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Class of stable multistate time-reversible cellular automata with rich particle content
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An alternative class of stable multistate cellular automata (CA) is derived. They serve to significantly
extend the two-state, time-irreversible CA proposed by Park, Steiglitz, and Thurston [Physica D 19, 423
(1986)]. These CA are time-reversible dynamical systems possessing an enormous array of coherent par-
ticlelike structures. The particle-interaction picture is surprisingly rich and includes particle production

as well.

PACS number(s): 02.90.+p, 89.80.+h, 03.40.Kf

In recent years, there has been a significant interest in
the various properties and applications of cellular auto-
mata (CA). From a general point of view, CA can be de-
scribed as a dynamical system in discrete space and time
whose field variables take only finitely many values (say O
and 1, or values in a finite field). Many workers now be-
lieve that CA, due to its simplicity and remarkable prop-
erties, may play a rather important (if not fundamental)
role in describing nature (cf. [1] for a review). Important
applications include such fields as fluid dynamics, chemi-
cal and biological modeling, etc., and there already is a
large body of literature discussing numerous computer
simulations of stochastic and intrinsic properties of CA
(cf. [2]). However, many of these properties were not
studied theoretically due to the extreme nonlinearity of
the models.

In [3], a remarkable CA, called the parity-rule-filter au-
tomata (PRFA), which exhibits a number of important
properties, was proposed. These include a wide range of
particlelike structures and a subclass of particles with sol-
itonlike behavior. The PRFA has been studied extensive-
ly by a number of authors [4-6]. However, the lack of
time reversibility in the PRFA suggests that there may
yet be a more fundamental underlying CA, sharing many
of its desirable features.

In the present paper we will show that this is indeed
the case. We will derive a new class of CA which
significantly extends the PRFA, is time reversible,
possesses an enormous particle content (including all par-
ticles in the PRFA itself), and exhibits rich interaction
phenomena including particle production.

In order to make this paper self-contained, we begin by
summarizing the definitions and the basic results for the
PRFA. This is a 1+1 dynamical system with discrete
space-time ZXZ (here Z denotes the set of all integers)
with a field variable x/€ {0,1}, i, t EZ. It is assumed that
the initial data, C°={x?};c, at ¢ =0, is localized (i.e., C°
contains finitely many 1’s). Then the time evolution (i.e.,
the equations of motion) is given by the following parity
rule:

1 if S/, is even and nonzero

t+1 -
i 0 if S/, is odd or zero , ()

where S/, =37_x/*!+3"_ox/,;, and the integer pa-

4

rameter r > 1, called the radius, describes the range of in-
teraction. This rule is clearly implicit and requires
sweeping from the left (x/=0 for all i <N for some
N €1Z), which is consistent with localized initial data.

An equivalent explicit formulation of the PRFA, the
so-called fast rule theorem (FRT), was given in [5], and
consists of the following. First, for every ¢ define a subset
B(t)CZ by the following inductive procedure: (i) sweep-
ing from the left, place the index (spatial coordinate) of
the first nonzero site among C'={x/};cz in B(?); (ii) in
increments of r+1, place i+r+1 in B(?), if there is at
least one nonzero x; in the 7 sites to the right of the
current index in B(t); (iii) if there are r zero consecutive
values of x/ to the right of the current index in B(?), go
on to the next nonzero x;, place the corresponding index
in B(t), and repeat steps (ii) and (iii). The time evolution
of the automata according to the FRT is then given by

x! if i&B(t)
xit:rr1 = toip s (2)
1—x/ if i€EB(t) .
The FRT can be used effectively to demonstrate that the
PRFA is a particularly rich but yet simple dynamical sys-
tem. The field variables are then x/€Z,=Z/27; i.e., a
finite field of two elements, O and 1. It has the following
properties (see [5]-[8]).

(I) Stability. For every t the set B(t) is finite, and
therefore at every time step there are finitely many 1’s.
Moreover, as t increases, the position of the rightmost 1
does not move to the right, so that the field configuration
C'={x}};cz moves to the left. Observe that by Eq. (2), a
Galilean shift is always available.

(IT) Time irreversibility. As a dynamical system the
PRFA contains dissipation, i.e., is nonconservative, and
is therefore time irreversible. The simplest initial data, a
single 1 in an infinity of zeros, evolves to the zero
configuration in one time step. This state is called a
prenull. More generally, if the configuration C’ contains
prenulls, i.e., there exists (at least one) i € B(¢) such that
x/=1and x/, ;=0, j=1,2,...,r, then the one-step evo-
lution C'—C*™*! is irreversible; i.e., the state C’ cannot
be uniquely determined from C’*! by “going back-
wards.” Call @, the (reversible) subset of set € of all ini-
tial data consisting of those states in which there appears
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no prenull in evolution forward and backward in time,
and let @; (irreversible) be its complement in €. Then it
follows from the FRT that the restriction of the PRFA to
C, is time reversible, whereas its restriction to C; is ir-
reversible. The irreversibility is responsible for the com-
plications discussed in part (IV-2) below.

(ITI) Particle content. The time evolution of PRFA ex-
hibits many different coherent structures. Each is
represented by initial data C°= {x},c,, which evolves in
a time-reversible way as a freely moving localized object;
i.e., there are integers p, called the period, and d, called
the displacement, such that for all i €Z, x/F2=x/, such
modes are called particles. The time evolution of a parti-
cle is translation to the left by d units after p successive
time steps. Its velocity is defined as v=d/p, where
O0=<v =r—1. When p =1 the particle moves like a point-
like object; a localized wave retaining its ‘“‘shape.”” Parti-
cles with p > 1 have additional internal structure (inner
degrees of freedom) that exhibits itself during the period.
There exist many particles with various p and d, and a
systematic way of constructing them via linear difference
equations is given in [8]. Among all particles, one can
distinguish basic particles that behave like solitons [7].
These correspond to initial data C° localized in the space
interval of length »+1 units; the zero configuration and
prenull are excluded.

(IV) Interaction and scattering of particles. This con-
cept refers to the large-time behavior of the initial data
consisting of spatially separated particles. The corre-
sponding asymptotic picture is described by different
coherent structures—asymptotic states—which depend
on the interaction between particles. There are two ma-
jor cases.

(IV-1) Solitonic (time-reversible and elastic) scattering.
This process describes scattering of basic particles and is
similar to the scattering in 1-+1 integrable solitonic
dynamical systems, namely, the initial state C° consisting
of spatially separated basic particles 4, 4,,..., 4, or-
dered by their velocities v; <v, <...,v, evolves through
a complicated interaction into an asymptotic state C*
describing the free motion of the same particles
A4,,...,A4,, A, arranged in the opposite order.

(IV-2) Nonsolitonic (time-irreversible) scattering. This
phenomenon is due to the existence of the set @; of time-
irreversible initial data [property (II) above]. In the pro-
cess of evolution, the states from €, produce “false”
states, containing prenulls, which die in the next time
step (the prenull state is responsible for the nonconserva-
tion of the energy-type functional introduced in [6]).
There are three typical examples of the nonsolitonic
scattering.

(a) Gluing. particles A and B interact and form anoth-
er particle C (see Fig. 1);

(b) Inelastic. Scattering of two particles 4 and B re-
sults in two different particles 4’ and B’, neither of
which is 4 or B;

(c) Irreversible solitonic. Scattering of two particles 4
and B results in the same particles B and A4, but this pro-
cess, due to the appearance of prenulls, is not time rever-
sible.

Thus we have seen that the PRFA possesses many re-
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FIG. 1. Evolution depicting a bound-state irreversible in-
teraction of Eq. (1) or (2) with » =3 (40 time steps).

markable properties, but, fundamentally speaking, it
lacks time reversibility, an issue we address next.

Notice first that the parity rule Eq. (1) is equivalent to
the following difference relation in the finite field
F,=Z/2Z:

r r r
SxiT=3 xl 0, HTI8(x/ 28, (xf)—1 . (3)
j=0 j=0 j=1

Here equality (=) is understood mod 2, i.e., (1+1) mod
2=1+1=0, and §,(x) is a “d function mod ¢ ; i.e.,
8,(x)=1 if x=0 mod 2 and O otherwise. Rewriting Eq.
(3) in the form

x,-’“ ES,-fz +82(xit)nj=182(xitrjl )82(X[t+j)_1 »

we can interpret S/, as a linear term and the rest as a
highly nonlinear perturbation.

We note that Eq. (3) admits a natural multistate gen-
eralization. Consider the finite ring F, =Z/qZ consisting
of g elements 0,1...,g —1 (]Fq is a field if g is prime),
x/EF, and define its time evolution by

r r r
zox;j; = zoxif+ 8 (XTI 8, (x/ T8, (x/j)—1,
Jj= j=

j=1
4)

where now equality (=) is understood mod g. Alterna-

tively, (4) is equivalent to the following g-state parity rule:

(S;,—1)mod ¢ if S/, 70
t+1—
g o if S/, =0,

(5)

X

where now S/, =(g—1 )Elexi’fjl +3i—o%/+ ;> and (5) is

equivalent to the following g-state fast rule theorem:
x! if i&B(1)
(x/—1)modq if i€EB(1),

t+1 -
i—r

x (6)
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where the set B (t) was defined earlier by (i)—(iii).

This multistate CA has all of the properties (I)-(IV) of
the PRFA (with yet a wider particle content); but as with
the PRFA it is time irreversible; i.e., a prenull vanishes at
the next time step. An inspection of Eq. (3) shows that
the reason for dissipation and time irreversibility is due
to the presence of the factor 8,(x/) in the product, which
violates the symmetry x/; j<>x/*!. Thus we will define a
new two-state CA by the following difference relation:

r r r
zx,-ti—jlf zxit+j+ HSZ(xitjjl )82(x1t+1)_1 > (7)
j=0 j=0 ji=1

which has the symmetry x/,;<>x/*!, and therefore is
time reversible. Backward evolution in time, from C**!
to C', is given by the same Eq. (7) which we solve by
sweeping from the right. Equivalently, the time evolu-
tion in this new CA can be described by the reversible
parity rule

Lt 1 if S/, is even and nonzero or x/=S/,=1
=

. (8)
0 otherwise,

and alternatively by the reversible fast rule theorem
(RFRT), given exactly by Eq. (2), where the set B(#)
should be replaced by the set B(t) defined as follows:
steps (i) and (ii) in the definition of B(?¢) remain un-
changed, whereas step (iii) is replaced by the following:

(i)’ If i€B(¢) and x/,;=0, j=1,...,r, then either
i+reB() if x/=1 or, if x!=0, the index of the next
nonzero x/ in C belongs to B(t).

In particular, the RFRT shows that the new CA is
stable. From Egs. (7) and (8) it follows that restriction of
the new CA to the subset €, of initial data coincides with
the PRFA, therefore it possesses all the desirable proper-
ties (I)-(IV-1). Moreover, due to time reversibility, it
“cures” the bad property (IV-2) of the PRFA. Namely,
the time evolution according to Egs. (7) and (8) shows
that in this new CA the prenulls do not vanish, but in-
stead are now elementary basic particle solutions station-
ary in time. They represent the simplest of all particles,
which we call prebasic particles. With these particles,
the reversible rule possesses an infinite collection of parti-
cles, with highly nontrivial interaction properties.

For instance, even in the simplest case r =1 (which is
totally trivial for the PRFA), appropriate initial data pro-
duce particles with zero velocity and arbitrarily large
periods exhibiting interesting and complicated internal
motion. In the case » =2, the situation is more dramatic:
in particular, initial data consisting of certain sequences
of consecutive 1’s (with lengths belonging to certain
infinite arithmetic progressions depending on r) give rise
to particles with arbitrarily large periods.

In addition to the solitonic interactions covered by case
(IV-1), the new CA exhibits highly non-trivial particle in-
teractions. We note the change from the “gluing” situa-
tion that occurs in the irreversible rule to particle pro-
duction in the reversible rule. In Figs. 1 and 2 we take
the same initial conditions; namely AOB: 100111, z(11),
1011, with radius =3 [z(11) denotes 11 zeroes]. This
represents two particles: 4, v =1, p =6, and B, v=1%,

6911
-10 T T T
of :
10+ —
R
g -----
=
204 LeT . -
301 . -
40 I | 1
920 940 960 980 1000

Space

FIG. 2. Evolution depicting particle production defined by
Eq. (7) or (8), or the RFRT with » =3 (40 time steps).

p =3, which eventually collide. The irreversible rule pro-
duces a final “glued” state of a single particle of velocity
1, period 6, whereas the reversible rule results in three
particles; a large one with v =1, p=18 moving away
from two stationary (and well separated) prebasic parti-
cles.

This example illustrates that scattering of particles 4
and B results in a new particle C and a number of emitted
prebasic particles. Reversing the time order implies that
particle C bombarded by a beam of prebasic particles
splits into two particles 4 and B. Needless to say, this
picture is very suggestive: prebasic particles playing vari-
ous roles, in particular being responsible for particle pro-
duction. In a sense, this new CA might serve as a ‘“‘toy”
model of fundamental physics.

The next example demonstrates that both rules admit
(different) nonsolitonic interactions. We take for both the
initial conditions AOB: 11000001011, z(11), 1011, with
r =5. This represents two particles, with 4 having v =14
and p =8, and B having v =3, p =3. The interaction re-
sults in two different (well separated) particles 4A'O'B’.

In the irreversible rule 4’ has V=1, p=4 and B’ has

4 b
v =2, p =2, whereas in the reversible rule 4’ has v =3},
p=42,and B’ has v =2, p=30.

The final example is startling. We take as initial condi-
tions AOB: 101101101, z(14), 1111010111, with »r=4.
This represents two particles: 4, v=1%, p=8, B, v=13,
p=10. The interaction picture is entirely different. In
the irreversible rule we have an “almost” solitonic pic-
ture A'O’'B’ where A'=B, B'= A; however, we cannot
reverse time and recover the initial conditions, since a
prenull is produced in the evolution. This is an example
of an irreversible solitonic interaction (in a sense there is
a loss of phase information, i.e., a “phase shock”). On
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the other hand, the reversible rule produces 20 particles
(we calculated this evolution to 23 000 time steps): eight
nontrivial ones and 12 prebasic particles. The eight
well-separated particles actually consist of six different
particles. The eight particles have the following charac-
teristics:

v=1, p=3 for P, v=3, p=32forP,,

16

v=3, p=28 for P;, v=%, p=2 for P,

I

v=1, p=6 for Ps5 and P

and

I

v=3, p=4 for P, and P; .

This behavior is unexpected and further attests to the
complexity of the reversible rule.

Finally, we present a multistate generalization of the
proposed CA; the set F,={0,1,...g—1} of values x}
might be considered as higher spins (“color”) or perhaps
other internal degrees of freedom. We define a new
difference relation [compare with Eq. (4)] as follows:

Ex,-'fjlz > xi;H[8,(x)—8,(x/—1)]
j=0 =0

XTI 8,(x! X8, (xte )1, ©)
j=1

where x/€EF, for all i,t EZ. The corresponding g state
RFRT takes the form

i x}! if igB(1) 10)
Xi—r = . =
! (x{—1)mod ¢q if i€B(1),

where the set B(z) was defined earlier by (i) (iii)’. Quali-
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tatively, it has the same properties as the two-state CA,
with even richer particle content and interactions due to
the “color.”

The FRT for the backwards time evolution is given by

x! U if i€ B(t)

xf,=
(x4 1)modg if i€B(z) .

(11)

where the set B(t) is defined in the same manner as B(t)
but with the sweeping going from right to left.

Thus this novel class of proposed time-reversible multi-
state CA’s exhibits intriguing regularity and a large
variety of coherent structures. Further investigation is
highly desirable, and will certainly lead to a better under-
standing of this fascinating phenomenon. Given this vast
array of coherent particlelike solutions, we believe that
this new CA, and models like this one, may find valuable
applications in many areas of science (e.g., nonlinear
physics, information and computation theory, etc.)
These models may be viewed as basic (perhaps integrable,
i.e., and arbitrarily large number of solutions may be con-
structed analytically) time-reversible dynamical systems
over a finite field F,. In 1+1 integrable solitonic sys-
tems, the infinite number of conservation laws and prop-
erties of the system prohibit particle production. Howev-
er, over a finite field, these properties are less restrictive,
allowing the CA to be consistent with nonelastic particle
interaction.
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