
PHYSICAL REVIEW A VOLUME 44, NUMBER 10 15 NOVEMBER 1991

Equilibrium behavior of a Brownian particle in a random environment
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Behavior of a Brownian particle confined in a harmonic potential that is disturbed by a random envi-
ronment is considered. The effect of the environment on the mean-square displacement, the relaxation
time, and the equilibrium distribution function are studied within the renormalization-group method to
the first order of e= 2 —d (where d is the space dimensionality).
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F=pox+F(x )

being the force in unity of kT. F(x) is a random force
with the correlation function

(F"(x)F (x') ) =c~ (x —x'), (3)

where p and v denote the Cartesian coordinates of the
force. In the present paper we use the short-ranged
force-force correlation function whose Fourier transform
is given by

C" (q)=b, 05"

The transition probability P(x, t, 0,0) averaged over the
random force can be represented by means of diagrams
[10,11]. The computation of the quantities under con-
sideration is straightforward. In this paper, we will com-
pute the following quantities. The mean-square displace-
ment of the particle

In recent years there has been an increasing interest in
studying the diffusive behavior in random environments
[1—9]. Little attention has been paid to the study of the
equilibrium properties of random walks in random envi-
ronments. To our knowledge, there are only the papers
of Refs. [12] and [13] to this subject. In this Brief Report
we present the results of the study of the behavior of a
Brownian particle confined in a harmonic potential that
is disturbed by a random environment. This problem
differs from that considered in [13] where the particle is
confined in a box. The advantage of the harmonic poten-
tial is that it enables one an analytical consideration
analogous to that in the diffusive regime. The problem
considered here is connected to the diffusion problem: If
the strength of the harmonic potential tends to zero, we
return to the diffusion problem. We will show the
differences between these two related problems. The
study of the equilibrium behavior of the Brownian parti-
cle enables one to make conclusions about the relaxation
behavior of the latter.

The probability distribution P(x, t, 0,0) for the particle
obeys the equation

B,P =Dob, P =V(FP )

with

x =lim, „(x(t)), (5a)

the mean of the product of the displacements of two par-
ticles

x,2=lim, (x", (t)x2(t) ), (5b)

x =(d/po) 1+—b,nuo
'~~ (6)

x,2
= (d /po) b nMO

'~ [1+O(e) ], (7)

with a=2 —d.
It is interesting that the average of the positions of two

particles is not zero. This correlation appears because
the particles prefer and avoid the same space regions. It
is interesting to compare (6) and (7) with the correspond-
ing quantities when pp is zero. In this case the infrared
singularities are controlled by the time and as a conse-
quence the limit t ~ ~ cannot be carried out. When pp is
not zero, then the infrared singularities would be con-
trolled by pp and the limit t ~ ~ is regular. In this sense
the problem with the harmonic potential is complementa-
ry to the diffusion problem.

The quantity I/po describes the relaxation of the parti-
cle as it can be seen from the following relation:

(x (t) ) = (x ),q(1 —e ' )+x(0) e

1/pp is the relaxation time.
The analysis of the bare perturbation expansions (6)

and (7) can be performed by means of the renormaliza-
tion group [11,14]. In accordance with the general re-
ceipt we must eliminate the 1/e poles from the perturba-

and the Fourier transform of the transition probability
averaged over the disorder

P(p)=lim, f P(x, t)e (5c)

The positions of the particles at time t=0 are supposed
to be x, (0)=x2(0)=0.

The result of the computation of these quantities up to
first order in strength of the disorder is
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tion expansions. This can be achieved by the redefining
of the parameter pp and Ap. Up to the first order of 5o
we obtain from (6) and (7)

tion (3) increases the relaxation time.
The quantities (x & and (x",x~2 & are given up to first

order in e as
e/2

1 1 11+—~o
P Pp E Pp

e/2

6=ho 1 ——6o
E Pp

(10)

' 2v

(x &=—=0 1

P Pp
2v

(x,x, & =—g=de
P Pp

(20)

In order to make (10) and (11) finite for d=2 we intro-
duce the cutoff A, as follows:

—e/2
(

—e/21
(12)

8 lny

t) ink,
(13)

8 ink,
=Eg g

It is interesting to compare (13) and (14) with the corre-
sponding RG equations in the diffusion limit ()MD~0).
The Gell-Mann —Low equation (14) coincides with that in
the diffusion problem. The renormalization of x is in
contrast with the renormalization of x (t) of the diffusion
problem. This occurs because both problems have
different symmetry. The fixed point value of g is g*=@.
The solution of (13) and (14) is

6o

0

(15)

Introducing y= 1/p and the dimensionless interaction
constant g =hi,"we obtain the differential equations of
the renormalization group (RG) as follows:

P(p) =e (21)

with the only change being the strength of the harmonic
potential. Therefore the equilibrium distribution func-
tion of the Brownian particle in the disorder under con-
sideration remains Gaussian. We note that it was not
possible for us to compute analytically the Renyi entro-
pies considered in [13]. We note that the Renyi entropy

It is surprising that the average (20) differs from zero. In
the diffusion problem such an average has been con-
sidered in [11]. It is interesting if such correlations can
be measured.

There appear interesting questions if one attempts to
draw a parallel between the Brownian particles and elec-
trons in a random environment. The correlation effects
in behavior of different particles in the same environment
seems to be independent of the dynamics governing the
behavior of the particles. As well as the Brownian parti-
cles, the electrons would prefer (avoid) the same places in
the space. Therefore, in case of (delocalized) electrons
one would expect an effective attraction between the elec-
trons caused by the disorder. Nevertheless the direct cal-
culations are necessary in order to check this conjecture.

The renormalized distribution function P(p) is ob-
tained to the first order of e as

y =yo 1+ ~o
1

(16)
Hq=((1 q) inf dx Pq(x)&

The final value of the parameter of the RG, A, , has to
fulfill the matching condition [15] associated with (21) is given by

A,
2 = 1

p(& )
(17) H =

—,'lnq/(q —1)+—,'1n(2qr/p) .

By using (16) and (17) we obtain in the scaling limit
(~o ~ ~o

1+e/2
1

1+e/2 2v
1 1

p E' PoPp

with 2v= 1+a/2.
The latter shows that the random environment weak-

ens the strength of the harmonic potential. By
remembering that 1/po is the relaxation time, we con-
clude that the disorder defined by the correlation func-

The dependence of Hq on q is in agreement with the re-
sult obtained in [13].

In conclusion we considered the Brownian particle
confined in harmonic potential which is disturbed by a
random environment. We have shown that the only re-
sult of the disorder is the renormalization of strength of
the harmonic potential. The random environment under
consideration weakens the strength of the potential. As a
consequence of this the relaxation time increases. The
equilibrium distribution function of the particle remains
Gaussian.
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