
' —(E, (s)+ —,'ppvii [e' ~H„(s+ ikiv) + e ' ~H„(s —ikiv)]),1+X.(s) (9c)

where the e-beam susceptibility y, (s) (for a cold e beam) and the space-charge parameter O„are given respectively
by
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(10b)

Equation (10a) corresponds to a cold electron beam. The effects of emittance and energy spread can be incorprated
here by using the susceptibility terms given in Ref. 26.

The transverse current (8c) is derived by substituting Eq. (9c) into Eqs. (8c) and (8d) and is written in the form

J (s) = ~Vgr[e' pi(s+ ikii ) + e ' pi(s —ikiv)]

= —zeoV~
~

e' ~(s+ikiv) . {E, (s+ ik~) + &poU~[e' Hs(s+ 2ikpr) + e ' H&(s)]}
( . g (s + ik~) 6II1

1 ~ y, (s+ ikg )
(s —ikgr ) = &m

+e ™v(s—ik~) '
. {E, (s —ikiv)1+y, (s —ik~)

+-'poViv[e' H„(s) + e ' H„(s —2ikiv)]) ~.

The Laplace transform is performed on the wave equation (8a), and the current source terms (9c) and (ll) are
substituted into it. This results in

2

+ s + k
i H„(s) —sH„(z)i, 0 — Hy(z)i, 0

=em= zeoV~s D, (s+ ik~)
~

e' E, (s+ ikii ) + [e ' Hs(s+ 2ikiv) + H&(s)] ~

=em V+D, (s —ikg ) i e ' ~E, (s —ikiv) + [H„(s) +e ' ~H„(s —»kw)] I

—x~e, D(s) i E, (s)+ [e"~H„(s+ikiv)+e-" H„(s —ikiv)] i,
(= poVw

Dz 2

where the dispersion term D, (s) is defined for simplicity as D, (s) = sD(s), and

(12a)

(12b)

The harmonic composition of the fields (3a)—(3c) and (7a)—(7c) is written in the s plane in the form

H„(s) = ) h„„g,„(z)A(s+jP„), (13a)

H„,(s) = Ao ) h„„p,„(z)6(s+jp„).
n

The wave equation (12a) is rewritten in an elaborated form, including the full harmonic dependence (13a) and (13b),
as follows:

) (s+ iP )h&„P (z)[(s —iP )A(s —iP ) —Ao]

= 2epVivs (s+ikis)D(s+ ikg ) Q„{e,„p,„(z)e' ~A(s —ip„+ikgr)

+ ,'poVg h„„P,„(z)[e-' ~A(s —iP„+ 2ikp ) + A(s —iP„)])
+(s —ik~)D(s —ik~) ) {e,„p,„(z)e ' A(s —ip„—ikiv)

+2poVivh&„p, „(z)[A(s —ip„) + e ' ~A(s —ip„—2ik~)]) i

—i~eoD(s) ) {e,„P',„(z)A(s —iP„)+ 2poV~h&„P', „(z)[e' ~A(s —iP„+ ik~) + e ' ~A(s —iP„—ikiv)]j.
(14)
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Equation (14) is a general wave equation for the TIA'FEL
interaction. It can be simplified to the form of Eq. (1)
by including only resonance terms in its rhs. Expressions
for the coupling parameter K are derived and studied for
three difFerent cases, Aw g Ai„Aw ——2Ai„and Aw = A„,
in the following sections.

III. COUPLING COEFFICIENTS FOR
VARIOUS TWFEL INTERACTIONS

= 2iAo A(z) ) P„@„„e„)i*„„. (15a)

Hence we define the normalized power coefFicients of the
nth harmonic as

Pn = C'~, n~~n~y„) (15b)

The dispersion equation (14) can be simplified to the
form of Eq. (1) if the ratio between Pz and kw is known,
and if the TWFEL is operating in the vicinity of a
known resonance condition. In case the e-beam velocity
is synchronized with the phase velocity of one harmonic
[V, ur/P„, or V, u/(P„+ kw)], the correspond-
ing susceptibility term dominates the others, which are
therefore neglected. A further simplification is achieved
by applying the assumption that A(z) is a slowly varying
amplitude. Hence an averaging operation is performed as
in Eq. (6a), by convolving the complex conjugate of both
sides of Eq. (14) with E, = Ao P„e „P,„b(s+jP„'), in-
tegrating over z, and taking into account only the slowly
varying amplitude terms [namely, A(s) for ~s~ (( k]. This
averaging in the left-hand side (lhs) of (sa) is given, in a
similar manner to (6a), by

Ap b

(V' H„+ k H„)'E,dz dz
p z=O @=0

(15c)

A gain-dispersion equation in the form of Eq. (1) (Ref.
21) and the corresponding coupling terms are derived in
the following sections. For the sake of simplicity, this is
done first for the simpler TWFEL schemes of Aw g Az,
and A~ ——2A&. This derivation provides an introduction
for the more complicated analysis of the TWFEL interac-
tion in the A~ ——A& structure, which is the main interest
of this paper. In addition to the known FEL- and TWT-
type coupling terms, we obtain in the latter case complex
cross-coupling terms for the hybrid TWFEL interaction.

A. FEL (or TWT) interaction with one
harIllonlc& A~ g A&

In the case of Aw g Az (and in general, nAw g mA&

for any integers n, m) there is no coincidence between the
various terms in Eq. (14), since the wiggler periodicity
shifting in the 8 plane does not coincide with the spatial
harmonic span (namely, P„+ lkw g P, Vn, m, and
l = +1,2). Therefore only a single waveguide harmonic
may fulfill the FEL synchronism condition

4) —kw OA (16a)

as shown in Fig. 3(a). Consequently, the dominant sus-
ceptibility term is

y, (s+iP„+ikw) )) y, (s+iP +ilkw) Vm g n or l g 1,

(16b)

and only the dispersion term D(s + iP„+ ikw) is in
resonance in Eq. (14). Therefore only the term D(s +
ikw)([ +A(s —iP„)]) in the rhs of Eq. (14) contributes
a significant coupling to the FEL interaction. Hence Eq.

(a)

(b)

(c)

Period
ratio

Synchronism
condition

—-)!l„—k~-o .
Vz

=-&n.I+ ke-o
V~

=-P -k -o,
V 0 W

2 p, »o
"z
~-p s+k„- oA%2 N

Z

Synchronism
dlagr am

k~

4'"z

40)r
"z

JBII+Z ~
&n kw kw

Harmonies
content

FKl

FEI I'

Fgi tl)

)l )I ffL~~)l Il ) ~) Q WT (Z)

t4,&,Bn+2

FIG. 3; Synchronism diagrams for (a) single-harmonic interaction (Aw » Az), (b) two-harmonic interaction (Aw = 2A&)&
and (c) three-harmonic interaction (Aw = Ar).
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(14) is reduced in this case to the simpler equation

2i) P„@„„e„h„" [sA(s) —Ap]

2
(FELl 1(p + k )

C

which reveals the known FEL coupling parameter. The
factor C„ is defined as

V2
= (s+ ip„) (s+ip„+ikgr)4e2

x D(s+ ip + ikgr )4„„e„h„A(s) (17a)

P„@„„e„h„*„pr„
)Pe„, e. h„)p (18b)

This is further simplified to the form

sA(s) —Ap —inc D(s + ip + iki)r)A(s), (17b)

where the coupling parameter for the FEL interaction
with the nth harmonic is given by the expression

and it can be regarded as the spatial equivalent of the
known JJ term for the FEL higher harmonic arising from
the axial velocity modulation. 27 In terms of TWT's, C„
is related to the harmonic coupling impedance.

Equation (17b) leads directly to the gain-dispersion
equation

1+y, (s + iP„+i ki) )A s 0 ~s[1+y, (s+iP„+ ikg )] —ir.„y,(s+iP„+ik~)
I

(19)

0,

Hence the generalized FEL gain-dispersion equation
is valid also for the FEL interaction with a slow harmonic
in a periodic waveguide. The analysis in Ref. 22 is there-
fore applicable as well, using the modified coupling terms
(18a) and (18b).

A TWT interaction may occur in the same scheme of
Ai)r g A„ if the e-beam velocity is tuned to satisfy the
condition

——p
V,

(2o)

B. FEL interaction with two harmonics, A~ = iA&

In the case of Age —
2A& the spacing in the 8 plane be-

tween any two adjacent harmonics is Pz
——2k~. There-

fore there is a coincidence between the various H terms
in Eq. (12a). The wiggler periodicity shifting in the s
plane, by +ik~, coincides with two adjacent spatial har-
monics (P„+2ikiv = P„yi). Hence two harmonics may
fulfill the FEL synchronism condition in diA'erent ways,
as follows:

instead of the FEI tuning condition in Eq. (16a). The
dominant dispersion term in this case is D(s + iP„).
In the averaging process of Eq. (14) only the term
sD(s) e, P', „A(s —jP„) contributes a significant cou-
pling. The susceptibility term in the gain-dispersion
equation (19) is replaced by y, (s+ iP„). The coupling
parameter for the TWT is given then by

(d——P„—kg —0,

pa+1 + kwr —0.
V,

(23a)

(23b)

2
(TWT) +n
n A ) (21)

(Tw T) 4 2

(&w/ )'cP (P +k~) & (22)

In all practical cases V~/c (( 1. Slow harmonics may
yield p„P„,and then the TWT interaction is stronger
than the FEL interaction with the same harmonic.

in accordance with the known TWT theory.
The conclusion for the case A))r j Az is that, depending

on the e-beam velocity tuning, the interaction can be
either an FEL interaction with a slow harmonic, or an
ordinary TWT interaction. The ratio between the TWT
and the FEL coupling coeKcients is given by

These relations are shown as a synchronism diagram in
Fig. 3(b). The harmonics of orders n and n+ 1 both
participate in the FEL interaction in this case. Conse-
quently,

q, (s + ip„+ ik~) && ~, (s + ip + i tkii, )

Vm g n, n+ 1 or t g jl, (23c)

and both terms, D(s+iP„+ikiv) = D(s+iP„+1—ikiir),
=em

are dominant. The axial field E, is out of resonance,
and it does not fulfill here any synchronism condition.
Hence no TWT interaction occurs, unless Eq. (20) is sat-
isfied instead of Eqs. (23a) and (23b).

The averaging process is performed on Eq. (14), as in
the previous case. For A~ —2Ap it yields

2

2) P„@„„e„h*„[sA(s)—Ap] =,D, (s+ iP„+ik~)A(s)

X [P„e (h„* 4„„+e ' ~ h„* 4„„+1)
+P +ie + (h„*,4~+1 +1 + e '

hv C' +1)]. (24)
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A wave equation and a gain-dispersion equation similar to Eqs. (17b) and (19), respectivly, are accepted in this case
too. However, the coupling parameter includes now the contribution of two harmonics as follows:

Vw 1
K~„„+li = —,'(p„+k~) [p @, e „h„"„+P„„~i(cw)@,+is „h'„„„+p +i@ +i, +is .+, h*„„~,l.

i C I.Pn

(25a)

The first and last terms in the square brackets correspond
to FEL interactions as given by Eq. (18a) for the har-
monics n and n+1, respectively. The second term in the
square brackets is a complex cross term which describes
the cross coupling between the two harmonics due to the
FEL interaction, where we define

pn, a+i(~v() = (p.'e'* + p.'+, e '* )lp. .

Hence the coupling coefficient (25a) can be read as

(FEL) (FEL) (FEL) (hybrid)
n, n+1 — n n+1 n, n+1

(25b)

(25c)

where z„„+1 represents a hybrid term. The FEL in-(hybrid)

teraction with the n harmonic, tc( ), is related to the
resonance relation (23a), and is similar to the known FEL
interaction in a uniform waveguide (or free space). The
second FEL interaction, K(+1 ), occurs with the n + 1
harmonic and is related to Eq. (23b). This resonance is
possible only in a slow-wave structure because it requires
Vs + Vphase ~

The additional hybrid term describes the synergism
of the two-harmonic TWFEL interaction. The bunching
caused by each harmonic is coupled also to the other har-
monic by the wiggling transverse motion of the electron
beam. Hence the cross-coupling term for the n, n+1 har-
monics depends on 4„„+1e h„* and on the complex
term P„„+i(niv) (25b). Consequently, the synergistic
TWFEL cross coupling can be tuned by modifying ~w,
the relative phase between the wiggler and the periodic
waveguide.

C. TVV'FEL interaction mith three harmonics,
A~ ——Ap

——p—
V,

——p+i
V,

——p+2
V,

&w-—0

(.26a)

(26b)

(26c)

Equations (26a) and (26c) are equivalent to Eqs. (23a)
and (23b). They describe slow and fast FEL interac-
tions. Equation (26b), however, stands for a TWT-type
interaction, and is the same as Eq. (20). Consequently,
the dispersion terms for the three harmonics in reso-
nance are equal; D(s + iP„+ ik~) = D(s + iP„~i) =
D(s + ip„+q —ik)s), and y, (s + ip„+i) is considered as
the dominant susceptibility term.

The wave equation for the Aw ——A& TWFEL scheme
is obtained in a process similar to the previous simpler
cases. As before, it results in a wave equation and a gain-
dispersion equation like Eqs. (17b) and (19), respectively.
The coupling parameter x includes additional resonance
terms as follows:

In the case of A~ = Az, which is the main interest of
this analysis, each term in Eq. (14) may coincide with a
spatial harmonic, as shown in Fig. 3(c). Hence they all
participate in the TWFEL interaction. The synchronism
condition can be satisfied simultaneously with three ad-
jacent harmonics of the orders n, n + 1, and n + 2, as
follows:

(TWFEL)
n, n+1,n+2

(27a)

(P„+k~), [P„c„„e„h„+P„„+,(o.ii )e„„+2e~„h„+P„+~C„+2„+2e~„+2h„,]J"

2

2 22+i 4kc) p'

k(h„e ' C)'„„—+i + h„,e' C"„+2„+i)].
The coefficients 4'„are defined, in a similar manner to Eqs. (Gb) and (Gc), as

@n &'..(~)«-(~)d~

p„b cosh(y„+ y ) t) —1 cosh(p„—p )6 —1 )+2 cosh(Y„h) cash(Y h) ( (2. + 2 )h h- —2 )h
(27b)
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TABLE I. Causes of the TWFEL coupling components in Eq. (27c).

Coupling term
{TwT)

~m+1

(FEL)
n, ,n+2
(hybrid 1)
n, n+1,n+2
(hybrid 2)
n, n+1,n+2

Bunching force

+z = —eEz

= —eE

+z = —eVw Hy

Coupled current

J =pV

J~ ——pV~

Jg = pVg

J =pV

Interaction

FEL

TWT-FEL

FEL-TWT

(hybrid 1)
n, n+ l,n+2 e~„+,(hy P„e* C'a+i n

4kc) p'

+hy Pn, +2e
' @'+i +r) (27d)

and the hybrid 2 term is given by

The coupling components in Eq. (27a) incorporate
both FEL and TWT features. The first three terms in
the square brackets are similar to the coupling term in
the previous case of A~ ——2A&, and they can be writ-

ten as z„„+z(25a). The fourth term (p„+i/2P„+i)C„+i
is equivalent to ~„+i in Eq. (21), which is the TWT
coupling parameter accepted in the Pierce equation.
The other coupling terms in Eq. (27a) describe the cross
coupling between the FEL and TWT interactions. Hence
the coupling coefIicient for the Aiv = Az TWFEL (27a)
is composed of the following terms:

(TWFEL) (FEL) (TWT) . (hybrid 1)
n, n+1,n+2 n, n+2 + n+1 + n, n+l, n+2

tKn n+1 n+2
(hybrid sl (27c)

The new hybrid 1 term is given by

pling parameter (27d) and (27e) correspond to the two
harmonics (n, n + 2), since the TWT harmonic of order
n+ 1 is coupled to two FEL harmonics of orders n and
n+ 2.

The physical causes for each term in Eq. (27c), namely,
the bunching force and the coupled current, are summa-
rized in Table 1.

The TWFEL coupling (27a) is simplified in the next
section for the interaction with the fundamental harmon-
ics (n = 0). It is shown that the hybrid 1 coupling is
comparable to the FEL and the TWT coupling.

D. Fundamental TEUFEL operating mode,
%~=A~, n=o

For a TWFEL operating in the lowest-order slow har-
monic, n = 0, the largest coupling terms in K012

t (TWFEL)

(27a) are the fundamental (first) FEL term in Eq. (27a)
[identical to z„ in Eq. (18a)], the TWT coupling term(FEL) .

[the fourth term in (27a)], and the first hybrid 1 term in
Eq. (27d). Hence the fundamental TWFEL operating
mode is demonstrated by the simplified complex coupling
coe%cient

(hybrid 2)

4c p'

+hv e C +g +i) ~ (27e)
+ie' ~ P4' e h'V

0 1 0 +1 yo4k' p'
(28)

The terms hybrid 1 and hybrid 2 depend on U~/c, rather
than on (Uiv/c), as the ordinary FEL coupling term.
They depend also on the product of field components of
adjacent harmonics e „hy„+, , rather than components of
the same harmonics as the uncoupled interactions. The
physical causes of these complex hybrid terms (27d) and
(27e) are the cross-coupling effects of the TWT and the
FEL interactions.

The hybrid 1 term describes a bunched e-beam com-
ponent produced by a longitudinal TWT mechanism
(namely, by the eE, force), but is couple—d to the trans
verse em wave component as an FEL transverse cur-
rent, pV~ . The opposite occurs in the hybrid 2 cou-
pling (27e). The bunching is produced then by an FEL
ponderomotive force (—eUiv Hy) and is coupled to the
longitudinal field component by the longitudinal current
pV„as in the TWT. The two terms in each hybrid cou-

A phasor diagram of the complex coupling coefficient
(28) is shown in Fig. 4(a). The effect of nii, the rel-
ative phase of the wiggler with respect to the periodic
waveguide, is seen here. For o.~ ——0', 180' the complex
term K0 1

" ) is imaginary, and is perpendicular to the

real coupling terms x& + zl . For n~ ——270(FEL) (TWT) 0

this term becomes real and is positively added to the
FEL and TWT coupling terms. At this point the hybrid
coupling parameter attains its maximum value (hence
the TWFEL hybrid coupling is in phase with the FEL
and TWT uncoupled interactions). The opposite occurs
when o,~ ——90'. Then the various coupling mechanisms
interfere in a destructive manner.

The effect of t,he complex coupling parameter on the
solutions of the gain-dispersion equation (1) is demon-
strated here in the high-gain limit. Equation (1) is sim-
plified in the high-gain limit to s —iso = 0. Its
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(o) a =-90
W

~(FEL)
0

Z 5-

Q

FIG. 4. The TWFEL complex coupling coeKcient, and
the solution of the dispersion equation (1) in the high-gain
limit. (a) The phasor diagram of the complex coupling param-

(TWFEL) (FEL) (TWT) (hyb1td 1)eterin q. ~ j, Kol =no +K~ +i&op
The angle o~ is the relative phase of the wiggler with respect
to the periodic waveguide. (b) The modification of the known
zeros location of s —iKH~ = 0 in the complex plane, due to
the hybrid (complex) coupling component. The real part of
the dominant solution, s, determines the TWFEL gain.

three well-known solutions in this limit are si —— iQi/a-,

s2 —(i/3 + i)Qi/ /2, and ss —(—~3+ i)Qi/s/2. The
gain parameter Q = z82 is real for the ordinary TWT
and FEL interactions. The TWFEL modification due the
complex coupling parameter (28) is shown schematically
in Fig. 4(b). The known Y form of the solutions si 2 s
in the complex plane is rotated by an angle n, /3, and its
arm radius is modified according to the complex coupling
coefficient shown in Fig. 4(a). The real part of the dorni-
nant pole s„, shown in Fig. 4(b), determines the TWFEI
amplification in the high-gain limit G = ~r, exp(s„Liv)

~

where r; is the corresponding residue of Eq. (19) and I,ii
is the interaction length.

The gain-dispersion equation (19) was solved numeri-
cally to demonstrate the effect of n~, the relative phase
of the wiggler with respect to the periodic waveguide.
Figure 5 shows TWFEL gain curves for different val-
ues of the wiggler phase o.~. The TWFEL coupling is
K = 10+ i4e'~~, for o,~ ———90', 0', 90', and 180', and

0& ——1 . The difference in the various gain curves stems
only from the shifting of the periodic waveguide with re-
spect to the wiggler, and no other parameter is changed.
In the case of o,~ ———90', the TWFEL gain is about
two times larger than the gain of both uncoupled TWT
and FEL gain, with the same parameters. The dashed
curve shows for comparison the result for a real coupling
coefIicient, x = 10. Examples for practical TWFEL pa-
rameters that lead to values of coupling components of
the order given above are presented in the next section.

IV. THE TWFEL AND THE MINIATURE
WIGGLER CONCEPT

Conventional FEL wigglers have periods in the range
of a few centimeters (Aiv 1—10 cm). These periods
are much longer than the typical periods of s1ow-wave

0 I I I I

-IO 8 -6 -4 -2 0 2 6 e iO

FIG. 5. Gain (P,„i/P;„) vs detuning, 8 = (u/V, —P
kiv)l vv, for various values of niv (the relative phase between
the wiggler and the periodic waveguide). The solid curves
show numerical solutions of Eq. (19) for a complex coupling,
x = 10+ i4e', and n~ ———90', 0', 90', and 180'. The
dashed curve shows for comparison the result for a real cou-
pling, z = 10. (In all cases L~ = 1 m, and 8„=1.0.)

structures for millimeter wavelengths. Hence the use of
conventional wigglers in TWFEL s is expected to be lim-
ited to the regime A~ )) Az, described in Sec. III A. The
interaction of the electron beam with the slow wave in
this case is a purely FEL type. It has the advantage of
a reduced electron beam energy, but it does not include
any synergistic effects.

Recently, considerable progress has been made in
developing miniature wigglers with periods of a few
millimeters. These wigglers allow a significant reduc-
tion of the e-beam energy needed for a conventional
FEI operation [as a direct result of the known relation
A = Agr /P(1+ P)p ]. The use of the miniature electro-
magnet wigglers introduces, however, parametric limita-
tions on the FEL interaction; it restricts a pulse mode
operation (due to thermal and mechanical constraints),
and it limits the FEL electron-beam current because of
the small gap between the electromagnet poles.

The miniature wiggler can be a useful component in a
TWFEL device operating in the millimeter-wave regime.
In a TWFEL application it may lead to a relatively short
operating wavelength and a higher gain, comparing to
a conventional FEL with the same low-energy and low-
current electron beam. The TEUFEL construction is rel-
atively simple. The same periodic structure can be used
for the wiggler and for the periodic waveguide as well

(both have the same period, A~ = Az). In the microwig-
gler presented in Refs. 28 and 29 the periodic structure
exists already and it can be used as a base for the peri-
odic waveguide, as well. Hence the TWFEL synergistic
interaction including all the components described in Sec.
III C can be realized in this device.
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A miniature wiggler scheme which is applicable for
TWFEL's is the folded-foil wiggler. 29 This wiggler does
not contain an iron core and, therefore, the maximum
magnetic Geld is not limited by any material saturation.
Typical parameters for this design, in a pulse operation,
are A~ ——4 mm, B~ ——4 kG, and a wiggler parameter
of a~ —0.15 (peak). The TWFEL coupling coe%cients
computed for these wiggler parameters are presented here
in a numerical example.

The slow-wave structure employed in the TEUFEL ex-
ample presented in this section has the dimensions Az ——

4 mm, d = 1 mm, b = 2 mm, and 6 = 6 mm, as shown in
Fig. 2. The Brillouin diagram of this periodic waveguide
is shown in Fig. 6. Three frequency passbands are seen in
the diagram in the ranges Q—16, 37—49, and 76—85 0Hz.
The slope of the dashed lines is +c/2s. , as the wave prop-
agation in free space. The dispersion curves meet these
lines when the grooves in the periodic waveguide attain a
resonance, namely, when A = (b, —b)/2. At these points
the grooves do not impede the waveguide, and therefore
k = Po as in free space. The diagram has a periodicity
of Pz in the P dimension. Each period represents a space
harmonic of the electromagnetic wave propagating in the
periodic waveguide.

In the present example the TEUFEL is operated in
the third frequency band around 80 GHz (it could be
operated in any other frequency band by changing the
electron-beam energy). The point A in Fig. 6 shows the
resonance of the FEL interaction with the first slow har-
monic, and point B shows the TWT resonance. The dis-
tance between A and B is Pz

—k~, to satisfy the condi-
tion for the hybrid TEUFEL interaction described in Secs.

III C and III D. The dash-dotted line OB is the electron-
beam curve. Its slope ~/[2+(P~ + P~)] = ~/(2s. P&)
equals V, /2+ as results from the TEUFEL synchronism
conditions (26a) and (26b).

Figure 7(a) shows the wave dispersion in the vicinity
of point A (marked by a dashed box in Fig. 6). Figure
7(b) shows the electron-beam energy versus the operat-
ing frequency, as derived by the slope of the line OB.
The two curves have a knee at 83 6Hz. At higher fre-
quencies the wave dispersion increases, the group velocity
diminishes to zero, and the electron-beam energy drops
rapidly. The electron-beam energy attains its maximum
(82 keV) at 8'2 GHz, which turns out to be the optimal
operating frequency in this case.

The TWFEL coupling coeFicients computed for the
above parameters are shown in Fig. 8. The fundamental
FEL coupling Ko [the first term in Eq. (28)] is domi-{FEL)

nant in the frequency range below the working point A,
and it drops at higher frequencies. The TWT coupling
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FIG. 6. A Brillouin diagram of a periodic waveguide with
A„= 4 mm, d = 1 mm, b = 2 mm, and h, = 6 mm. The
FEL and the TWT tuning points in this example are indi-
cated by A and B, respectively. The dash-dotted line OB
is the electron-beam line corresponding to the synchronism
conditions (26a) and (26b).
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FIG. 7. Expansion of the operating point area in Fig. 6.
(a) The wave dispersion in the vicinity of point A (the dashed
box in Fig. 6). (b) The electron-beam energy vs the operating
frequency (derived by the slope of the line OB in Fig. 6).
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ycP [the second term in Eq. (28)] attains its max-
imum and is dominant in the higher frequencies, near

P = 1.5P&, where the slowing effect of the periodic struc-
ture is strong and the group velocity is small. The ab-
solute value of the TWFEL complex coupling, ~0 z

[the third term in Eq. (28)], is shown to grow moderately
with the frequency and it is comparable to the FEL and
TWT coupling strength in the vicinity of the optimal
operating point of the TWFEL amplifier.

This example shows a typical behavior of the TWFEL
coupling components. Similar results are obtained in
the other frequency bands as well. The FEL fundamen-
tal coupling term is dominant near the free-space line
k = Pa+ nP&, whereas the TWT coupling and the hybrid-
1 TWFEL coupling are negligible. The TWT coupling
attains its maximum and is dominant where the disper-

FIG. 8. The TWFEL coupling components (28): The un-

coupled FEL coupling K~, the uncoupled TWT coupling

zP l, and the hybrid-1 coupling into i"
"

i. The wiggler
parameters are A~ = 4 mm, and a ~ ——0.15, and the periodic
waveguide dimensions are A„= 4 mm, d = 1 mm, b = 2 mm,
and h = 6 mm, as in Figs. 6, 7(a) and 7(b).

sion is strong [near P = (n+ 1/2)P&] and the group veloc-
ity is small. The hybrid-1 coupling coefFicient resembles
the TWT curve, and its strength is comparable to the
FEL and TWT coupling coeFicients in the vicinity of
the optimal operating point.

The gain curves shown in Fig. 5 for various values of
o,~ correspond to TWFEL coupling values at the opti-
mal operating point in Fig. 8 (z = 10+ i4e' ). In these
parameters the TWFEL gain reaches 10 dB/m at f 82
GHz. The e-beam energy in this case is -80 keV, and
the electron beam is tenuous (0& ——1).

This analysis has led us to conclude that the pro-
posed TWFEL concept may be an efI'ective mechanism
for operation in the millimeter-wave regime. It can be
well combined with the miniature wiggler concept and
it provides enhanced interaction for low-energy and low-

current electron beams. As do the other slow-wave in-
teractions, the TWFEL requires a lower e-beam energy
than fast wave de-vices operating at the same frequen-
cies. The TWFEL coupling is enhanced by the three-
harmonic interaction, which incorporates two-harmonic
FEL interactions, a TWT-type interaction, and cross-
harmonic hybrid interactions. As a consequence of this
enhanced coupling, the e-beam current density, or the to-
tal interaction length, needed for the TWFEL operation
can be smaller than that required for the Ubitron-FEL in
the same operating conditions. The TWFEL is expected
therefore to be a compact amplifier for medium power
millimeter radiation.

The TWFEL is being considered also as a feasible base
for the FEL antenna. In this device the periodic struc-
ture is made of a slot array instead of grooves. This
concept is planned to be presented in another publica-
tion.
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