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Theoretical investigations of models for the laser with a saturable absorber:
A case of homoclinic tangency to a periodic orbit
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A general model for the laser with an intracavity saturable absorber (LSA), with relaxation pro-
cesses represented by a set of auxiliary variables simply coupled to the field equation, is proposed.
Within this framework, a popular model for LSA is discussed through a systematical analysis of the
parameter ranges for which chaotic behavior is present. The origin of the instabilities is traced back
to the presence of a homoclinic orbit biasymptotic to a periodic unstable solution of the system.
The relevant inhuence of the spontaneous emission in enhancing the underlying deterministic insta-
bility is pointed out.

I. INTRODUCTION

When a molecular absorber is placed inside a CO2 laser
cavity, an interesting dynamical behavior is observed,
consisting of pulsations and oscillations of the laser out-
put intensity that under some particular conditions may
become very irregular and chaotic. Such chaotic pulsa-
tions have been reported by many groups involved in the
study of laser instabilities as the final step of an intensive
search directed towards studying and classifying various
kinds of laser dynamical regimes' and several models
based on rate equations have been proposed to explain
the rather complex behavior of the laser operating in
such configuration. Since the early days of laser re-
gime investigations the laser with an intracavity absorber
has been termed laser with a saturable absorber (LSAj be-
cause highly saturable absorbers were placed into the
cavity with the aim of producing very intense and short
pulses of the laser intensity. We will adopt in the follow-
ing this term even if in the majority of the cases in which
chaotic behavior is displayed the absorber is no longer
subject to such a restrictive condition. The LSA is a very
simple nonlinear system; therefore general methods of
customary use in the theory of nonlinear dynamical sys-
tems have been applied to better characterize and under-
stand its properties. On both sides, i.e., in the experi-
ments and in the numerical simulations, the chaotic sig-
nals were analyzed by the use of standard techniques
such as power spectrum computation, embedding dimen-
sion measurements, and multidimensional attractor
reconstruction. ' Furthermore, phase diagrams in the
space of laser parameters were computed and determined
experimentally to show regions delimiting chaotic and
regular behavior. ' '

The first very general theoretical investigation of LSA
was carried out by Salomaa and Stenholm "and more
recently some attention was paid to this problem, with
particular emphasis on the role of the laser frequency on
stationary states, by Chyba, Abraham, and Albano. '

However, in a CO@ laser the modeling description
simplifies to a great extent because a rate equation ap-

proach is possible. A step forward in the observation of
new regimes and eventually chaos in numerical simula-
tions came as soon as the importance of having different
relaxation rates for the upper and lower lasing levels was
realized. The role of the fast relaxation of the lower laser
level in producing pulses closely similar to those observed
experimentally was clearly demonstrated by Tachikawa
Tanii, Kajita, and Shimizu. Since then the model of Ta-
chikawa has been used with minor modifications as
theoretical support to explain the appearance of chaos in
experimental LSA by several groups involved in this
research. ' ' However it seems that at the present stage
of the LSA investigations a systematic analysis directed
towards the identification of meaningful parameters from
which the LSA dynamical behavior principally depends
becomes necessary in order to facilitate the comparison
between experiments and theory. This has not been done
in the previous investigations of this system; on the con-
trary it is evident that the parameters of the numerical
simulations were adjusted ad hoc to obtain the pulse
shapes observed in the experiments. On the other hand,
the choice of the parameter values does present some
difficulties: beside the fact that some necessary data such
as relaxation constants are missing in the literature it is
also not trivial to measure independently laser parame-
ters as the total amplification and the saturation power.
In light of these considerations one of the purposes of this
work will be to carry out an accurate investigation of the
ranges of the parameters for which chaotic behavior ap-
pears in the rate equations based model which is the best
available so far. However, in order to give a more com-
plete theoretical treatment of the LSA dynamics, we will
also discuss the mathematical structure of the model
which leads to a chaotic dynamics.

It will be shown in this paper that the crucial parame-
ter for the occurrence of chaos in the LSA numerical
simulations is the relative saturability of the absorber,
i.e., the ratio between the saturation intensity of the
amplifier and that of the absorber usually indicated with
a: when this parameter is less than unity the region of
the control 'parameters for which chaotic regimes are
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present is very wide while this region narrows as a be-
comes larger than this value. This is, in part, confirmed
by the previous numerical simulations on chaotic behav-
ior, in fact, although there is no uniformity on the choice
of the system parameters performed by different authors,
proper conversions show that they all used values of a
which were less than unity. Furthermore, this roughly
corresponds to the experimental situations where most of
the observations of chaotic regimes are made with high-
pressure buffer gas in the absorbing cell, i.e., with high
saturation intensities of the absorber. Another important
parameter for the LSA behavior is the small signal
amplification normalized to the cavity damping of the in-
tensity and usually indicated with A. Concerning this
parameter there is a serious discrepancy between experi-
ments and the numerical simulations of the model; what
the few direct measurements available" provide for the
standard CO2 laser is about one order of magnitude
smaller than that needed to obtain chaotic behaviors in
numerical simulations. From our investigation we con-
clude that this model, which apart for minor
modifications, is the one adopted in all the numerical
simulations of LSA, does not allow us to overcome this
difhculty when reasonable values of all the other parame-
ters are adopted.

With regard to the mathematical structure of the LSA
equations we will point out the homoclinic nature of the
chaotic behavior observed. However contrary to a previ-
ous analysis supporting the idea of a homoclinic orbit
biasymptotic to an unstable lasing solution' we will show
that in the LSA this orbit is biasymptotic to an unstable
periodic solution of the system. This is indeed the one
emerging from the subcritical Hopf bifurcation of the
above lasing solution. This distinction is quite important
if we think that some properties of the chaotic attractor
and of the corresponding chaotic sequences can be deter-
mined on the only basis of the invariant set underlying
the homoclinic structure. To complete the above analysis
we want to emphasize here that the physical mechanism
responsible for the presence of the homoclinic behavior is
the fast depletion of the lower lasing level which intro-
duces into the mathematical modeling one more variable
with respect to the very simple two-level model. This
new variable allows a reinjection of the Bow in the vicini-
ty of the saddle focus corresponding to the unstable sta-
tionary lasing state, not permitted in bidimensional
motions, thus providing a close similarity with the case of
chemical chaos as in the Belousov-Zhabotinsky reaction
or in some thermokinetics models. ' '

This work is organized in the following way. In Sec. I
we present a general model for the LSA. This model is
particularly suited in those situations such as ours in
which the internal relaxation structure of the two media
is relevant for the dynamical behavior of the system.
Here the relaxation degrees of freedom are represented
by auxiliary variables simply coupled to the population
difference equation. It is of particular importance to pro-
vide simple models of the relaxation mechanisms espe-
cially in consideration of the relevant improvement ob-
tained in the understanding of the LSA dynamics when
the very simple two-level models are abandoned. It is ex-

pected that similar improvements could be obtained as
well in the analysis of other laser systems. In Sec. II an
analysis of the extended model is carried out by focusing
on the properties of the stationary solutions; some gen-
eral properties are discussed and possible differences with
respect to the simple two-level system are pointed out. In
Sec. III the Tachikawa model is specialized in the formal-
ism of the extended model and a systematic analysis of
the LSA regimes it provides is carried out. Here phase
diagrams unfolding the chaotic behavior in a bidimen-
sional space of the parameters are presented and dis-
cussed, thus allowing us to make considerations on the
range of theoretical parameters for which chaotic behav-
ior is to be expected. At the end the nature of the insta-
bilities is discussed and is traced back to the existence of
homoclinic orbits biasymptotic to an unstable periodic
orbit of the system.

II. THEORETICAL MODELING

A. Basic equations

The set of equations to be used here has already been
derived elsewhere and all the approximations involved
have been fully discussed. ' %'e brieAy recall for com-
pleteness' sake that the evolution of the intensity of the
laser is made in the plane wave and uniform field approxi-
mations. The interaction of the field with the medium is
ruled by rate equations whose absorption and stimulated
emission coefficients are properly modified as an effect of
detuning of laser radiation from the atomic transitions.
As a consequence of this, the frequency is assumed to be
fixed at the cavity frequency and dynamic frequency pul-
ling and pushing effects are considered to be negligible.
Both media are treated as homogeneously broadened,
which is justified for the passive one because of the high
pressure present in the absorbing cell when chaotic be-
haviors are observed, and only one absorption line is con-
sidered to be interacting with the radiation. There are
two main differences relative to the set of equations used
by other authors. The first one is the inclusion of a
noise-source term to account for the spontaneous emis-
sion mechanism. This is relevant especially for those re-
gimes characterized by a long permanence of the intensi-
ty near the value I =0 occurring when the total
amplification of the system becomes negative. The failure
to include this noise term leads to an incorrect evaluation
of the time spent by the system in this lethargic state. '

The second one is not a substantial difference but just
another way to write down the laser equations from
which the role of the relaxation mechanisms appear more
clearly. If we forget for a moment the spontaneous emis-
sion term we can write the LSA equations ruling the evo-
lution of the intracavity intensity I and the population
differences in the amplifier and the absorber D and D
suitably normalized as

I= —(AD+A D+1)I,
(1b)

(1c)

D = yDI —f K(t')[D—(t t')+1]dt', —
0

D = ayDI —f IC(t')[D—(t t') 1]dt', — —
0
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I, =
28

where 8 is the stimulated emission coefficient of the
amplifier medium. This choice rejects the fact that in
the cavity both forward and backward waves interact
with the medium, while I is the intensity of only one of
them. The memory functions K and E represent the
effect of collisional mechanisms on the population
differences of the amplifier and the absorber. The nor-
malization of D and D is transparent from the equations
above; D is normalized in such a way as to attain the
value —1 in the presence of the pumping mechanism
only whereas D attains the value 1 at thermodynamical
equilibrium. It has been shown that if the relaxation pro-
cess is represented by a set of linear equations the
memory function can be written in the following way

K(t)=c o5(t) +pc, y, e

where 5 is the Dirac delta function. It is now clear that
although the above form of the laser equations is useful
to perform general theoretical considerations it is not
practical for numerical simulation purposes. The equa-
tions above can be rewritten in terms of a set of auxiliary
variables s,. and s;, in the following way:

I= —(AD+3 D+1)I, (4a)

D = y(D + 1+DI—) —g c;(s, D), — (4b)

where y and y are given by

y= f K(t')dt, y= f K(t')dt .
0 0

Here the time is measured in units of 1/2k where k is the
damping rate of the electromagnetic (e.m. ) field in the
cavity. As a consequence of this choice 2 and A are the
small signal amplification and absorption constants nor-
mahzed to 2k. The intensity is normalized to half of the
saturation intensity of the amplifier which in turn is given
by

the populations of a system of n energy levels requires
knowledge of about n /2 relaxation rate constants; how-
ever, not all of them are relevant when our interest is fo-
cused on the evolution of the population of only a small
number of levels or as in our case on the population
difference between two prescribed levels. As it follows
from Eqs. (4) only 2n +1 constants, i.e., the c s, y,. 's, and
y, characterize the complete response of the medium.
This allows us to point out that in a configuration in
which radiation involves only the two energy levels the
above constants are the only relaxation parameters whose
experimental determination makes sense, and, therefore,
their use should be preferred in place of a relaxation sche-
ma involving energy levels. In addition, the above form
given to the LSA equations is valuable because the other
physically relevant parameters such as A and A appear
directly in the equations in contrast with previous presen-
tations of the model where they had to be computed sepa-
rately as functions of the various relaxation constants of
the two media. This is indeed of some help when a cer-
tain region of the physical parameters has to be scanned
via numerical simulations of the model. %'e must also
note that the above equations reduce to those of the very
simple two-level model in the case when all the c s are
equal to zero.

B. Adiabatic elimination

There is another situation in which the dynamics of
some of the auxiliary variables can be eliminated; this
happens when their evolution is very fast compared with
the evolution of the principal variables of the system I, D,
and D. Under this condition an adiabatic elimination of
the fast variables can be performed. In fact, let us consid-
er Eq. (5), expressing s,. at times where the memory of ini-
tial conditions has vanished. We notice that when y; is
very large as compared with the rate of change of the
variable D it is possible to expand D (t —t') around t'=0
and integrate, term by term; the result is an approximate
expansion for the variable s; whose first terms read

s;= —y;(s; D), i = l, n— (4c)

D + s ~ ~

1

'Vi

n

D = y(D —1+aDI) g—c,.(s,. D), — —
i=1

s, = —y;(s, —D), i = l, n

(4d)

(4e)

The equivalence with Eqs. (1) can easily be understood
if Eq. (4c) is used to express the auxiliary variables in
terms of D. At the end of the transient regime we can
write

It is trivial to verify that when we insert the above ex-
pression for the auxiliary variable in Eq. (4b) the net re-
sult is a change of the coefficient of D in the first member
of the equation; this is equivalent to a renormalization of
the coefficients y and of the coupling constants ck (kWi)
corresponding to the variables that are not eliminated.
The equations of the model therefore maintain their orig-
inal form except for the appearance of a smaller number
of auxiliary variables.

C. Elimination of slow variables

which when inserted into Eq. (4b) brings it to the original
form of Eq. (lb); the same holds for the absorber. There
are some advantages in dealing with a set of equations as
the ones shown above. The principal one concerns the
number of constants that are effectively important in the
relaxation process. Normally the relaxation dynamics of

When the rate of change of an auxiliary variable is very
slow a stabilization to the average value of D occurs ac-
cording to Eq. (5), thus allowing us to set it equal to a
constant value in the equation for D. In fact it is expect-
ed that its slow and small amplitude Auctuations do not
inAuence the much faster dynamical behavior of D.
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D. Determination of coemcients y; and c;

To clarify some technical details of this model we show
how the parameters c; and y; can be computed starting
from the relaxation scheme of the medium. The pro-
cedure consists of a series of linear transformations to set
up the variables s;. First of all in the set of linear equa-
tions ruling the population of the levels a transformation
is made that introduces D, i.e., the population difference
of the levels tuned with the radiation, as a new variable.
In a second step the set of equations that does not involve
D is viewed as a set of linear equations with external
source proportional to D and to a constant term corre-
sponding to the pumping. A linear transformation which
diagonalizes and uncouples these equations is then made;
this introduces a new set of variables, each one coupled
only to D and whose corresponding eigenvalues coincide
with our relaxation constants y;. An additional scaling
and shifting is performed on these new variables to shape
their governing equations into the same form of Eq. (4c).
The resulting variables coincide now with our auxiliary
variables s;; by expressing the population of each level as
a function of s; and D and inserting the result in the
equation for D we will arrive, after an additional normali-
zation, having the purpose to make the equilibrium value
of D equal to 1, to Eq. (4b) and consequently to the deter-
mination of the coeKcients c;.

E. The four-level model

A short discussion should be given, in the framework
of our equations, about a popular model for the CO2 laser
used also in the early modeling of LSA behavior. This
model usually known as the four-level model, stems from
the peculiar structure of the molecular media, absorber,
and amplifier, characterized by a relaxation mechanism
involving two lasing or absorbing rotational levels cou-
pled with the corresponding rotational manifolds. In the
formalism just introduced two of the three auxiliary vari-
ables needed can be eliminated adiabatically due to the
very fast rotational relaxations. The third one is extreme-
ly slow if the two manifolds relax at the same rate and
this is the case when the media can be reduced to
equivalent two-level systems. This is indeed the case of
previous CO2 and LSA modeling in which chaotic re-
gimes were not observed. However, when this condition
is released by allowing the lower manifold to relax much
faster than the upper one, which corresponds to the real
situation in CO2 lasers, the evolution of this variable be-
comes faster and produces significant modifications to the
dynamical behavior of the system. Nevertheless the as-
sumption of equal relaxation times has been widely used
to model CO2 lasers, ' this being indicative either of the
fact that experimental measurements of the laser parame-
ters have never reached the degree of precision necessary
to discriminate between several models or that in all ex-
periments the amplifier has never been operated in condi-
tions such as to reveal the presence of the new mecha-
nism. However, experiments on dynamical behavior of
the LSA clearly show the necessity to go beyond the sim-
plicity of a two-level model. The model that we will dis-

cuss in the following will be based on the key role played
by the fast auxiliary variable of the amplifier mentioned
above.

III. STATIONARY BEHAVIOR OF THE MODEL

We will examine briefly the properties of the stationary
solutions for the general model presented above. A very
exhaustive discussion of stationary states' stability has
been carried out by Lugiato and co-workers in the frame-
work of a treatment of LSA models with the polarization
dynamics in the amplifier and in the absorber. ' Howev-
er, the relaxation dynamics considered there is the sim-
plest one and an adiabatical elimination of the polariza-
tion, as can be done in CO2 lasers, leads one to the very
simple two-level model without auxiliary variables. We
will see that in the extended model some general features
concerning stationary solutions and their stability remain
unaltered with respect to those already known for the
two-level model. However, the auxiliary variables intro-
duce e6'ects such as the modification of the instability
windows, and those even more relevant corresponding to
the drastic change in the dynamical behavior of the LSA
system that will be discussed in the next section.

A. Stationary solutions

It follows from Eqs. (1) that the intensity of the station-
ary state is governed by the equation

st
—1 =0

1+aI„
which allows for a solution I„=O becoming unstable for
A ) Ao = 1+2 and a solution diferent from zero result-
ing from the second factor. This equation is the same as
the one that follows from the two-level model. Figure 1

shows the behavior of the intensity as a function of the
amplification parameter A for difterent values of the rela-
tive saturability a, whereas Fig. 2 unfolds the stability re-
gions in the space of the parameters 2, A. The line
denoted by HB in the figures corresponds to the Hopf bi-
furcations of the stationary solution I+. The situation
represented in Fig. 1(c) and also in Figs. 2(b) and 2(c)
which corresponds to a bistationary behavior can occur
only if a ) (1+2 )/A.

n n

Det(L) =g (
—y, ) Q (

—y, )Det(L~ ),
i 1

where Det(L+ ) can easily be determined for the branch of

B. Stability of the solutions

To assess the stability of the stationary solutions the
, dynamics of the small fluctuations must be investigated.
This amounts to the determination of the eigenvalues of
the matrix I. associated with this evolution. It can be
shown by simple algebra that the determinant of this ma-
trix does not depend on the coupling coefficients c;. By
indicating with I.z the matrix correspondent to the two-
level model we find



692 BRUNO ZAMBON

the nontrivial solutions. It results to be a function of the
derivative of the intensity with respect to the parameter
2 as given by

dI t
Det(L~ l

= —y yI ( 1+aI„)

Some general properties regarding the stability of the sta-
tionary solutions can be deduced from the above expres-
sions and, in particular, from the sign of the determinant
of I.. The first one is that the branch with negative slope
shown in Fig. 1(c) is always unstable because of the ex-
istence of at least one positive eigenvalue. The second
one is that the loss of stability along a given branch of
solutions may occur only via Hopf bifurcation, with the
only exception being the limit points.

Let us discuss in the following more in detail the stabil-
ity criteria for the general model. The peculiar form
given to the ruling equations allows one to cast the condi-
tion for the stability in an alternate form with respect to

that usually given involving the matrix L, . If we insert
small deviations from the stationary solution I„,D„,D„
of the form

6I„=6Ie ' 6D, =6De ' 6D„=6De '

—AI„
Det —yD„—I —X

—AI„
0 =0,

—ayD„ 0

where I and r are given by

into Eqs. (4), we arrive after very simple calculations to a
self-consistency requirement which can be stated as

(a)

OFF

Ao AH1 AH2

1&a & 2+1/A

a-1)

I I I

Ao AH~ A„2

Q»]

a )1+1/A

I ~J
I I I

A~ A„, Ao

FIG. 1. Stationary laser intensity vs A for different condi-
tions regarding the saturation parameter a. (a) Saturation inten-

sity of the absorber bigger than that of the amplifier (a ( 1); (b)
a ) 1 with monostationary behavior; (c) a ) 1 with bistationary
behavior. The dotted portion of the branch corresponds to the
unstable window between two Hopf bifurcations AH, and A».
We remark that (c) shows a pathological case because for realis-
tic parameter values there is no Hopf bifurcation corresponding
to AH(.

FICx. 2. Unfolding in the space A, A of the stability domains.
HB is the Hopf-bifurcation line, Ao (dashed line in the figures)
represents the threshold for laser oscillations, and AL the line
corresponding to the limit point of the branch of stationary
solutions. The branch becomes bistationary for A ) 1/(a —1),
as can be seen in (b) and (c). For a )) 1 bistability occurs in the
hatched area in (c). The region where only time-dependent re-
gimes are possible is denoted by PQS. We point out that the
pattern of the HB shown in (b) near the conAuence of the Ao
and Az lines has been extremely magnified to show its general
behavior. In practice, for realistic parameters, the HB line joins
the Ao and AL at their conAuence.
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c;A,
I (A, ) =y(1+I„)—g

Ci~
1 (A. ) =y(1+aI„)—g

i=1 ~+

aI„
1+I.i y( 1+I„)+A, ( 1+aI„)

where we have set

(12)

It must be noticed that the zeros of the two functions
above correspond to the eigenvalues —P,. and —P,. of the
relaxation processes represented, respectively, by Eqs.
(lb) and (lc) when the intensity is kept fixed to the value
I„; this means that their real part must be negative. It
may be useful to express I and I in the following way:

1 —g
] +i

which by virtue of some properties of the coefficients c;
and y; is always greater than zero. This result coincides
with the stability equation of the two-level model when-
ever y is replaced by y. It is instructive to carry out the
calculations because related situations have been repro-
duced in LSA experiments. ' By simple algebraic manip-
ulations we can put Eq. (12) into the following form:

which holds if the eigenvalues are not degenerate. If we
transform the condition expressed by Eq. (8) we obtain

aIst dIst
A, +X y(1+I„)—A +yI„(1+aI„)

=0,

st l +I P+g ] +aI (10)

which is a general expression that can be used to compute
the eigenvalues associated with the stationary solutions of
the system. Once the c; and y,- are known, the above
equation may provide useful insight into the position of
the eigenvalues just be a simple graphical inspection; this
may sometimes be a better and more intuitive approach
than the diagonalization of L, which makes direct use of
the relaxation constants between energy levels.

C. Stability for small intensities (near the threshold)

telling us that in the neighborhood of the threshold the
branch with the negative slope has only one positive ei-

genvalue whereas the branch with positive slope is stable.
An additional result on the stability near threshold can

be obtained if we observe that y is usually a very small
quantity, thereby introducing a slow time scale in the dy-
namics of the system. An interesting situation arises
when this becomes comparable with that defined by the
eigenvalue A, computed above. To make our arguments
more precise we will assume, in accordance with the
model to be discussed in the next section, that the ab-
sorber and the amplifier do not have slow auxiliary vari-
ables and that y ))y. In this hypothesis, and by assum-
ing that A, «y;, Eq. (10) is transformed into

As an application of the above equation we will deter-
mine the stability properties of the solutions near I„=O.
In this case the second member of Eq. (10) is very small
except for the point where 1/(1 +A, ) and 1/(1 +A.) be-
come singular. This means that the values of X satisfying
this equation will be with good approximation equal to
—P, and —

13, . The remaining eigenvalue will be close to
zero and can be obtained by power expanding the second
member of Eq. (10) around X=O. By carrying out the
simple calculation we find

—1

dI„
k=——I

dA

which allows us to characterize analytically the behavior
near threshold. Let us assume the monostationarity con-
dition a ((1+A )/A so that dI„/d A )0. In this case a
Hopf bifurcation occurs when

Ist

aA (1+I„)(1+aI„) (13)

The two values of the intensity which solve this equation
correspond to the window of instability between AB& and
AH& of Fig. 1(a). The equation above shows that AH„
which is known from numerical analysis to correspond to
a supercritical Hopf bifurcation, occurs at growing inten-
sities as a becomes smaller. However, in normal condi-
tions AH, is very close to the threshold so that the corre-
sponding transition is always buried by the noise of the
system. The addition of a buffer gas in the absorbing cell
of the LSA allows an increase of this last parameter by a
sizable amount, thus the observation of stable sinusoidal
modulation emerging from A~, becomes possible. '

D. Properties of the coef5cients e; and y;

We are unable at present to provide a more complete
discussion of the stability on the basis of Eq. (10) without
going through an explicit evaluation of the coupling and
damping coefficients c; and y, . Although these are relat-
ed, via the procedure outlined in Sec. II D, to relaxation
processes that are Markovian and that are very well
characterized in all their mathematical properties, the
search for general properties involving them and relevant
to the solution of Eq. (10) seems at first glance difficult to
carry out. The only property we have been able to deter-
mine so far is the sign of y, which was mentioned above.
However, we can make additional comments regarding
the peculiarity of the relaxation process resulting from
the combined action of the pumping mechanism and col-
lisional relaxations as in the active medium of the laser;
here in fact the detailed balance condition is no longer
satisfied, thus allowing the possibility that y; and/or P,
be complex numbers. ' Although in our numerical cal-
culations we have always found real coefficients we can-
not exclude the fact that for some range of the parame-
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ters complex values appear; in this case the dynamical be-
havior of the laser system would be enriched by the pres-
ence of the intrinsic frequency corresponding to the
imaginary part of these eigenvalues. It is not clear now
how much this can be of relevance (and we plan to inves-
tigate it in a future work), to the presence of LSA regimes
not reproducible with a three-dimensional model as, for
example, just to mention one, the appearance of breath-
ing oscillations. However, it appears interesting that at
least in principle this situation may arise in a laser sys-
tem. Another correlated question concerns possible in-
stabilities of the laser oscillations. In the very-well-
known Lorenz-Haken model the instabilities arise be-
cause of the key role played by the polarization of the
medium, whereas the relaxation scheme is chosen to be
the simplest one. Instabilities in which the polarization is
adiabatically eliminated but the relaxation is considered
in all its complexity has never been studied nor been ob-
served experimentally in pure laser systems. However, it
would be interesting to prove either that they can be
ruled out on the basis of well-established properties of a
Markovian relaxation process as the one used to model
the active medium, or that they are allowed to occur,
even if the laser parameters would result in being outside
normal ranges.

E. Eigenvalues

We now give a picture of how the eigenvalues behave
as we move along the branch of stationary solutions. We
begin this discussion with an analysis of the one auxiliary
variable model in a range of parameters fitted for CO&
LSA and only hint at possible modifications induced by a
more complex modeling of the relaxations.

Let us consider first the bistationary case; by starting
at the point I„=O and moving along the branch of sta-
tionary solutions we encounter first an unstable portion
of the branch which may extend beyond the limit point.
In this case, which usually occurs for low values of a,
another positive eigenvalue joins, at the crossing of the
limit point, the already existing one in such a way that in
the branch with positive slope two positive eigenvalues
are found to exist. These, as we move further beyond the
limit point, collide and transform into a pair of complex
conjugate eigenvalues whose real part crosses the real
axis at the point where the inverse Hopf bifurcation AH2
occurs. In the other case, which usually occurs for very
high values of a, at the crossing of the limit point the
only negative eigenvalue becomes positive and the solu-
tion becomes stable from this point onward. The appear-
ance of a window corresponding to Hopf bifurcations as
shown in Fig. 1(c) occurs in an extremely tiny region of
LSA parameters to be practically undetectable. In fact,
this situation originates at the transition from monosta-
tionary to bistationary behavior where a stability pattern
like that of Fig. 1(b) transforms into that of Fig. 1(c); this
occurs when a is of the order of unity and the level of the
intensity corresponding to AH, is very low to be experi-
mentally detectable. The situation for the extended mod-
el depends on the properties of the relaxation parameters
c; and y; for both the amplifier and the absorber. We

may reasonably expect that additional pairs of complex
conjugate eigenvalues appear and disappear as we move
along the branch of stationary solutions. The interesting
question here is if the real part of these pairs may ever be-
come positive; we mould assist in this case to the presence
of more branches of periodic solution stemming from the
corresponding Hopf bifurcations. The relevance of this
to the dynamical behavior of the system is rather evident;
the presence of more branches could lead to generalized
bistability and increased possibilities of irregular behav-
ior.

The case of monostationary behavior is depicted in
Figs. 1(a) and 1(b). Figure 2(a) shows the ranges of the
stable and unstable solutions in the plane ( A, A). As it
has emerged from the analytical discussion presented
above the part of the branch immediately near to I„=O
is always stable; by moving further along the direction
A =const the solution may lose its stability via a Hopf bi-
furcation and regain it again via an inverse Hopf bifurca-
tion. Also here additional pairs of complex conjugates ei-
genvalues with positive real parts may be possible in prin-
ciple.

IV. ONE AUXILIARY VARIABLE MODEL

A. The ruling equations

In this model we introduce an auxiliary variable in the
amplifier corresponding to its peculiar internal relaxation
process. The absorber in the model is represented by a
two-level system; this may be a satisfactory representa-
tion for some infrared absorbers but not for others as, for
example, SF6 where the hot-band mechanism of absorp-
tion is well known. However, in the high-pressure range
in which we are interested it is not yet clear if this will
produce relevant changes in the behavior of the system.
Furthermore in these operating conditions an adiabatic
elimination yields an intensity-dependent absorption
coefficient for this medium. The LSA equations for our
model then read

1E= ——AD+ + 1 E+g(t),1+a iEi'

D = y(D + 1+D
I
El') ——c, (~ —D), (14)

s = —yi(s D), —

where E is the complex field amplitude normalized to

We will carry out a systematic analysis of a model
equivalent to the one introduced first in the study of the
LSA by Tachikawa and co-workers. Extensive simula-
tion work has been done in the past by Mandel and Er-
neux for a two-level model of the LSA including polariza-
tion both in the amplifier and in the absorber. ' Howev-
er, at that time chaos had not yet been observed in the ex-
periments and momentum for a theoretical search of
chaotic regimes was not high. Furthermore in CO2 lasers
polarization is eliminated adiabatically and the relaxation
structure needed to find chaos was not present in the
model there described.
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where i,j =1,2 for the real and imaginary parts. The
strength Q of the noise can be determined by a very sim-

ple argument that can trivially be extended to the LSA.
At thermal equilibrium the e.m. field is represented by
an Ornstein-Uhlenbeck process given by

E= —
—,'[A (M, —M~)+ A(M, —M2)+1]E+g(t),

where the population M, ,M2, M, ,M2 stands for the aver-

age value of the populations of the lasing and absorbing
levels, respectively. Fluctuations of these last variables
due to collisions are negligible and so are the fluctuations
produced on them by the field. The thermal equilibrium
value of ~Ei is given by

(IEI'&„=
2 (M, —M2)+ A (M, —M2)+1

2n th

nsat

where n, h is the thermal equilibrium photon occupation
number and n„, is the number of photons in the mode
corresponding to the saturation intensity. By solving
with respect to Q in a thermal equilibrium situation we
find

Q = (AM~+ AM~+1),
2n sat

(15)

where M2 and M2 are normalized in the same way as D
and D. The validity of the above equation extends as well
outside the ranges of a thermal equilibrium situation. In
our computations we will assume, for reasons of simplici-
ty, that Q is constant and equal to the value at the thresh-
old because we do not expect drastic changes with respect
to the use of Eq. (15) and because experimental measure-
ments are not at the stage where one can appreciate such
a difference in the model. The numerical simulations of
the above equations have been carried out by means of a
numerical integrator of the Runge-Kutta type truncated
to the fourth order with variable time steps such that the
relative error at each step be less than 10 . The noise
has been included in a standard way and some technical
artifices have been adopted to cut down the long compu-
tation time required, in some cases, by the integrator near
I =0. With regard to the values of the parameters to be
used in our simulations it has already been shown that y &

and c, are simply related to the fast relaxation rate of the
lower laser level. ' The damping y can be determined via
Eq. (2) from the saturation intensity of the amplifier. By
doing so reasonable values for our normalized parameters
result to be

y=1.6X10, pi= —ci =0.1, Q =10

1/&2 the saturation value in the amplifier, and g(t) is a
complex white Gaussian process representing mainly, in
CO2 lasers, the effect of spontaneous emission. This term
as well as the very simple form of the LSA equations
were not present in the original formulation of the mod-
el. The properties of the noise are given by

(g;(&)g, (&')) =2Q&;, &(& —&'),

B. Classification of the dynamical regimes

095-- .00@

0.9
0.0

FIG. 3. The ratio between the attracting eigenvalue of I+
(A, +) and the attracting eigenvalue of Io (Ao) solid line, and fre-
quency co~ of the pair of complex conjugate eigenvalues of I+,
dashed line at the point AH2 for a =0.3 and the other parame-
ters in the text. All quantities are normalized to 2k.

Different types of regimes characterized by spikes or
modulation of the laser intensity are found to exist by
solving numerically the LSA equations. If chaos is not
present they are periodic and a suitable classification can
be carried out. The most common among the LSA re-
gimes is the widely known passive Q-switching (PQS) re-
gime characterized by sharp spikes followed by long
periods where the intensity attains the noise level. A
different temporal behavior is displayed by pulses having
a main spike which decays to zero through a ringing tail.
According to the number n of oscillations in the tail these
regimes can be termed as P'"' regimes. The normal PQS
pulse in this classification scheme will be denoted by P' '.
The existence of the pulses P'"' with n )0 is related to
the particular structure of the space of the system. vari-
ables and, in particular, to the presence of a stationary
point I+ with a saddle focus instability; the oscillations
in the tail of the pulses are the result of an outward
spiraling motion of the system in the unstable manifold of
this point; a reinjection of the system flow in the vicinity
of this same point then completes the cycle. Some atten-
tion has been paid in the past to ascertain if the strong at-
tractive eigendirection is by itself suf5cient to provide the
reinjection mechanism; we want to show here that al-
though this is a very appealing possibility it is not sup-
ported by numerical calculations. In fact, in this model
the existence of the strong attractive eigenvalue of I+
(A, +) mirrors the fast relaxation rate of the lower lasing
level; however, if this is too fast the equations become
those of a two-dimensional model by virtue of the adia-
batic elimination and the orbits P'"' then disappear thus
forcing the conclusion that the strong attraction exerted
by I+ is not su%cient to provide the existence of these re-
gimes. This leads us to consider also the strong attract-
ing eigenvalue of Io (A,o) and to acknowledge that the P'"'
regime may result from a proper balance of these two ac-
tions. However, a possible way to do it in a quantitative
fashion is to consider the ratio of these two eigenvalues
and to see whether this can suggest a valid criterion for
the existence of the P'"' regimes. Figure 3 shows this ra-
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tio when we move along the line corresponding to the
Hopf bifurcation AH2 in the space A, A. The monotonic
behavior of A. +/A, o displayed in this figure does not ac-
count for the fact that P'"' regimes appear for a certain
range of values of A, as will be shown later in Sec. IV D.
Aside from the validity of the above arguments which do
not consider the presence of other attractors present in
the system such as, for example, stable manifolds of
periodic orbits, we can draw the conclusion that the rela-
tion of local structure with global behavior is usually a
very weak one. In fact it will be found that the P'"' re-
gimes must be traced back to the existence of a homoclin-
ic reinjection in the neighborhood of the point I+ which
is a global property of the Sow and cannot be decided on
the basis of local properties as the relative strength of the
eigenvalues.

In addition to the class of pulses described above, al-
most sinusiodal modulations of the laser intensity, never
reaching the noise level, are observed; these will be
named T regimes. They belong to a branch of periodic
solutions that originate from a Hopf bifurcation which is
supercritical and therefore leading to stable oscillations
numerically observed in the range of less than unity, ' this
experimentally corresponds to a high pressure in the ab-
sorbing cell. It is interesting to note that by varying the
LSA parameters a T pulse can transform continuously
into P' ' or PQS pulses. In the following the terms T,
P' ', and PQS will be used interchangeably depending on
the cases because they pertain to the same branch of
periodic solutions.

C. The branch of periodic solutions

Our understanding of the dynamical behavior of a non-
linear system can be greatly improved if we analyze the
branch of periodic orbits in support of the numerical
simulations. In fact it is clear that such orbits are much
better indicators, although never complete ones, of the
global behavior of the system than stationary solutions.
A similar analysis has been carried out for the optically
pumped molecular laser equations by using a dedicated
bifurcation software package. There exists also some
results for the LSA but not for parameters where a chaot-
ic behavior is found . We will try to extend these re-
sults, without explicitly performing the computation of
the branches, on the basis of our study of the regions of
the existence of di6'erent regimes in the phase space A, A.

The most common scenario for the LSA is depicted in
Fig. 4. The branch of periodic solutions starts from a
subcritical Hopf bifurcation of the stationary solution I+
leading to an unstable regime of the T type. As 2 in-
creases the amplitude of these oscillations increase and
their shape deforms continuously to that of a PQS pulse.
Independently of how fast this transformation takes
place, for our convenience, we will refer to the upper part
of the branch after the the limit point AT as the PQS
branch and to the lower part of the branch as the T
branch. As A is decreased the PQS solution can be
transformed into a cycle of a very long period, Fig. 4(a),
or collapse into a stationary solution via an inverse Hopf
bifurcation, Fig. 4(b). We note that in the case of the

(b)

AL Ao
l~ I

Ao AH& AH2 AT A

FIG. 4. Shown are the branchs of the stationary and periodic
solutions. This last one emerges from the Hopf-bifurcation
point 2~2 and is represented in the figure by the maximum of
the corresponding periodic solution. Solid and dotted lines
represent stable and unstable solutions. In the case shown here
these branches coincide, respectively, with the PQS and T
branches, however, in general, the PQS branch may not be
stable. In the bistationary case (a) the PQS branch ends with a
cycle of a very long period as we approach Ao, while in the
monostationary case (b) it undergoes an inverse Hopf bifurca-
tion in AH&. The figures shown here are only sketches of the
LSA behavior, therefore, no numerical values appear on the y
axis.

two-dimensional (2D) model, if a subcritical Hopf bifur-
cation occurs as in the point AH2 of Fig. 4, the PQS
branch is always stable while the T branch is unstable
and the limit point corresponds to the coalescence of the
two orbits; furthermore the unstable manifold of the T
orbit coincides with the stable manifold of the PQS orbit.
However, for topological reasons, the two-dimensional
model does not allow the presence of a ringing tail ob-
served experimentally so that a more complete model
must be considered, by doing so also the PQS solution
may become unstable. In this case the orbit leaving the
PQS pulse can be attracted by the stable manifold of the
T pulse or by that of the I+ solution and return to the
PQS solution via the unstable manifold; this gives rise to
a quasiheteroclinic behavior. However, it is clear that
this does not imply the presence of an heteroclinic orbit;
as a matter of fact we will report in the next sections on
the presence of a homoclinic orbit biasymptotic to the T
solution and responsible for the P'"' regimes. On the oth-
er hand it is quite clear that the reinjection mechanism of
these regimes is somewhat correlated to the presence of a
PQS unstable orbit.

The scenario described above can lead to bistability be-
tween periodic solutions or between a stationary solution
and periodic ones as can be seen in Fig. 4; this is known
as generalized bistability. In the simplest case we have
bistability between PQS and I+ as shown in Fig. 4; how-
ever, a more complex situation may occur when the PQS
branch becomes unstable by allowing bistability also with
chaotic regimes. The hysteresis cycle then resulting is
delimited from one side by AH2 and by the other side by
a value of A = AT that we will name transition value or
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transition point (TP). In the space A, A the set of these
points defines a line that we call transition line (TL). It is
very important to notice in light of the above discussion,
that the transition point, i.e., that point where the dy-
namic regime collapses on I+, does not necessarily coin-
cide with the limit point of the periodic solutions branch.

D. Search for chaotic regimes

We have performed a systematic search of chaotic re-
gimes with the purpose of identifying regions of the pa-
rameters for the occurrence of chaos in this model.
Indeed we have noticed that chaos is always found to be
contiguous to the TL line. When a &1 the regions of
chaos are very wide and easily detectable whereas, when
a becomes larger than unity, these regions gradually
disappear until for a-=20 no sign of irregular behavior
exists and only the P' ' regime is present, Fig. 5. The
above behavior depends weakly on the values of the pa-
rameters y, and y &

= —c
&

but the role of a is by far the
more marked. Of course when y&= —

c& increases adia-
batical elimination can be applied; the model then trans-
forms into a two-dimensional one and the possibilities to
observe chaos vanishes.

We point out here that, since the system we are dealing
with is not purely deterministic because of the presence
of the spontaneous emission term, we cannot speak strict-
ly of deterministic chaos. On the other hand the ex-
clusion of the noise term would lead to a very unrealistic
LSA model not deserving of being studied. However it
must be noticed that this noise is very small and its
influence is important only in those regimes in which the
laser completely turns off; this is the rule when a ) 1

whereas for a & 1 these regimes occur when we move
with the parameters A and 3 far away from the TL line.
In this last case, the chaotic regimes detected near the
transition line are truly deterministic.

For a ) 1 the structure of the chaotic signal is recog-
nizable as a random sequence of pulses of the P'"' type
with diff'erent n .Figures 6(a) and 6(b) show a phase dia-
gram delimiting the regions of existence of difFerent re-
gimes. It appears that in some cases transitions
P'"'~P'"+" occur sharply and in others they occur
gradually through a region in which a random sequence
of P'"' and P'"+" exists. From Fig. 6(b) we can observe
that the regions corresponding to a pure P'"' regime be-
come smaller and smaller as n increases suggesting the
presence of a limiting very unstable Aow. These regions
are surrounded by others characterized by a spread and
an average value of n which increases as we move to-
wards the transition line. As pointed out above we must
control the efFect of the noise on this behavior by replac-
ing the random noise with its equivalent deterministic
spontaneous emission term; by doing so the erratic evolu-
tion disappears and sharp transitions characterize the
passage from P'"' to P'"+". This suggests that even if

0.0
0.0

0
/

6-- 6

4-

2

0.6 14 A

FIG. 5. Unfolding in the space A, A of the stability domains
of the LSA for the case a =50 and the other parameters in the
text. We observe bistability of I+ with P' ' (ON/PQS) in the re-
gion between HB and TL lines and of I+ with Io (ON/OFF) be-
tween the HB line and Ao dashed line. No signs of chaotic be-
havior are present.

FIG. 6. State diagram of LSA in the space A, A for a =10.
(a) Overall view; (b) enlargement of the inset in (a). Regimes
corresponding to a random sequence of pulses P'"' with
different n, named hesitations in Ref. 1, occur in the hatched
area. The regions of pure P'"' are indicated by the number n

and are separated by regimes corresponding to a mixture of the
two adjacent P'"' and P'"+", however, far from this bordering
area mixtures with more than two P'"' exist.
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site sides. In the case of the LSA the limiting point of
this sequence is necessarily the stationary regime I+ and
this explains why, as noticed above, chaos must always
appear along the TL line, this one being also the line on
which the homoclinic orbit must be found. As a matter
of fact, by looking at Fig. 6(b) and focusing our attention
in the region where the HB line and the TL line get
closer, we notice that the order n of the pulses P'"' in-
creases drastically as we move towards the TL line. The
proximity of these two lines can also be understood in
terms of the existence of the underlying homoclinic orbit
based on an unstable cycle. In fact we notice that the
stable manifold of this cycle forms the boundary separat-
ing the basin of attraction of I+ and the set of orbits P'"'.
As 3 is increased the orbits P'"' and the boundary collide
right on the TL line, a point of this line being character-
ized by a tangent collision, and the orbit drops on I+.
We observe numerically that the stable manifold is very
sensitive to changes of 2 while the reinjection trajectory
of the orbits P'"' suffers little modifications. The proxim-
ity of the HB and TL line can consequently be related to
the rapidity with which the stable manifold grows as 3

0.01

increases, which is more true the more a is large.
As a next point we want to show that the chaotic re-

gimes observed for a ( 1 are strongly connected with the
existence of a limit cycle emerging from the Hopf bifur-
cation which undergoes period-doubling transitions. Fig-
ures 9(a) and 9(b) show the phase diagram in the space of
the parameters 3, A for a value of the saturability pa-
rameter a =0.3. The transition line TL and the HB de-
limit the region where bistability between I+ and a
variety of dynamical regimes, including chaotic ones, is
observed. The unfolding of the bifurcations in the space
of the parameters 3, A reveals that for low values of A

the T regime originated from supercritical Hopf bifurca-
tion is stable and continuously transforms into P' '. As
we move to higher values of 3 the HB turns subcritical
and we observe a sequence of period doubling of the T re-
gime. We observe continuous transitions also between re-

30-
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0.0

-0.0].
-0.01 (S+D)

&2

0.01
32-

0.0

-0.001
0.003 (S+D)
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24.

0.6 0.8

FIG. 8. Poincare section in a plane perpendicular to the I
axis containing I+ (cross) for parameters 3 =1.1, A =5.7. The
origin coincides with I+ and the x axis coincides with the bisec-
tor of the quadrant D & O, S & 0. (b) is a blowup of the framed
area in (a). The manifold on which the slow spiral-diverging
motion takes place appears almost coincident with the x axis,
while the parabola shaped reinjection structure is visible in the
blowup (b). DO=SO is the stationary value of D corresponding
to I+.

FIG. 9. State diagram of LSA in the space A, A for a =0.3.
(a) Overall view. (b) Blowup of the inset in (a). 0/1 and 0—1 in-

dicate, respectively, bistability and hesitation between P' ' and
P'" regimes. Period-doubling sequences appear for T regimes
as well as for P' ' and P' ' regimes, these are prefixed by a small

number denoting the order of the bifurcation sequence. Chaos
occurs in the hatched area. Bistability of chaotic regimes with

I+ occurs between the HB and TL lines.
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gimes 2T and P'" and between 4T and 2P'". The
period-doubling sequence can be observed up to the re-
gime 8 T, after which we enter a region of chaotic behav-
ior. Figure 10(a) shows a 30 portrait of the 2T regime
while Fig. 10(b) shows a portrait of the chaotic attractor
in a point of the chaotic region of Fig. 9(b). Embedded in
the chaotic region shown in Fig. 9(b) there are windows
of periodic regimes, P' ', P' ', and so on, they themselves
undergoing a sequence of period-doubling bifurcations.
We wish to draw attention to the hooklike shape of the
transition line in Fig. 9(b) which surrounds the region
where the lines corresponding to period-doubling bifurca-
tions of the T regime accumulate. Moving down by keep-
ing 3 constant and crossing this region can render the
idea of the complexity of the branch of periodic solutions
emerging from I+. Initially we encounter the period-
doubling sequence of T regimes leading to chaos, this
suddenly disappears as we enter the region in which the
only stable solution is I+, by further decreasing 3 the
chaotic region suddenly shows up again displaying a bi-
stability with I+. Finally we end by crossing regions of
P'"' with relative inverse period-doubling sequence re-

gimes until P' ' is reached. As a final consideration we
notice that the overall phase diagram of Fig. 9(b) seems
to be topologically equivalent to the experimental one of
Ref. 2; however, one of the reasons for which no overlap-
ping can be attempted is because the parameters used in
the experiments, i.e., the cavity detuning and the
absorber's pressure are different than those used in our
simulations.

As it appears the chaotic behavior in the case just dis-
cussed is much more complex than in the case of a ) 1;
we believe that here also the instabilities have to be
attributed to the presence of a homoclinic orbit biasymp-
totic to an unstable periodic solution. This is intuitively
supported by the view of Fig. 10(b) where an unstable
manifold and a reinjection process can be identified if the
orbit portrait is carefully inspected. In addition the pres-
ence of period doubling on regimes P'"' is a mark for this
kind of chaos. Further analysis in support of this idea, in
particular, to evidentiate a reinjection structure getting
close to the stable manifold of the saddle cycle as shown
in Fig. 8 for the case a ) 1, is currently in progress.

K. Generalized bistability

An interesting case of bistabihty between the regimes
P' ' and P'" is also observed in the LSA. Contrary to
the majority of the cases where transitions between P'"'
regimes occur discontinuously or through hesitations
here we observe the birth of a bistable behavior in the re-
gion between the dashed and the solid lines in Fig. 9.
This is the only case of bistability between two stable
periodic regimes that we have been able to detect. We
note however that, while the transition appearing in the
enlargements of Figs. 6(b) and 9(b) numerically obtained
by increasing A have been determined quite accurately
(about 400 points for each blowup), the occurrence of
bistable situations has been checked less thoroughly only
at the completion of the phase diagram. As a conse-
quence of this some other bistability case may have
passed undetected. It is interesting to notice how bista-
bility between P' ' and P"' transforms into a mixture of
these two regimes as we move along the bistability region
in Fig. 9(a).

V. CC)NCLUSIONS

FIG. 10. Three-dimensional portraits of the 2T orbit for
2 =0.68, A =26 with value ranges D =S=( —0.09, —0.01),
I= (0,220) in (a); a few cycles of the chaotic attractor
2 =0.78, 3 =237, with value ranges D =S=( —0.09,—0.01), I =(0,330) in (b).

We have studied systematically in the range of physi-
cally meaningful parameters a model for the LSA pro-
posed by Tachikawa and co-workers. Our theoretical ap-
proach is much more general having the advantage of
clearly evidencing the mathematical and physical struc-
ture of the model by depicting the relaxation processes
with a set of time constants and coupling constants. In
this framework we have pointed out a natural way to per-
form the adiabatic elimination of fast relaxation mecha-
nisms as, for example, the rotovibrational relaxation in
the amplifier medium, thereby making clear why the
four-level models proposed in the past to investigate the
LSA dynamics failed to display chaos. Furthermore the
inclusion of additional relaxation processes as the very
important one due to collisions with N2 in the amplifier
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medium, missed in the present model, should easily be
taken into account and should produce significant
modifications at the level of quantitative agreement with
the experimental measurements. Some other important
approximations have been carried out to describe the be-
havior of the absorber. Due to the high pressure in the
absorbing cell in experimental situations a homogeneous-
ly broadened regime of absorption with a single absorb-
ing line has been considered. However, these two ap-
proximations are not completely satisfied, for example, in
CO2-SF6 LSA. In fact it is possible to estimate that a
small amount of inhomogeneous broadening is present in
the absorption; this would require the use of a Voigt
profile to better describe this process. On the other hand,
from preliminary calculations, in which the absorption
factor in Eq. (14) has been replaced with the one in the
full Doppler regime, we have been able to detect only
negligible changes in the LSA behavior. With regard to
the second approximation we believe that the presence of
more than one absorbing line may be responsible for the
anomalously high saturation intensity of the absorber at-
tained in the LSA experiments. However, its inclusion in
the LSA modeling would have required the knowledge of
additional parameters of the absorber medium that are
not available at the present. For these reasons, and even
because the purpose of the present discussion was to
firmly assess the scope of the existing models before at-
tempting improvements, we have made the simplest
choice of the LSA modeling.

We have found that the important parameter which
determines the presence of chaotic behavior is the rela-
tive saturability of the absorber and this qualitatively
agrees with experimental situations. In particular we
have found that truly deterministic chaos occurs for a & 1

whereas when a & 1 the deterministic chaos occurs in an
extremely small region of the space of parameters. In
this context the presence of a very small noise, as spon-
taneous emission is, greatly amplifies the region in which
random behavior is found. Furthermore the appearance
of deterministic chaotic regimes when the relative satura-
bility is smaller than unity indicates that the laser with a
saturable absorber is a rather stable system whereas the
laser with a saturable amplifier is a very unstable one.
This statement should however be related only to the case

of realistic laser parameters; it is, in fact, obvious that if a
tends to zero the system becomes stable again.

With regards to a comparison with experiments and
with data commonly used in the literature there is a seri-
ous discrepancy on the value of the amplification A as
well on the saturability parameter a. On the other hand
this model gives a good qualitative agreement with the
pulse shapes and phase diagrams experimentally deter-
mined to lead one to trust it as a good model. We hope
that this work will help to redeem the question either by
a search of a better modeling or by an additional careful
experimental verification.

We have investigated the nature of the chaotic regimes
of the LSA and we have found that in order to acquire a
better understanding of the onset of the chaotic regimes
the branch of periodic solutions and proper Poincare sec-
tions of the chaotic attractor must be considered. These,
together with three-dimensional portraits of LSA orbits,
led us to identify the homoclinic origin of the chaos in
our laser system. In fact we have been able to ascertain
the presence in our system of a homoclinic orbit biasymp-
totic to an unstable periodic motion of the system. This
is of great importance in the LSA where previous analy-
ses of this system attributed chaos to a homoclinic orbit
biasymptotic to the unstable lasing stationary state. So
far this last mechanism has received much attention in
the field of laser instabilities, as opposed to the one that
we have discussed for the LSA. We believe indeed that
this mechanism, because of its transversal approach to
the stable manifold of the stationary point, is by far more
likely to occur in a given system than the homoclinicity
to an unstable point where a longitudinal approach must
occur.
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