
PHYSICAL REVIEW A VOLUME 44, NUMBER 10 15 NOVEMBER 1991

Oscillator-phase coupling for difFerent two-dimensional network connectivities
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We investigate the dynamics of large arrays of coupled phase oscillators driven by random intrinsic
frequencies under a variety of coupling schemes, by computing the time-dependent cross-correlation
function numerically for a two-dimensional array consisting of 128 X 128 oscillators as well as analytical-

ly for a simpler model. Our analysis shows that for overall equal interaction strength, a sparse-coupling
scheme in which each oscillator is coupled to a small, randomly selected subset of its neighbors leads to a
more rapid and robust phase locking than nearest-neighbor coupling or locally dense connection
schemes.

PACS number(s): 42.66.—p, 87.22.—q, 05.20.—y

I. INTRODUCTION

Networks of interacting oscillators provide a model for
numerous physical processes ranging from the behavior
of magnetic materials [1],mode-locking lasers [2], and at-
mospheric dynamics [3] to the activity of populations of
neurons in central pattern generators in vertebrates [4] as
well as in the mammalian olfactory and visual cortex
[5,6]. Two groups [7,8] have recently reported highly
synchronized, stimulus-specific oscillations in various
areas of the visual cortex of anesthetized as well as awake
cats. Neurons up to 7 mm apart show phase-locked oscil-
lations with a phase shift of less than 1 msec that have
been proposed to play a role in the coding of visual infor-
mation [9—14].

Many physical systems including the cortex are two di-
mensional (2D), at least to some approximation. The
complexity of networks of even relatively simple units-
let alone "real" cortical cells —warrants a systematic in-
vestigation of the behavior of 2D systems. To address
this question we study a network of mathematically sim-
ple phase oscillators. While the dynamics of pairs of os-
cillators [15,16] or systems with simple connectivity
schemes [17] are well understood, this is not the case for
large networks with nontrivial connection schemes. Of
general interest is the phase coupling that results in net-
works of oscillators with different coupling schemes.

In Sec. II we present the mathematical formulation of
the phase-oscillator model and the three connection
schemes studied in the subsequent sections of the paper.
We studied three different 2 D connection architectures:
the simplest nearest-neighbor scheme, "Gaussian"
schemes where each cell communicates with all its neigh-
bors with the weights decreasing in a Gaussian manner
up to a fixed cutoff, and a "sparse" connection pattern
with a few connections per oscillator. The latter two
geometries capture elements of cortical neuroanatomy
which include locally dense connections and sparse long-
range connections ranging over more than 6 mm [19].

Section III is devoted to numerical solutions of this
system. In Sec. IV we derive analytic expressions for the
correlation functions expected to arise from a linearized

version of the interaction. In Sec. V we develop an
analytically tractable model for the sparse-connection
scheme. Mathematical details will be delegated to the
Appendix.

II. MODEL

d0;.
d' =~,+fj(I~ki]) .
dt

(2)

In our model, the coupling function f; is expressed as.
the sum of terms, each one consisting of the product of a
global coupling strength o., a connection-specific strength
J'j kI and the sine of a phase difference

dO;.
~ij +X ij, kl (~ij ~kl )

t
(3)

This system, and numerous variants, has received a
considerable amount of attention from solid-state physi-
cists and applied mathematicians (see, e.g. ,
[12,15,18,17,21,20,22]). However, most of these studies
either only consider nearest-neighbor connectivities or
they use a mean-field approximation. In this paper, we
are concerned with connection are hitectures more
relevant to cortical anatomy. We confine ourselves to
three generic network configurations, all defined on a
two-dimensional square lattice. These are characterized
by the values of J; ki and the range over which the (k, l )

sum is taken, as described below.
(i) Nearest-neighbor connections: Fig. 1(a). In this

often-used connection scheme, which we use as a refer-
ence for comparison with the other schemes described

The basic unit in our 2D networks is an oscillator
whose phase 0," is 2m. periodic and which has the intrinsic
frequency co; . The dynamics of an isolated oscillator are
described by

d0;.
dt

The inhuence of the network can be expressed as an addi-
tional interaction term
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oscillator (i,j ) was chosen identically in all three models,
enabling us to study the efficacy of the different connec-
tion schemes for achieving phase locking. In contrast to
most of the earlier studies, we do not restrict ourselves to
the case of weakly interacting oscillators, but treat
interaction-dominated systems, where agk IJ, k& »co; .

III. CORRELATION FUNCTIONS FOR SPARSE
AND GAUSSIAN CONNECTIVITIES

FIG. 1. Schematic representations of the three connection
schemes discussed in the text. (a) The nearest-neighbor
scheme, with four connections with equal weights per cell [Eq.
(4)]; (b) the Gaussian-connection scheme [Eq. (5)] where each
cell receives inputs from every neighbor within a specified ra-
dius and with weights that decay according to a Gaussian distri-
bution; (c) the sparse-connection scheme [Eq. (6)]. In the sparse
scheme each cell makes n =5 connections, each one being
selected from a Gaussian distribution that makes the selection
of short connections more likely. The sums of the weights of all
connections are equal in all schemes.

below, each cell (ij) is connected to each of its four
neighbors:

= 1 if k =i+1 and I =j+1
=0 otherwise .

(ii) Gaussian connections: Fig. 1 (b). The cells are
densely connected to every neighbor within a specified
distance with Gaussian weighted connections. Hence

1
J,"kl

= exp
2mo.

(i —k) +(j—I)
2o

(5)

1 (i —k) +(j I)—P" = expij, kl 20

Jt'j kl s unity with probability Pij kl and zero otherwise.
This connection scheme is generated for the lattice site
(i,j) by drawing n coordinate pairs (k, I ) from a Gaussian
distribution centered at (i,j) that determines the indices
of the cells that act upon the oscillator at location (i,j ),
i.e., determines which indices appear in the sum of the
right-hand side of Eq. (3) for index (i,j). Therefore the
probability of making a connection decreases with dis-
tance. The weight of all connections is the same for all
connections and does not depend on the distance. We
typically used n =5, and in all cases 2 ~ n ~ 10.

The sum of the weights of all connections with a given

We truncate this function at 2o. , i.e., J;j kl
=0 if

~i
—k

~

& 2o or
~j—l

~

& 2o . While the connectivity in the
nearest-neighbor case is 4, o. =2 yields 27 connections per
cell, and the largest network we studied, o. =6, results in
372 connections per cell.

(iii) Sparse connections: Fig. 1(c). In this scheme we
no longer require symmetric connections, or that the con-
nection pattern be deterministic from unit to unit. A
given cell is connected to a fixed number n of neighboring
ce)ls, with the probability of the connection from oscilla-
tor (k, i) to oscillator (i,j) determined by

We solved the system, Eq. (3), for a 128 X 128 system of
oscillators, coupled according to one of the connection
schemes specified by Eqs. (4)—(6) and using periodic
boundary conditions (see below for initial conditions).
We computed the time dependence of the usual two-point
correlation function of phase coupling, defined as

C(r, t)=(cos[8; (t) H„I(t—)]),
where r is defined as the separation between a pair of
cells, r = [(i —k ) +(j—I ) ]'~ and —1 + C ~ 1. Angular
brackets denote the ensemble average over 10000 ran-
domly selected pairs of oscillators. The intrinsic frequen-
cies co; are chosen randomly, with a Gaussian distribu-
tion with mean 0.5 and variance 1. At t =0, phases are
distributed randomly between 0 and 2~ with a uniform
distribution (we have studied the influence of the initial
conditions earlier [11]). In Fig. 2 we plot C(r, t) for
r =20, 30, 40, 50, 60, and 70. In these and the following
figures, time is always plotted in units of the inverse of
the average intrinsic oscillation frequency. The cases of
Gaussian connectivity with o =6 and hence n =372 con-
nections per cell and of sparse connectivity with o. =6
and n =5 are presented in Figs. 2(a) and 2(b), respective-
ly. The most striking difference is that correlation levels
of over 0.9 are rapidly achieved in the sparse scheme for
all cases, even for separations of 70 oscillators, while
there are clear separation-dependent differences in the
phase-locking behavior of the Gaussian model. In fact,
even after t =10 there is no significant locking over the
longer distances of r =50, 60, or 70 units. For local con-
nectivity schemes, like Gaussian connectivity with o =2
or nearest-neighbor connections, no long-range order
evolves even at larger times (data not shown).

Strong synchronization was also observed in another
sparsely connected system. Satoh [23] compared phase
locking in systems of van der Pol oscillators, with either
nearest-neighbor coupling or with completely randomly
distributed connections, i.e., without any geometry. He
found, in accordance with our results, that the latter sys-
tem showed much stronger synchronization than the
former.

IV. CORRELATION FUNCTIONS
FOR A LINKARIZKD MODEL:

NEAREST-NEIGHBOR INTERACTIONS

In this section we investigate the time dependence of
correlations between two phase angles separated by a dis-
tance r in a rigorously solvable model of coupled oscilla-
tors. Our model is obtained by linearizing the interaction
term in Eq. (3) for the nearest-neighbor connection
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scheme, i.e., by replacing sin(0;~ —0kI) with (0;1—
0k&),

which is justified for small ~0,~
—

0kI ~. Adding Gaussian,
uncorrelated noise fields g(x, t ), we obtain the equation of
motion

0(x, t)=Q(x) —V 0(x, t)+g(x, t),

where we have passed to continuous space variables x
with V representing the Laplacian and Q(x) the local
frequency. We have absorbed the interaction constant a
by rescaling the time t and in addition rescaled the
Gaussian random frequency Q(x) and noise fields g(x, t)
appropriately, i.e., at ~ t, Q(x) la~ Q(x), g(x, t )la
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FIG. 2. Correlation functions for (a) the Gaussian and (b) the sparse-connection scheme n =5. In both cases, cr =6,
a g„,J;, z, =10, and N= 128 X 128. Symbols (both plots): r =20, diamonds; r =30, plus signs; r =40, squares; r =50, crosses; r =60,
triangles; and r =70, asterisks. In this and the following figures, time is measured in units of (2/N g,, co;,),which is unity in this
case.
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(Q(x)Q(x'))n=b, 5(x—x'),

( g(x, t )g(x', t ') )&=2T5(x —x')5( t t—'),
(9)

(10)

where b. is the width of the distribution. Since Eq. (8) is
linear in the angular variables it can be solved as

8(x, t) = fdx' fdt'G(x x'—, t t')—

~g'( x, t ). The variances of these random fields are
specified by

1
Ce(r, t ) =exp 2t+1

r 2

(19)

r2
C&(r, t )=exp 2T—1—

2t+1 (20)

where r=~x~ and f(z)=(l/z )f (I/x)(1 —e ")dx. In
0

the limit of short distances r ((1, the time behavior of
the three different factors that comprise the correlation
becomes transparent:

X [8(x', t ')5( t ') +Q(x')K(t ')

+g( x', t') H(t')),
C„(r,t) =

I /4

(1+t )' (21)

The initial conditions in Eq. (11)were chosen as follows.
(i) At t =0, the angles 8(x', 0) are distributed randomly

with a Gaussian probability distribution with variance

(8(x,O)8(x', 0)) =a 5(x—x'), (13)

where K is the width of the distribution.
This leads to the term 8(x', t')5(t') in Eq (11).

(ii) The random frequencies Q(x) of the oscillators and
the time-dependent random fields g(x) are switched on at
time t=0. This generates the terms Q(x')H(t') and
g(x', t')H(t'), respectively, in Eq. (11).

Next we use the solution for B(x, t ) given by Eq. (11) to
compute the time-dependent correlation function

C(x, t)=(exp[i[8(x, t) —
8( Ot)]J ), (14)

where ( ) denotes the average over the Gaussian fields
8(x,O), Q(x), and g(x, t ). As could be expected from the
additive character of the solution [Eq. (11)] and the in-
dependence of the random fields, C(x, t ) factorizes as

C( xt)= C( xt)C&( xt) C( xt), (15)

where Ce(x, t) is obtained by performing in Eq. (14) the
average over the random initial conditions 8(x,O), etc.
The individual factors for two dimensions (d=2) and
t ~ 0 are evaluated in the Appendix as

1 —exp
r 2

4(2t+ 1)
K

2t+1Ce( r, t ) =exp

(16)

r /4 1
C&(r, t ) =exp 2T, dz ——(1—e ')

r /4(2t+1) Z

T

r r/4
Cti(r, t)=exp —b, f dz f(z)

4 I /4(t+ 1)

(17)

where H(t) is the Heaviside step function and
G(x —x', t t') is th—e Green's function of Eq. (8) which
obeys

r

a +V2 G(x —x', t —t')=5(x —x')5(t —t') . (12)
Bt

These curves are plotted separately in Fig. 3(a), and are
combined to yield the full correlation function [Eq. (15)]
in Fig. 3(b). The most striking aspect of the model is the
slow decay of all correlations due to the power law in the
Cn(r, t) term. The interpretation of the evolution of
these components of the correlation function in time is as
follows.

(i) If the random fields Q(x) and g(x, t) are switched
off, the space-time dependence of correlations is de-
scribed by Ce(r, t ) [top curve, Fig. 2(a)]. The system is in
this situation purely diffusive. Random initial angles
separated by a distance r will slowly align by diffusion,
i.e., their correlation function tends to 1 for t —+ ~.

(ii) The correlation function C&(r, t ) describes the evo-
lution of angular correlations in the case where all angles
have at time t=0 the same value 8(x,O)=8 and all ran-
dom frequencies are zero, Q(x) =0. Under the influence
of the time-dependent random field g(x, t ) the difFerences
between different angles start to grow. In the long-time
limit the correlation function approaches the thermal
equilibrium value C&(r, t~ ~), which means that phase
angles at different sites remain correlated but that the
correlations decay exponentially with distance.

(iii) Cn(r, t) describes how in the absence of time-
dependent disturbances [g(x, t) =0] initially equal angles
[8(x,O) =8 for all x] "align" themselves locally to the an-
gles determined by the static random frequencies Q(x).
The interaction term cannot counterbalance this effect
and correlations at all distances decay to zero for large
time. Long-time synchronization cannot therefore be es-
tablished in a two-dimensional system with only local in-
teractions when the oscillators have a random distribu-
tion of intrinsic frequencies. This result has been shown
earlier by Sakaguchi, Shinomoto, and Kuramoto [15],
who showed that assumption of the contrary leads to a
contradiction. In the following, the absence of long-time
synchronization will be confirmed numerically.

Figures 4(a) and 4(b) present a numerical comparison
between C(r, t ) of the linear model from Eq. (8) and the
nonlinear model with nearest-neighbor interactions. We
see that for the linear model the phases rapidly phase
lock because the interaction potential, which has the
form of a cosine for the nonlinear model, is replaced in
the linearized version by a parabola which has a strong
phase-locking effect. For longer times, however, the
phases drift farther apart in the linear model than in the
nonlinear version because in the linear model the interac-
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tion is not periodic, i.e., there is no modulo function to
restrict the absolute phase difference. Thus for t —+ ~ the
power-law decay in the correlation function arising from
the Cn(r, t) term [Eq. (19)] dominates the interaction.
The combination of these two effects —strong phase Iock-

ing at early times, and drifting apart of the phases even of
nearest neighbors at later times —leads to the nonmono-
tonic behavior of the correlation function that is observed
for all connectivities in the linearized model.

Solutions of the full nonlinear system [Eq. (3), with

e
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FIG. 3. (a) The C&(x, t) (solid line), Cz(x, t) (short-dashed line), and C~(x, t) (long-dashed line) separable components of the
linearized correlation function for nearest-neighbor connectivity [Eqs. (19)—(21)]. Parameters: b, =0.5, T=0.1, ~= 1, r =2. (b) The
product correlation function for the linearized nearest-neighbor coupled system, Cz(x, t )C&(x, t )C~(x, t ), Eq. (l5). The curves are for
separations of r =2 (solid line) and r =6 (dashed line), respectively. Other parameters are the same as in (a).
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Correlation functions for this connection scheme,
shown in Fig. 4(c) for r =2 (solid line), r =6 (long-dashed
line), and r =20 (short-dashed line), demonstrate that the
presence of long-range interactions which occur with ex-
ponentially small probabilities leads to a higher level of
synchronization, as is found numerically. Eventually,
however, the correlations will decay due to the last term
in Eq. (23).

VI. CONCLUSIONS

It has been shown that for a linear model of coupled
oscillators, Eq. (8), the time evolution of phase correla-
tions is influenced differently by the interaction between
the phases, by the intrinsic frequencies, and by time-
dependent random noise (which may simulate the effect
of otherwise-neglected degrees of freedom in the system).
The phase correlation function separates into three fac-
tors with different time dependencies. The buildup of
correlations, i.e., the synchronization effect, is due to the
deterministic interaction term. The time-dependent noise
tends to destroy correlations, but the interaction term is
still strong enough to provide finite correlations between
angles separated by finite distances. The static random
frequencies are in two dimensions strong enough to over-
come the interaction term. Although there are finite
correlations for short times, they decay to zero in the
infinite time limit as the angular motion tends to follow
the random local frequencies. Finally, it has been shown
that finite long-range interactions which occur with ex-
ponentially small probabilities for long distances lead to
fast synchronization over short time scales, as has been
found numerically.

Numerical solutions of the coupled-oscillator model,
Eq. (2), show that sparse long-range interactions lead to a
more rapid and robust phase locking of oscillators than
short-range Gaussian connections with the same overall
coupling strength. In many ways, Gaussian and sparse
connection schemes represent opposing avenues to
achieve global phase coherence: exhaustive local cou-
pling or distributed long-range coupling. Long-range
sparse connections could be neurophysiologically realized
in the visual cortex by the small fraction of axons that are
observed to span distances over 6 mm. This might ex-
plain the recent experiments [7,8] where coherent oscilla-
tions between different areas of the visual cortex and even
across the two hemispheres in cat brains have been ob-
served. From the theoretical point of view, the under-
standing of the effect of long-range sparse connections
that are randomly distributed on a lattice on the phase
locking of nonlinear oscillators remains an interesting
problem to be solved. It is closely related to percolation
on a lattice with long-range interactions. A solution of
this problem could have an important impact on our un-
derstanding of realistic models of neural networks and re-
lated systems.
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APPENDIX: COMPUTATION OF THE
CORRELATION FUNCTIONS

(ei2xa) —f d& e
—x / e2ixaxf d& e

—x /x

(A3)

(ii) (g(q, co)g(q', co') ) =2T5(co+co')&(q+q'); (A4)

(iii) the independence of the averages over the different
variables 8(x, O), A(x), and g(x, t); we obtain for a 2D
system

C&(r, t ) =exp( ic I&), —
2Ie= fd2q fd~e ' '( i.~+q ) —(1—e 'q*)

(AS)

q e

2qe —0 —2q t
~ e

—iqX2 2

2

2t+1 4(2t+1) (A6)

Note that we have introduced a cutoff in q space via a
2

factor e ~ because in discrete systems all q values are
bounded from above by 2m/I where I is the lattice con-
stant. (Here all distances are measured in units of 1, i.e.,
i = 1.)

By proceeding along the same lines as above, C&(r, t)
becomes

In order to compute the difFerent factors Ce(r, t),
C&(r, t ), and Cci(r, t ) appearing in Eq. (1S), we first solve
Eq. (12) by Fourier transformation and obtain in d di-
mensions

G(x, t)= f d"q f dcoe ' 'e 'i "( ico+—q )

This yields for Eq. (11)

8(x, t)= f d q f dcoe 'i'"e ' '( ico+—q )

X (8(q, O)+H(co)Q(q)

+ fdco'H(co co')g(q, co—')), (A2)

where H(co)=lim +(e ico) i—s the Fourier transform
of the Heaviside function and 8(q, O), Q(q), and g(q, co)
are the Fourier transforms of the corresponding space-
and time-dependent quantities.

By using the following three properties:
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C~(r, t ) =exp( 5—I~),
2

I&=lim f d q f dco f dco'e '"'( —ico'+q ) '( —ico i—ro'+e) (1—e 'q")
a~0

(A7)

=f d q e e (1 —e q ')(1 —e 'q'")/q

= f ds f d2q e '+" (1—e 2q ')(1—e ' '")= dz —(1—e ')'/4 1

0 r /4(2t+1) Z

Finally, we obtain for Cn(r, t)

Cn(r, t ) =exp( b, In ),—
2In= f d q f dcoe ' '( ico+e) —' (1—e 'q'")

fd2 (1
—q2i)2(1 iq x—)/ 4

2 2/4 r /4(t+1)= fd qf due "q f dse 'e e q (1—e i') (1—e '"") f dzf(z) f, —dzf(z)
0 0 4 . r /4(t+1) r /4(2t+1)

(AS)

(A9)

(A 10)

(Al 1)

where the factor 3 is difFerent in each of the three equations. Since

where f(z)=(1/z )f (1——e ")dx.
0 X

The averages over the interaction range a in Eq. (22) involve [if one takes into account the special form of Eqs.
(19)—(21)] the following integral:

2 2 2 oo 2 2I= dae &' e da e
0 0

e
—A/a Q f d

—a y 2iyvA

the a integration in Eq. (A 1 1) can be performed, yielding

(A12)

~f d 2iyv'w —2yv'w1

—oo g +P
(A13)
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