
PHYSICAL REVIEW A VOLUME 44, NUMBER 10 15 NOVEMBER 1991

Tilinglike learning in the parity machine
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An algorithm for the training of multilayered feedforward neural networks is presented. The strategy
is very similar to the well-known tiling algorithm, yet the resulting architecture is completely diA'erent.

New hidden units are added to one layer only in order to correct the errors of the previous ones; stan-
dard perceptron learning can be applied. The output of the network is given by the product of these k
(+1) neurons (parity machine). En a special case with two hidden units, the capacity a, and stability of
the network can be derived exactly by means of a replica-symmetric calculation. Correlations between
the two sets of couplings vanish exactly. For the case of arbitrary k, estimates of a, are given. The
asymptotic capacity per input neuron of a network trained according to the proposed algorithm is found
to be o;, -k ink for k~ ~ in the estimation. This is in agreement with recent analytic results for the
algorithm-independent capacity of a parity machine.

PACS number(s): 87.10.+e, 75.10.Hk, 64.60.Cn, 89.70.+c

I. INTRODUCTION

Feedforward neural networks have proven to be a
powerful tool for solving classification problems [1]. In
such a device the input is represented by N units or for-
mal neurons and the output is given by the states of, in
general, several output units. In the following we ex-
clusively consider the case where only two di8'erent
classes are assigned to the input, thus one single binary
output neuron is sufficient.

The task is to map a given set ofp input configurations
or patterns [g =(P„Pz, . . . , Pz) j, into the corre-
sponding desired output IS =+I] ~. The inputs
are taken to be binary values (+~=+1) in the following,
but some of the results also hold in more general cases.

The simplest realization of such a classifier, the per-
ceptron, has been studied intensively [2—5]. It consists of
only the input layer and the output unit So, which per-
forms a threshold operation directly on the weighted sum
of the inputs:

N
So=sgn g J g

—T

The weights (or synaptic couplings) JJ., j =1, . . . , N,
and the threshold T are taken to be real numbers in the
following. The problem of learning is to find couplings
such that Eq. (1) is satisfied with So =S for all patterns.
The perceptron can only realize linearly separable func-
tions of the input: in the X space of configurations the
patterns having di6'erent output are separated by a single
hyperplane. This is, of course, a rather drastic restric-
tion. If we consider, for example, independent random
variables P~, S =+1 with equal probability, sets of only
up to p, =2K patterns can be classified correctly [4,6,7];
the critical storage capacity of the system is
~, =p, /N=2 for such patterns.

Several learning procedures, which are guaranteed to
find a solution in case the given problem is indeed linearly

separable, have been proposed (e.g. , [2,8,9]).
In order to realize an arbitrary input-output relation

the structure of the network must be more complicated.
One possibility is to introduce one or several layers of
hidden units between input and output but still restrict
the Aow of information such that it is passed on by one
layer to the next one only, and finally results in the out-
put. It has been proven that any boolean or continuous
function of the input can be realized by a feedforward net
with one hidden layer of sufficiently many neurons
[10,11].

Two major problems occur in the training of such net-
works with a given fixed architecture.

(a) Learning itself is hard. Nonlocal procedures, for
example, a gradient search for the set of couplings with
minimal output error (backpropagation and its
modifications [1]), are not guaranteed to converge to a
solution.

(b) The complexity of the network (i.e., the number of
hidden units) needed to solve the given problem is not
known a pviori. If the structure is too simple, no solution
can be found; too many hidden units will result in poor
generalization abilities [12].

Recently two strategies (among others) have been investi-
gated which circumvent these difficulties.

(i) A fixed mapping is used to determine the output
from the configuration of the first hidden layer. Thus
only the couplings between this layer and the input have
to be adjusted. Examples are the committee machine and
the parity machine, where the so-called least-action-
algorithm can be applied [13,14].

(ii) The network is constructed while learning: units
(or layers of units) are added to the system until the
problem is solved. This is the basic concept of the tiling
algorithm [15] and its modifications [16—18] or the more
geometrically motivated learning schemes by Rujan and
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Marchand [19]. Convergence can be guaranteed and
learning is performed locally for the most recently added
neuron by use of simple perceptron like algorithms.

In the following we present a learning procedure that
combines the latter two concepts: neurons are added to
the first hidden layer until the mapping is realized and
the output of the network is given by the result of the
parity operation of this layer.

In the next section we present the algorithm and give a
proof of convergence. In Sec. III we study a special case
with only two hidden neurons, for which the network's
capacity can be calculated exactly. Section IV gives an
estimate of the capacity of a parity machine with k hid-
den units, trained by use of the introduced learning pro-
cedure. In Sec. V conclusions are drawn and perspectives
are discussed.

II. THE LEARNING PROCEDURE

A. Architecture and growth

The type of network considered consists of N input
neurons g =+1 and a number of hidden units of the per-
ceptron type S& =+1, h =1,2, . . . , k. The total output
of the net for an input configuration g is given by

k

S (k)= Q S'=+1,
A=1

N

Svsgn+J( Il)(vT( /I)

number of errors. We then add a neuron Sk+, and try to
find couplings J' +"and a threshold T' +" such that

—1 for v=1, . . . , e& (output was wrong)

+1 for v=ei, +1, . . . ,p (output was right) .Sk+1

(4)

Thus by comparison of the given output with the desired
one we define a new classification problem for the same
input patterns which we try to realize with a perceptron
that serves as the (k+1)th hidden unit. This has to be
repeated until the latest problem of type (4) is linearly se-
parable. Then, after training the last unit by a percept-
ron algorithm, the total output will be correct for all pat-
terns.

The strategy is in fact very similar to the tiling algo-
rithm [15], yet the growth of the network is restricted to
only one hidden layer, where single neurons are added.
Of course, the resulting architecture is completely
different, since the network is determined to work as a
parity machine in the end.

B. Proof of convergence

The proof is in principle the very same as for the tiling
algorithm: Suppose g'" is one of the patterns wrongly
classified by a net of k hidden units. If we add a unit
S), +) with couplings J'" "=—g and a local threshold
T("+')= —(N —1) it is easy to see that

N

S„+,=sgn g ( P)P+(N——1)

Learning proceeds such that hidden units are added one
by one until the required task is performed (see Fig. 1).

Assume that for a net with k units the output for the
input patterns v=1, . ~ . ,p is

—S for v=1, . . .ek
S (k)= '

+S for v=ek+, . . . ,p

where the [S ] are the desired values and e), denotes the

input

—1 for v=p with /~=+1
+1 for vip .

With this choice Sk+, acts as a "grandmother" neuron
for pattern p and its only effect is Gipping the total out-
put for this pattern from wrong to right. Thus, by adding
a neuron, it is always possible to reduce the number of er-
rors by one. As a consequence„any arbitrary binary
mapping of p patterns can be realized by a parity
machine of at most 0 (p) hidden units.

In practice, of course, one will try to do better and
reduce the number of errors more effectively in each step.
Examples of such learning strategies will be discussed in
the following sections.

idden neurons

Sg Ii = 1, . . . k

S(k) = Q SI,
h=1

FIG. 1. Architecture of a parity machine with k hidden
units.

III. SOLVABLE EXAMPLE

In this section we consider a rather simple but instruc-
tive case with only two hidden units. The set of cou-
plings for the first neuron is constructed directly from the
patterns as it is in the Hopfield model [20], whereas a per-
ceptron of optimal stability will serve as the second unit.
We study the network's ability to map p =nN random
patterns g' into random outputs (P~,S =+1 with equal
probability). The first unit S) is connected to the input
by weights

1

QN J
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It is well known that the mapping cannot be realized
correctly by such a unit for any o, )0. The distribution of
the "internal fields"

el 1

p va
—1/+a

dz exp( —
—,'z ) .v'2n.

Ev g J(1)gvSvj j

is a Gaussian with (E( ) =1 and width &a. Negative
values of El correspond to wrongly classified patterns
and their fraction is given by

The purpose of the second neuron is to correct exactly
these errors.

Following Gardner's method [4,22] we calculate the
phase-space volume of the couplings J' ', which yield the
desired total output:

N pV= f ~ dJ,'"dJ,'" ~ 6 —y J"~PjS 6 y J(2)g T(2)j J

N N+e — y J. g.S e — y J( )P+T(v'N, ,
' ' &N, ,

'
N

X5 g (J' ') —N
P

vN p=l
(9)

The parameter K is called the stability of the second unit,
analogous to the stability of a simple perceptron [4].
Only those sets of couplings are counted which satisfy

N
Qv — ~ J(2)Pv T(2) gvgv &

2 ~N ~ j )j K
j=l

(10)

N
J(2),aJ(2),P fol a+@

N .

is the overlap between the solutions in two different repli-
cas. The limit q ~1 refers to the point of optimal stabili-
ty.

The last group of order parameters describes the corre-
lation between the two sets of couplings. The one with an
obvious physical meaning is

N
J() )J(2)

J JN .
1

(12)

As it is discussed in the Appendix, one can show that

V shrinks to zero, where the optimal value of K is
reached. In order to calculate the stability as a function
of a, the average (ln(V))&s over the random patterns
and outputs has to be performed. This is done by use of
the replica trick; see the Appendix for a more detailed
description.

Note again, that only the J' ' are treated as free vari-
ables; the couplings of the first neuron are fixed according
to Eq. (6).

Three types of parameters appear in the calculation.
For the ones which only refer to the Hopfield cou-

plings, e.g. , H =(I/N)g~, (J'."), the result does not
depend on the J' '. The properties of the first set of
weights are directly determined by the random variables
and cannot be altered by the existence of a second unit.

For the second hidden neuron only, the very same vari-
ables are introduced as in [4]. The quantity

there is a replica-symmetric solution of the problem with
vanishing correlations and thus also R =0. We did not
rule out the existence of saddle points with nonzero R
analytically, but since simulations confirm our result ex-
tremely well, R =0 is expected to be the relevant solu-
tion.

In the limit q —+1 we obtain, for a given value of
T' '= T, the saddle-point equation

Dz z+K+T
a v'a ~ T—

f Dz (z +~—T)
rc+T— (13)

where Dz =dz exp( z /2)/v 2—n..
Furthermore the threshold T can be optimized in order

to give maximal stability. This yields the equation

0=(I& f Dz (z +v+ T)—K—T

QO Dz(z+~ —T)v'a —+ T
(14)

which has to be satisfied simultaneously.
The critical capacity of the system, where the maximal

stability becomes K=O, is given by a, =2.373 with T ac-
cording to (14).

Note that without a local threshold the second unit is
not able to take advantage of the "preprocessing" done
by the Hopfield network. For fixed T=0 Eq. (13) be-
come the well-known result of [4] for unbiased patterns
and outputs with a capacity a, =2 only.

In Fig. 2(a) and 2(b) the results for v(a) and T(a) are
shown in comparison with simulations for a system of
X =500 input neurons. Further studies of the finite-size
dependence confirm our result very well, and also R =0



TILINGLIKE LEARNING IN THE PARITY MACHINE 6891

1+m 2+ (15)

is approved in the simulations.
Our result is remarkable because it can be achieved by

a very simple argument as well: According to Eq. (8) the
desired S2 are biased variables with a mean value
(S2 ) =m2 such that

T

Since in our case the correlations of type 8 vanish ex-
actly this rather simple estimation gives the right result
for the optimal stability and capacity. This might not be
true in more general cases but we expect that an estimate
according to the described method still yields reasonable
values for a, .

IV. ESTIMATION OF CAPACITY

If we neglect dependencies of the S2 on the inputs (which
are clearly caused by the J~t"), we are left with a single
perceptron with independent random output which is
biased according to (15). A straightforward generaliza-
tion of Ciardner's result [4], averaging over the input
variables and output variables independently (as, for ex-
ample, published in [21]),then yields Eqs. (13) and (14).

In practice neither the "grandmother" network of Sec.
II nor the use of Hopfield couplings will yield reasonably
good solutions for a given classification problem. A more
promising approach might be to minimize an appropriate
cost function for each neuron Sk successively. Possible
choices could be [with Ek as defined in Eq. (10) for k =2]

3.0 . ~ 8 ~ N F I 5 ~ 5 ~ 0 ~ ~ ) ~ ~ ~ ~ ~

or

g„(x)- y ~I —E„~, x=1,2, . . . (16a)

P
gk(x)- g ~l —Ek~ e(1 Ek), —x=1,2, . . . . (16b)

0
~ 5 ~ ~ ~

$
~ ~ ~ 8 5 0 ~ ~ ~ ) ~ ~ ~ ~ ~

1.0 2.0

Algorithms for these well-behaved optimization problems
can be constructed easily; for example, Adaline learning
[23,24] refers to gk(2), whereas the AdaTron algorithm
can be used to minimize gk(2) [25].

A steepest-descent strategy in the context of the pro-
posed learning scheme is to minimize the number of er-
rors

e„= y e( —E„").
v=1

(17)

3.0 . ~ ~ ~ ~ ~ ~

0.0 '
~ ~ ~ ~

$
0 W 1 I 5 ~ ~ ~ ~

g
I ~ ~ ~ ~ ~

0.0 1.0 2.0

Then, the decrease of ek is maximal in each step and
presumably the resulting network is one with a low num-
ber of units.

Minimizing (17) can be done by applying the so-called
pocket algorithm [15,26], a modification of simple per-
ceptron learning. Yet this search is time consuming and
in practice one assumes that after a reasonable number of
learning steps a good yet suboptimal solution is provided
[16].

For unbiased random inputs and outputs Gardner and
Derrida [22] have calculated the minimal fraction
f;„(a)of wrongly mapped patterns that can be achieved

by a simple perceptron if the problem is not linearly se-
parable (i.e., a) 2). We have generalized their result to
biased outputs (S ) =m, „,. The replica-symmetric
saddle-point equation is for unbiased inputs:

FIG. 2. Solution of Eqs. (13) and (14). The optimal stability v

(a) and the corresponding local threshold T (b) are shown (solid
lines) as functions of a [note that in (b) —T is plotted]. The
capacity of the system is a, =2.373 and both curves end at this
point. In (a) additionally the optimal stability of a single per-
ceptron is shown [4], as it would be recovered for T =0 (dashed
line). Simulations were done using the AdaTron algorithm [10]
for the second unit with a given T and performing a simple as-
cent search for the optimal threshold. The results were aver-

aged over 50 sets of random patterns/outputs each and the size
of the system was X =500 input neurons. If not shown, error
bars are smaller than the symbols.

1+mogt'"' f' Dz(T —z)'

Dz T+z

Dz(T+z),
and finally

the optimal threshold [27] T satisfies

0=(1+m,„,)f Dz(T —z)
T —x

+(1—m, „,)f (19)
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1+I,„, 1 —m „, T

2 T x 2 T x
(20)

TABLE I. a, for the tilinglike procedure and as
calculated in [14].

Although this solution is unstable because replica sym-
metry is broken [22], it is used in the following to esti-
mate the storage capacity of a parity machine which is
trained by the steepest —descent strategy described
above. Correlations between the different sets of cou-
plings will be neglected, although we do not expect them
to vanish in this case. The scheme is the following.

Assume for a given o.'the minimal fraction of wrongly
mapped patterns is f;„(h) at the hth neuron. This re-
sults in an output bias m, „,(h +1)=(Sh+, ) =1

2f—;„(h) for the next unit to be added. Equations
(18)—(20) then give the new f;„(h+1)&f;„(h). The
procedure is iterated until f;„(k)=0, that is, the prob-
lem is solvable with k hidden neurons. In doing so for all
values of a, the critical a, (k) can be determined as a
function of the size of the hidden layer. The results are
shown in Table I for a few hidden units and in Fig. 3 for
values up to k =130.

It is very instructive to compare the result with a re-
cent work of Barkai, Hansel, and Kanter [14]. They
studied a modification of the parity machine, where
correlations between the hidden units vanish by construc-
tion. The k units are connected to disjoint sets of X input
neurons only [28].

For random classification problems they calculate the
fractional volume in the space of the kX couplings, which
classify correctly. The physical symmetry of the net is
not broken a priori, in contrast to our sequential learning
procedure. Yet replica symmetry is broken and a one-
step replica-symmetry-breaking (RSB) calculation was
done. Further RSB effects are expected to only slightly
modify the results [29].

Since the total number of couplings is the same as in
the fully connected net with only N input neurons, we
still define u, =p, /X.

The estimation as described above still holds for the

Tilinglike

2.0
4.6
7.7

11.2

Capacity a, =p, /N

As in [14]

2.0
8.1

10
22

nonoverlapping architecture; the very same algorithm
can be applied. In fact it should be exact, except for RSB
corrections of Eqs. (18)—(20), because no correlations
have to be taken into account.

The capacity as calculated in [14] does not refer to a
specific learning algorithm but states what can be
achieved by such a network in principle. Therefore the
result should be an upper bound for the capacity of a
nonoverlapping network that has learned according to
our tilinglike procedure. By training the units one by
one, not all of the in principle possible solutions can be
found.

For a comparison the results from [14] are also shown
in Table I and Fig. 3. As expected, the tiling procedure
realizes capacities which are significantly smaller than
the general result. Yet the dependence a, (k) is super-
linear as well: a, & 2k holds in both cases. An assembly
of k perceptrons in a parity machine can store more in-
formation than the same number of independent percept-
rons.

The interesting property in this context is the asymp-
totic behavior of o;, for large numbers of hidden units
(k —+ oo but k/N =0). In [14] a, (k) —k lnk is found in
leading order, which coincides with a theoretical upper
bound [13].

The results of the estimate for the tiling procedure in-
dicate that the asymptotic capacity also is o., -k ink; see
Fig. 3. Thus the asymptotic behavior of the network is
not changed by our very special training algorithm.

10.0 S ~ % ~ 0 \ ~
g

0 ~ I ~ l ~ ~ ~ ~
g

~ ~ ~ ~ l gR 5 ~
g

4

~t
p ~ % 0 5 ~

4 V. SUMMARY AND OUTLOOK

0-

4 0-

2.0-

0.0
1.0

~ ~ ~ ~ 0 ~
g

~ ~ I ~ ~ ~ I ~ ~
g

~ ~ S ~ ~ ~ ~ I ~
$

~

2.0 3.0 4.0 5.0

FIG. 3. Result of the estimate for the algorithm-dependent

n, (k) as described in Sec. IV (solid line). For comparison the
general result for the nonoverlapping architecture of [15] is

shown (dashed line). In both cases the asymptotic behavior is

n, -k ink.

We have presented an algorithm for the training of a
feedforward multilayered neural network. The algorithm
combines the strategy of the tiling algorithm with the in
principle fixed structure of the parity machine. Only the
size of one hidden layer is adapted to the complexity of
the given problem. Thus the procedure is rather easy to
realize and might be useful for practical classification
problems. For a comparison of our algorithm with
different learning schemes [15,16,17] numerical tests shall
be done for special generalization tasks, such as, for ex-
ample, the "two or more clumps" problem [15].

In order to investigate the performance of the algo-
rithm, the storage of random patterns has been con-
sidered. The study of the analytically solvable case with
two hidden units has revealed an interesting result: If
Hopfield couplings are used for the first hidden unit,
whereas the second set of weights is a perceptron of op-
timal stability such that the total output is correct, corre-
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lations between the two sets of weights exactly vanish. It
is an interesting question whether this is true in more
general cases or not. It can be shown that in the replica-
symmetric approach these correlations also vanish in the
most general parity machine [30]. However, for the gen-
eral model, replica symmetry must be broken in order to
get feasible results for the capacity. Further studies of
problems similar to that of Sec. III do not involve RSB
and might help to clarify under what conditions these
correlations can be neglected.

In Sec. IV we have shown that our learning algorithm
does not limit the network's abilities too much. The
storage capacity a, (k) turns out to increase like k ink
with the number of hidden units in our scheme, as it does
for the algorithm-independent capacity. Numerical tests
shall be done in order to study the differences between
the overlapping and the nonoverlapping architecture.
The simple estimation of Sec. IV can be generalized easily
with respect to the minimization of several cost functions
of type (16). It will be interesting to compare the
eKciencies, i.e, the numbers of hidden units needed for

the different strategies.
Further numerical studies will aim at the generaliza-

tion properties of a network trained by our tilinglike pro-
cedure in comparison with the general parity machine.
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APPENDIX

We calculate (lnV)& s from Eq. (9) using the replica
trick and assuming replica symmetry.

Introducing replicas for the perceptron weights J'- ',
a=1, . . . , n, the replicated volume reads, with the in-
tegral representations of 5 and e functions,

V"= f~dJ,".' ' f f~d, dg' f f + f' f "+'
gZE, dG"

J,a 7

'7l . 0 K+ T

X f f +db dJ'" exp i g b J'"— —. P~S2m- J

n

gs 'y(J,(2.')' —x' .
a=)

Xexp i gg g J,' 'g" —G exp i pe, —g J'"P~S E, — (A 1)

After averaging over the inputs P~ we introduce the following order parameters:

H =—g (J'"), P =—g J'"b.
J J

for the first set of couplings,

(2) (2) 1

J J

for the perceptron,

J J

connecting the two sets of weights. These constraints are imposed by 5 functions which again are written as integrals
over the corresponding conjugate variables h, p, Q &=if &, Q =iF, r and z . A saddle-point integration is per-
formed and we obtain in the replica-symmetric scheme the form

(A2)
—In( V").s =extremum[a W, (H, P, R, Z, q)+ Wz(a, f,P, r, z,f,F)]+[ —(fH+PP) n(rR +zZ+F —fq/2)] . —

III, S, . . . I

The entropylike contribution exp( W2 ) of the integrals over the b, J'", and J' ' is given by

2'
exp( W2) = f 2F—' n/2

1 W
W + ar 2hz +2(i +—P)$'

1 iP 2an —ex—p n-f —2F '
(1 ip )' —2af—

For n =0 we recover at the saddle point

1=[(1 iP) —2af ]
' —for P =f=0, P =i, H=a . (A4)



6894 MICHAEL BIEHL AND MANFRED OPPER

Hence we are left with
T

exp[ Wz( f,F) ]=
2'' n/2

1 f+ar +2izr
2 f 2F— (AS)

F, f, r, and z can be eliminated by setting the corresponding derivatives of (A2) to zero. This yields

W2 =n —ln(1 —q)+ — + —aZ +iRZ +const
1 1 q 1 2 1 . 1

2 2 1 —
q 2 1 —

q 1 —
q

After performing the integrals over e „g,and G we obtain, in the limit n ~0,

(A6)

W&(a, R, Z, q)=n —g J Dx I dE&exp — (E& —1) ln
1 oo 1 2

S =+1 &2~a 2'

+ f dE, exp — (E, —1) lnv'2~a — ' 2a
' 1/2

Rq+
ct

Now it can be shown that (R =Z =0) satisfies

—tc —T+&qx
&I —

q

K+ T +qx
&I —

q

(E, —1)+iZS V'q . (A7)

aw,
aR

8W2

BR

8 8'2 =0
C)Z

and thus this point is a solution of the problem. Inserting this, the E& integrations in (A7) can be easily performed and
we finally get

1—( ln V ) =extremuma
g, S

1
Dx ln

a
tr T+&—q.x—

&I —
q

+@ 1
Dx ln 4 ~ T qx

&a &I —
q

J

(AS)

The calculation proceeds completely analogously to [4] now and yields in the limit q ~1 the saddle-point equation (13).
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