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Fractal dynamics in polymeric glasses
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We have analyzed the hole dynamics on a fractal lattice, and have obtained a spectral dimension (d)
for the state density. This is the only independent fractal dimension needed in the discussions of the
self-similar connectivity of hole motions, and the fluctuation-dissipation relationship controlling the
glass relaxation and stretched exponential. The glass relaxation is a result of the local configurational
rearrangements of molecular segments that is described by the hole motion. In contrast to polymeric
fractals of flexible chains in solution or melt, we find that d decreases as the system is changed from

linear to cross-linked polymers.

PACS number(s): 05.40.+j, 64.60.Cn, 05.70.Ln

The fractal nature of flexible polymer chains in solu-
tion or melt has been studied extensively in recent years
[1-4]. The static and dynamic properties of polymeric
fractals have been discussed at least in terms of three
basic fractal dimensions [5,6]. One of them is the Haus-
dorff dimension (d f), which provides the mass, or the to-
tal chain length, and radius (of gyration) scaling [7]. In
the glassy state, the viscoelastic properties of polymers
are dominated by the short-range motion of molecular
segments, and are not much affected by differences in
molecular weight or molecular weight distribution [8],
except when molecular weight is very small, which we
shall not consider in this paper. The concept of the hole
(free volume) has been used to describe segmental mobili-
ty [8-10]. There are important differences between the
hole dynamics in the glassy state and chain dynamics in
the liquid or molten states. Holes do not have the fractal
or Hausdorff dimension d;, because the well-known
mass-size scaling for polymer chains does not exist for
holes. In addition, the motion of holes is governed by
different equations.

In this paper, we analyze the spatial and time-
dependent hole density-density correlation function, and
produce a fractal dimension (d), which is independent of
the spatial configuration. This intrinsic parameter allows
us to discuss the self-similar connectivity of hole motion,
and the spectra for the hole density of states and for the
relaxation times, without having to know the Hausdorff
dimension beforehand. The viscoelastic loss modulus is
then calculated as a result of energy dissipation caused by
the nonequilibrium hole density fluctuations in glassy po-
lymers. This leads to the determination of the parameter
3 of the stretched exponential function. Finally, the im-
portant difference between the hole and chain connectivi-
ties in an ideal phantom network is discussed.

Amorphous solids are not in thermodynamic equilibri-
um. The departures from equilibrium for holes and bond
rotations have been treated as a random stochastic pro-
cess. We have reported that the conformational activa-
tion energy controlling the rotational relaxation of bonds
is between one and two orders of magnitude lower than
the hole activation energy [10]. As a result, the conform-
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er relaxes much faster than the hole. Since the physical
properties of glasses vary slowly in time (), the dominant
contribution to the structural relaxation and physical ag-
ing in glasses is from the hole. The hole configurational
space in a quenched and annealed glass is divided into re-
gions separated by barriers. The local excess of hole
number density from the equilibrium value of the hole
number density {» ) within a region is

Sn(r,t)=n(r,t)—(n) . (1)

Consider that a polymer is cooled from liquid to glass,
where the sample is annealed. During isothermal anneal-
ing, the number of holes is close to a conserved quantity.
The local excess of number density (&n ) cannot disappear
locally but can only relax by spreading slowly over the
entire region and is governed by

ddn(r,t) _

Y [ wixle)8n(r',t)— Wir'|n)én(r,0)ldr’

(2)

where W(r|r’) is the transition probability per unit time
jumping from r’ to r, and the integration is over the
space. When necessary condition of convergence is as-
sumed, Eq. (2) can be rewritten as [10]

Wdn(r,t) _ & 1 oo
o 3 — (= V)", (1)8n(r,1) (3)

m=1

where b,, is the mth moment of the transition rate
W(r'|r):

by (r)= [ (r'—0)"W(r'|)dr .

Equation (3) is a partial differential equation of infinite
order and cannot be solved in general. When all the
properties of glass vary slowly in space and time, the
left-hand side of Eq. (3) can be truncated,

S, (= V)b, (1)6n(x,1) = V-DVSn(r, )+ -
m=1 °
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where D =b, /2 is the local diffusion coefficient. We have
assumed here that the system is in a quasiequilibrium
state and in the absence of an external field. This reveals
that the dynamics of the hole are diffusive and not vibra-
tional. We shall see that the use of the hole density-
density correlation function is extremely useful in the
present study of the space- and time-dependent coopera-
tive phenomenon. The Green’s function can be defined as

(&n(r,t)4n(0,0))
(8n?)

The angular brackets denote an equilibrium ensemble
average. G(r,t) is invariant under translations of r and ¢,
and vanishes when r and/or ¢ are very large. We look for
the solution of the equation:

9d
3t V-DV

G(r,t)=

4)

G(r,t)=58(r)o(1) , (5)

where 8 is Dirac’s delta function. When D is a constant,
the solution of Eq. (5) displays the well-known Gaussian
spreading. However, we have a spatial dependent
diffusion coefficient. Let us introduce the Fourier trans-
form in space,

= [G(r,0)e

where q is the wave vector of the fluctuation. Equation
(5) can be generalized to the form

9
at

_,‘q.rdr ,

—Dg*"” |G(q,t)=8(2) , (6)

where v produces the fractal dimension d, which defines a
self-similar scaling between wave numbers:

2
== 7
with d = 5 >0 (7)

Either d or v is the only mdependent exponent in this pa-
per. By using Eq. (7), Eq. (6) is transformed to

O 5 2
Y D.,q;

q9~q4

G(q,,t)=58(1) . (8)

On the fractal lattice, D, is a constant, and the holes ex-
hibit Gaussian characteristics. The self-similarity of the
fractal has the dilation symmetry shown in Eq. (7). Using
the Fourier transformation in time,

Glg,,0)=[" G(g,,t)e™dt ,
we obtain the solution of Eq. (8),
4, plq,)dq,
G(a))=2—~—71—,~*=f p24 , 9)
7, Dvg,—io 0 D,g,—iw

where p is the state density. An approximation has been
made here that the hole number spectrum is extended up
to the maximum value ¢,,. This is consistent with the

truncation made on the left-hand side of Eq. (3). In Eq.
(9), we have [7]
T,= 1 (10)

v

D.q?
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as a local relaxation time. Equation (9) shows that the
density of states does not carry as much information
about the structures of the states of the system as does
the Green’s function. The direction of preferential orien-
tation for the hole motion in an amorphous polymer is
completely arbitrary. In the absence of an external field,
the lattice exerts no orienting influence of the hole dy-
namics. The number of modes per unit length along the
hole path with a wave number between g and g +dg can
be expressed in terms of the number of modes on the
fractal lattice by using Egs. (7):

_41,.,,1. d—ld
277_ 21Tqv qv‘

Using Eq. (10), we obtain
plg,)dg,~qy " 'dg,~7,9%dr, (11)

which, due to its diffusive nature, has different time
dependence than that of vibrational fractons [5]. Substi-

tuting Eq. (11) into Eq. (9) leads to the asymptotic solu-
tion
d/2 _
® 7' dr, 2 77472
Gle) l—twfr f —iwT, d io
for T, >1, (12)

where

T= 1 3 (13)

D,

is the macroscopic relaxation time. The change in the
state of glass during isothermal annealing is accompanied
by dissipation (absorption) of energy, which is related to
the density fluctuations of the hole from its equilibrium
value defined in Eq. (4). In accordance with the method
of generalized susceptibility [11], the viscoelastic loss
modulus (E’'), which measures the energy dissipation, is
determined from Eq. (12) as

E"(0)~ImG(w)~7"%"7 . (14)

Phenomenologically, the viscoelastic relaxation modulus
can be written as [12-14]

E(t)=E_+(E,—E_, )exp , 0<B<1,

(15)

where E; and E , are the unrelaxed and relaxed moduli,
respectively. While this equation is valid for the bulk,
shear, or tensile modulus, B and 7 are independent of the
type of stress fields applied to the system [13]. The above
equation gives the loss modulus [14]

E" _ © (_1)m+ll-\(m3+1)
2 mB
Eyv—-E, .= m\wT)

sin(mpBw/2) ,

(16)

where I' is the gamma function. The leading term pro-
vides a useful asymptotic expression in the glassy state
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E"(w)~(w7) B for or>>1. (17)

Comparing Egs. (14) and (17) yields

d 1
B 2 24w
By looking at Eqs. (11) and (12), Eq. (18) confirms the
customary way of relating /3 of the stretched exponential
function, Eq. (15), to the relaxation-time spectrum. The
glassy-state relaxation is dominated by the part of the
spectrum having longer relaxation times.
In accordance with Egs. (6) and (18), one finds the
diffusion length

(18)

(Ar?)!?=R ~tP (19)
and the local diffusion coefficient
2
p=R"_gp-v. (20)
2t

The divergence of the diffusivity in Eq. (20) at R =0 for
v>0 was the main reason behind the fractal dimension
that was introduced in Eq. (6) together with a spatial
scale transformation, Eq. (7). For linear polymers, d =1,
Egs. (18) and (20) show that the diffusion coefficient is
spatially independent because the spreading of excess
holes is Gaussian (v=0). The theoretical =0.5 is found
to be in good agreement with the measured [13] 8=0.48.
When 0<d <1, we have B<1 and v>O0; the random
motion of holes slows down as the local diffusion
coefficient in Eulcidean space decreases with distance. If
—1=v<0 which implies + <S=1, Eq. (20) reveals that a
hole moves faster as it travels, because the diffusion
coefficient increases with distance. Such a motion is
more like hopping than diffusion. Since these hops must
occur on all length scales due to the self-similarity in
fractal structure, the explanation is related to a long-
range interaction which affects the local environment of
the system. It has an effect equivalent to an external
field, i.e., the presence of the b, term in Eq. (3). Howev-
er, in the study of linear and cross-linked polymers, the
interesting range is for v=0.

According to recent reports on polymeric fractals,
which describe the dynamics of flexible chain macro-
molecules in solution or melt, the spectral dimension (d;)
is related to the static Hausdorff dimension (d) by [1,2]

g = 2d,
$o2+6
where 0 is the exponent in the power-law relationship be-

tween the local chain diffusivity (D, ) and diffusion length
(R;):

D ~R. Y. (22)

The spectral dimension has the range 1<d <2, which

(21)

BRIEF REPORTS 4

TABLE 1. Comparison of the spectrum dimensions (connec-
tivities) of chain (d;) and of hole (d).

Chain [1] Hole?
Formula d,=2d;/(2+6) d=2/(2+v)
Range 1<d; <2 0<d=<1®
Linear d,=d;=1 d=1
(6=0)
Phantom =4 d=1
(0=4) (d;=4)

? There is no “d,” for holes.
® The range of anomalous diffusion.

differs from that for the hole mentioned earlier. For an
ideal phantom network, the fractal dimensions are [1]
d;=4, d,=%, (23)

5

which give 6=4, in accordance with Eq. (21). When an
amorphous melt is quenched from liquid to solid, the
glass is assumed to have the frozen-in polymer structure.
Matching the motion of holes and the chain motions in
terms of the segmental mobility and using Egs. (20) and
(22) yields

v=0 . 24)

The important differences between the hole and chain
connectivities are summarized in Table I. In contrast to
d, in polymeric fractals, we find that the fractal dimen-
sion d decreases as the system is changed from linear to
cross-linked polymers. This is due to the tenuous struc-
ture in cross-linked polymers, and the random motion of
holes encounters many dead ends and is forced to return.
The hole path gets longer and the number density gets
smaller. As a result, the connectivity of hole motion de-
creases significantly and the diffusion coefficient decreases
rapidly with distance. Using Eq. (18), we obtain

=+120.17, which compares well with the measured
B=0.19 for cross-linked polymers [14].

In conclusion, we have analyzed the Green’s function
of collective hole fluctuations in the region of a small
wave number or large wavelength where a large number
of holes is involved in the glassy state. A fractal dimen-
sion (d) combined with a spatial scale transformation is
obtained to describe the self-similar connectivity of hole
motions, the relaxation spectrum, and the parameter 3 of
the stretched exponential. The fractal dynamics of holes
are diffusive, and the diffusivity depends strongly on the
tenuous structure in fractal lattices. The connectivity of
hole motions decreases as the system is changed from
linear to cross-linked polymers, which also results in a
smaller value for S3.
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