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Bound solitons in the nonlinear Schrodinger —Ginzburg-Landau equation
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Interaction of slightly overlapping solitary pulses (SP's) is considered in the cubic nonlinear
Schrodinger equation with small pumping and dissipation terms, and in the quintic Ginzburg-Landau
equation with small dispersion terms. In both cases, the small perturbing terms render the asymptotic
wave form of a SP spatially oscillating. Using the description of the interaction of SP's in terms of an
effective potential, it is demonstrated that this fact may give way to formation of two-pulse and mul-

tipulse bound states, which are weakly stable.
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g =
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zo and Po being arbitrary constants. The presence of the
small wave number k produced by the perturbing terms
implies that the asymptotic wave field of the soliton is os-
cillating in x, unlike that in the absence of perturbations.

The subject of this work is the perturbed nonlinear
Schrodinger (NS) equation with pumping and damping
terms:

iu, +u„„+2lu l'u =ty,u+iy, u —ty, lu l'u

(y„y„y,)0},which has attracted attention as a dynam-
ical model of plasma physics and hydrodynamics [1—3].
Recently, Eq. (1) has also found an application in the
theory of optical solitons in fibers [4,5]. Equation (1) de-
scribes a situation when the trivial solution u =0 is unsta-
ble against small disturbances. In various physical prob-
lems, there occurs another situation, when the trivial
state is stable against small disturbances, but can be trig-
gered into a nontrivial state by a finite disturbance. The
simplest model describing this situation is based upon the
quintic perturbed NS equation [6]:

iu, +u +2lu l
u = —iy O+uiy, u +iy2 u u

—t y3lu I'u,

where the damping (yo, y„y3) and pumping (y2)
coefficients are all positive.

One treats Eqs. (1) and (2) as perturbed NS equations if
the dimensionless parameters y„y2, and yoy3 are small.
In the opposite case, the same equations can be regarded
as the Ginzburg-Landau (GL) equations, which also have
applications in plasma physics [3] and in hydrodynamics
[7,8], and attract a great deal of attention as general mod-
els for pattern formation and onset of chaos [9].

An important object governed by Eqs. (1) and (2) is a
solitary pulse (SP). It is known [1] that Eq. (1) with
y2=0 has an exact SP solution; if y2%0 but y, and yz are
small, the SP can be found approximately as a solution
close to the soliton of the unperturbed NS equation with
a fixed amplitude:

u =2ig sech[2q(x —zo)]exp(4ig t ik lx —zo l+—i/0), (3)

As for Eq. (2), in the near-NS regime (y „y2,yoy3 « 1) it
has the soliton solution in the form (3) with
k/g=y, —yo/4', where [10]

+V 5[5(2r2 1't —)' 961—'Or3]] (5)

In the opposite (near-GL) regime, Eq. (2) has a stable
solution in the form of a broad SP [11,12].

The aim of this work is to demonstrate that, in both re-
gimes, slightly overlapping SP's can form stable bound
states (BS's). These can be two-pulse states, multipulse
ones, and periodic arrays of SP's. This result may be im-
portant in applications. For instance, a casual formation
of a two-soliton BS is detrimentajL for operation of fiber
communication lines, therefore it is necessary to know
how this can happen.

Note that the soliton solution of Eq. (1), given by Eqs.
(3) and (4), is unstable as, at lx

l

= ~, it coincides with the
trivial unstable solution u =0. However, this cir-
cumstance is not so important, at least in application to
the optical solitons in fibers [4,5]. Anyway, the soliton
solution of Eq. (2) given by Eqs. (3) and (5) is stable, and
the general results obtained below apply as well to these
stable solitons.

The interaction of the slightly overlapped solitons in
the unperturbed NS equation was analyzed by means of
the perturbation theory in Ref. [13]. To obtain an
effective potential of the soliton-soliton interaction, it is
sufficient to insert the linear superposition of the two un-
perturbed solitons into an exact expression for the energy
of the system, and calculate a term produced by overlap-
ping of each soliton with the "tail" of another one. It has
been found [13] that the interaction potential in the un-
perturbed NS equation has no local minimum, so that it
cannot give rise to a stable bound state of the two soli-
tons. This inference accords with the well-known fact
that the exact solution of the NS equation admits only
unstable two-soliton and multisoliton states with zero
binding energy [14].

The circumstance that drastically alters the situation
for the slightly perturbed equation is that the tail of
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where A is defined by Eq. (16). Evidently, the efFective
pseudopotential (20) has the set of stable equilibria with
sing=0, cos(Az)+ A sin(Az)=0 [cf. Eq. (11)],i.e., with

z„=(2n —1)m/2/ A /, n =1,2, 3, (21)

[cf. Eq. (12)]. The "margin of stability" of the bound
states, characterized by the value of the pseudopotential
(20) at z =z„, is again exponentially small [cf. Eq. (13)]:

E„:——U(z =z„)
=32I A

1 exp[ —(2n —1)~/2I A
I ] . (22)

Like the solitons in the NS regime, in the GL regime the
SP's may form multipulse BS's and periodic or irregular
arrays alongside the pairwise BS's.

To analyze the interaction of two SP's, it was assumed
z &) 1, but z need not be large as compared to the proper
size l of the SP. I is large too, but it is governed by anoth-
er small parameter and it is uniquely determined [12] un-
like the distance z„which depends on the arbitrary in-
teger n.

The analytical treatment made it possible to reveal the
BS's whose "margin of stability" was exponentially nar-
row, see Eqs. (13) and (22). The fundamental reason for
this was that the dimensionless parameters y&, y2, and

ypy3 in the underlying Eqs. (1) and (2) had to be assumed
either small or large. However, in the intermediate case

yp y3 1 (when the SP's can only be investigated
numerically [15])the BS's, if any, could be more robust.

In many cases, the generalized NS equation must in-
clude additional terms which account for higher disper-
sion. For instance, the nonlinear optical fibers usually
operate in a spectral range near the zero of the first
dispersion; in this case, the second dispersion must be
taken into account, i.e., the term igu „„with real g must
be added to the right-hand side of Eq. (1) [16]. This term
gives rise to the additional oscillating factor
exp[iq(x —z)], q =2', in the soliton's asymptotic (8).
The crucial difference from the previous factor
exp(ik ~x —z~) is that we have (x —z) instead of ~x —z~.
After straightforward calculations, one can see that all
the difference introduced by the new factor is the change
of cosg in the potential (9) to cos(P+qz). Eventually,
this amounts to the fact that the value of P in the station-
ary states is determined by the equation sin(P+qz)=0
instead of sing=0, see Eq. (11). The higher dispersion
does not influence the stability and binding energies of

the BS's; in particular, the BS's are absent if qWO but
k =0. The same pertains to the "skew" terms, like
igu„, added to the basic (this time, dissipative) part of
the GL equation (14)

In conclusion, let us brieQy discuss feasible experimen-
tal manifestations of the effect revealed. A plausible ob-
ject that could be interpreted as a soliton in a nonlinear
system combining the dispersion and dissipation is the
quasi-one-dimensional (strongly scratched) localized spot
of convection in a layer of a liquid crystal heated from
below, discovered in Ref. [17]. One might try to interpret
a stationary pattern of the spots observed in Ref. [17] as a
multipulse BS. Another interesting object is the localized
convection pulse observed in a binary liquid filling a nar-
row annular channel [18]. Interaction of two pulses in
this system was recently studied in Ref. [19]. It was
demonstrated that, when the two pulses are not far from
each other, they suffer a slow fusion into one pulse. It
remains to be understood if this interaction can be de-
scribed within the framework of the approach developed
in the present paper.

Note added in proof. In recent work by P. Kolodner
[Phys. Rev. A 44, 6448 (1991);44, 6466 (1991)],results of
a more accurate experimental study of collisions between
counterpropagating pulses in the annular convection
channel were reported. It has been demonstrated that
the collision may result in the formation of a stable
bound state of the pulses similar to the one described in
the present work, provided the relative velocity of the
colliding pulses is su%ciently small. Although the coun-
terpropagating waves should be described by a system of
two coupled NS-GL equations, the mechanism analyzed
here, i.e., that based on the interaction of the pulse with
the spatially oscillating tail of the mate pulse, is fairly
universal, and it must as well account for formation of
the BS in the system of two coupled equations. It seems
also worthy to mention the ac-driven damped NS model
[D. J. Kaup and A. C. Newell, Phys. Rev. B 18, 5162
(1978)] iu, +u„+2~u u = —iypu +icos(cot). As is well
known, this model admits stable solitons with the ampli-
tude q=&co/2, phase locked to the ac drive. Following
the lines of the analysis developed above, it is straightfor-
ward to see that these solitons can form the BS's at the
distances z„=2(2n —1)n.rily p, the stable ones corre-
sponding to odd n (in this case, the phase diIFerence P be-
tween the two solitons is always zero, as both are phase
locked to the drive).

'Also at Department of Applied Mathematics, School of
Mathematical Sciences, Tel Aviv University, Ramat Aviv
69978, Israel.
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