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A linearized theory of transient laser heating in Suids
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A linear theory of laser heating is used to describe the coupling of optical waves to thermally induced

acoustic and entropy perturbations of the medium. The analysis differs from those of previous authors
in its treatment of entropy, dissipative effects, and active compensation of thermally induced laser-beam

aberrations. An intuitively simple equation for the medium perturbation is derived, within the hydro-

dynamic approximation. The dimensionless parameters that characterize the diverse scattering regimes

are discussed. The boundary-value problem is solved for specific cases of interest. Comparison with a
nonlinear simulation verifies the linearized result in such cases.

PACS number(s): 42.68.Mj, 42.20.Ji, 42.65.Es, 62.60.+v

I. INTRODUCTION

In a number of applications, a laser-beam pulse propa-
gates through an absorbing Quid. Such applications in-
clude transmission of lasers through the atmosphere.
The fraction of energy lost to the medium might be a rel-
atively small portion of the total energy, yet sufficient to
disturb the medium, creating acoustic waves that may
move a significant distance transverse to the propagation
direction during the pulse. Such waves lead to the well-
known t -blooming refractive-index variations [1,2]. As
the medium attains mechanical equilibrium, a linear time
dependence is found —this is referred to as steady-state
thermal blooming. When such blooming is su%ciently
strong, the induced refractive index alters the intensity
profile of the beam further along the propagation path.
This altered intensity profile induces a somewhat different
refractive-index profile that may reinforce the path-
integrated t or t ' blooming. This self-enhancement may
be called stimulated thermal Brillouin scattering or
stimulated thermal Rayleigh scattering, respectively [3].
In principle, this scattering may occur in any direction.
In practice, the greatest enhancement occurs in the near-
forward or near-backward direction, because these direc-
tions have the greatest overlap with the scattering beam.
Such scattering may be analyzed using a linearized
theory; the linearized theory has been relatively success-
ful in predicting behavior for steady-state thermal bloom-
ing and is anticipated to be so in this case also, provided
the heating-induced aberrations do not remove a substan-
tial portion of the beam energy [4,5]. Thus this approach
neglects important nonlinear effects such as laser de-
pletion [6] and absorber saturation. Qn the other hand,
many treatments use a linearized theory, including some
of the earliest works in laser heating [3,7—9]. Since those
earliest efforts, the approach has been refined repeatedly
to include the effects of high spatial frequencies [10,11],
resonant absorption and emission [12], compensation of
both phase and intensity [13—15], and instability-growth

effects [14—16]. A key realization in much of the latest
work involves the effect of medium turbulence.
Turbulence-induced refractive-index variations have been
known and studied extensively [17]. However, only re-
cently has it been discovered that turbulence-induced
scintillation creates substantial local-heating variations in
cases of interest [4,10,13,16]. The scintillation effects are
naturally treated through the Rytov approximation,
which utilizes the phase and log-amplitude as the depen-
dent variables [17]. Within this formalism, the important
four-photon processes of stimulated thermal scattering,
first treated by Kroll and Kelley [9], are included in some
of the more recent works [4]. This formalism predicts
that the phase diffracts into intensity variations that form
a seed for an effect that is now known as near-forward
stimulated thermal Rayleigh scattering STRS [3]. This
effect has also been referred to as thermally amplified
scintillation (TAS), or as a turbulence-thermal-blooming
interaction (TTBI) [4,13,14,18]. STRS occurs when the
laser-beam-heated region has attained mechanical equi-
librium with the surrounding medium. Thus the heated
regions are at a different density and temperature —the
entropy of the medium is a function of position, one
which oscillates and grows. This solution may be
thought of as an entropy fluctuation of the medium cou-
pled to a spatial perturbation of the optical field.

The effect of localized scintillation may also be
significant within a pulse, especially for high-intensity
pulses with pulse durations in excess of a few mi-
croseconds [19]. In this early-time regime, Brillouin
scattering by thermally induced acoustic waves may re-
sult in what is known as stimulated thermal Brillouin
scattering (STBS) [3]. In this case, the density fiuctua-
tions associated with acoustic waves are what couple to a
perturbation of the optical field. Our principal aim in
this work is to extend existing linearized theories to treat
the acoustic-optical modes of near-forward STBS. The
following section outlines a derivation of these equations
convenient for accomplishment of this aim.
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II. BASIC EQUATIONS

B,pv;+g (pv;v +P5, —o J, )"=0. , i =1,2, 3
a

j J
(2)

The basic equations of motion for a simple Quid are
given by expressions for the conservation of mass,
momentum, and energy:

B,p+g (pvj ) =0,a

j J

where (r)PIBs)& =p (BT/Bp), from the Maxwell-Gibbs
relations, (BP/Bp), =v o for the limit of small density per-
turbations, vo is the acoustic velocity, (dT/ds) =T/c„
and c„ is the specific heat per unit mass. The simple ex-
pressions (6) and (7) become more complicated when tem-
poral and spatial variations of the medium occur on
scales of the mean free time or mean free path, respec-
tively, i.e., when local thermodynamic equilibrium is not
obtained. These complications will be neglected. To the
above equations the energy equation may be added, to
provide the final needed equation. Here again, the
differential form is adequate:
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5u = (P Ip )5p+ T5s .

The remaining partial derivative p (BiT/dp), may be
evaluated easily in terms of basic experimental parame-
ters using well-known thermodynamic relations to yield

2 aT
p =(a, Icz )vopT =a, TIPrc„=(y —1)pT, (9)

S

pv =pv' —xD Vp, (4)

where ~D is the self-diffusion constant. In addition to
diffusion, the dissipative effects of thermal conductivity
and viscosity are included. The thermal conductivity is
given by az =czar/P: c„rjlp, whe—re P is the Prandtl
number of the rnediurn, c, are the specific heats per unit
mass, and g is the coefBcient of first viscosity. Viscosity
is explicitly included through the viscous stress tensor o.;.

Bv Bvj
o;J =i) + ——5;.V v +(V.v,

c)xj ()x. 3

where g is the coefficient of second viscosity. This
neglects the well-known relaxation effects that occur out-
side the hydrodynamic approximation [20].

In Eqs. (1)—(3), there are seven dependent variables, in-
cluding the three components of velocity. Thus a
minimum of two more equations are needed. If the en-
tropy s per unit mass is introduced, then three more
equations are needed. As is well known, the set of four
thermodynamic quantities (p, P, T,s) are not independent;
any pair may be expressed as a function of the remaining
pair for a simple Quid. Thus we may choose to eliminate
the pair (P, T) in favor of (p, s). These relations may be
expressed in differential form for our purposes. Thus, in
differential form, with the derivatives assumed given,

(6)ap, p as

Bp
(7)

where p, u, P, v, and T are the density, internal energy
per unit mass, pressure, velocity, and temperature, re-
spectively, of the medium, and q is the rate of heat added
per unit volume. The mass Aux pv is the sum of the kine-
rnatic mass Aux and the Aux arising from diffusion of den-
sity variations:

P Po+~P ~

s =so+6

(10a)

( lob)

v=vp+6v (10c)

A further simplification results by setting vo to zero—
this may be done without loss of generality because the
conservation equations are invariant under Galilean
transformations. A simple change of variables,
x, =x—vot, reduces the more complicated case to the
simpler case. To complete the development, the laser-
induced heating must be introduced. The laser typically
excites an internal degree of freedom of the molecules
that compose the Auid. The result is a nonequilibrium
population shift n, of molecules into an excited state of
energy AE, which energy is some fraction of the quantum
of laser energy hv. The energy hE contained in this
mode then relaxes into translational energy, i.e., heat,
through an exponential process with decay rate I . The
remaining photon energy is removed through nonthermal
mechanisms. Thus, assuming a two-state system with to-
tal population no&,

q=kEI n&,

(8, +I )n, =(a'Ihv)I(1 —2n, lno, ), (12a)

where a' is the photon absorption per cm. An expression
equivalent to Eq. (12a) may be written for the heating
rate; defining a normalized absorption per cm,
a =a'AE /h v, and neglecting population saturation
effects, one has

where the last equality holds for the case of an ideal gas,
y is the ratio of specific heats, and where a, and Pz are
the isobaric coefticient of thermal expansion and the iso-
thermal coefBcient of compressibility, respectively.

The above equations are linearized about spatially and
temporally homogeneous zeroth-order values of the
dependent variables,
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(8, +r)q=arI . (12b)

86p +poV. 5v =0,
at

(13)

In general, the decay rate I depends on both the popula-
tion decay rate and the diffusion of stored internal energy
[6,21,22]. Typically, however, the relaxation rate is dom-
inated by the two-level population decay rate, equal to
the inverse of the T2 decay time [22]. This is especially
true for forward scattering, for which the low spatial fre-
quencies involved imply that diffusion occurs on a rela-
tively long time scale.

One may now proceed to combine Eq. (12b) with the
linearized versions of Eqs. (1)—(3) which then yields the
following result [23]:

the effect of the divergence of the velocity. On the other
hand, the Stokes-Helmholtz theorem states that the ve-
locity field can be decomposed into two fields —a curl-
free component with nonzero divergence, and a
divergence-free component with nonzero curl. The forrn-
er component is accounted for in the expressioris for s
and p', the latter component is not. One finds that the
latter component makes no contribution provided the
laser intensity introduces only curl-free forces in Eqs.
(14). In the simple case of laser heating, the laser beam
provides negligible direct force; thus it is seen that the
curl of the velocity makes no contribution.

Of the two remaining equations, one may be eliminated
in favor of the other. Choosing the density because it is
most relevant for heating-induced laser aberrations, one
obtains the relatively transparent expression

po = —vov5p —
po V5s +rIV 5v

B5v 2 ~ BT 2

Bp

+(g+g/3)V(V 5v), (14)
(16a)
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where 0'=(BT/Bp), (po/To), go=r)/po is the kinematic
first (shear) viscosity, and r is the ratio of the second
viscosity to first viscosity. t, is the convection time in the
convected frame, so that

a, =5,—v(z).V,

These equations may be simplified yet further by elim-
inating the velocity perturbation. This is accomplished
by taking the divergence of Eq. (14) and using Eq. (13) in
the reduced equation to substitute the density for the
divergence of the velocity perturbation. Equation (14) is
reduced to an expression involving the density and entro-
py only. This last reduction obviously only accounts for

I

where v(z) is the medium fiow velocity, a function of po-
sition along the laser-beam propagation path. With
smooth variations of the fiow along the optical propaga-
tion path, Eq. (16a) retains its validity [1,2], and this
variable-wind case is included in the formalism. The
above equation for density variation is supplemented with
a similar equation for the entropy perturbation s:

[a', O', V' —~,( 4+r)a, V-'][a, (q, Zp)V—'](a, +r)5s

=[8, —v V —g ( —', +r)B, V ] V I+c,T 0' (r) //t)V V (8, +I )5s .
Po o

(16b)

These are our basic equations for transient laser heating.
This latter equation differs from the previous one only

in that the differential operator on the optical intensity
takes a wavelike form. These equations for the density
and entropy then form a complete description of the
response of the medium to heat deposition by optical
waves within the linearized hydrodynamic approxima-
tion. In the opinion of the authors, these equations are
more obvious than earlier descriptions that involve tem-
perature rather than entropy.

It can be seen that the dissipative terms typically in-
volve powers of the Laplacian operator; this implies that
dissipative effects are especially important for finer-scale
perturbations. These effects tend to damp the high-
spatial frequency perturbations that would otherwise
dominate the results obtained from solution of previous
approximations [1,2]. The above equation correctly gen-
eralizes the sound velocity to include the transition from

adiabatic to isothermal compression that occurs for the
higher-spatial frequencies. The simple t regime is
recovered by the neglect of all terms involving the Lapla-
cian of the density perturbation and by assuming the pop-
ulation decay is in steady state.

The above equation has a form amenable to simple ex-
planation. The differential operator is factored into three
operators, one of which has wavelike solutions; the
second has diffusive solutions; the third corresponds to
decay of the excited-state population. An additional term
on the right-hand sides of Eqs. (16) is present to account
for the effect of entropy-density coupling at higher spatial
frequencies. The wavelike solutions move with the acous-
tic velocity and correspond to sound waves damped by
viscous forces. As these waves progress, they move out
from the heated regions, "uncovering" a heated slug of
the medium that is in mechanical equilibrium with the
cooler surrounding gas. This slug may have variations in
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entropy according to variations in heat deposition. Such
variations decay through thermal conduction. When the
source of heat deposition, e.g. , a laser beam, is altered by
these variations, these perturbing variations will oscillate
and grow, both temporally and spatially [9]. This may be
seen from Eqs. (47)—(50); perturbations of the laser beam
grow concurrently as may be seen from Eqs. (52). These
perturbations of the laser beam are distortions that arise
from the spatially varying heat content of the medium.
As mentioned earlier, this particular type of scattering is
named stimulated thermal Rayleigh scattering [3].

In addition to scattering from entropy waves, scatter-
ing may also occur from the previously mentioned acous-
tic waves. This analysis breaks naturally into two
separate cases —near-forward and near-backward STBS.
Scattering angles that are neither near forward nor near
backward are of less interest —such large-angle scatter-
ing typically leaves the irradiated volume before it is
enhanced by further interaction. The backward-
scattering case is of some interest when the laser coher-
ence length is sufficiently long —this case is treated in the
Sec. III. Our main interest is in near-forward scattering;
thus the remainder of the paper will be devoted to that
case.

Near-forward STBS or STRS is often described as
thermal blooming. An important simplification occurs in
such instances —the variations of the envelope of the
electric field and the density perturbations parallel to the
propagation axis are much smaller than those perpendic-
ular to the propagation axis: The ratio of the derivative
parallel to the axis B,E to that perpendicular to the axis
V~E is approximately equal to A, /D~, where A, is the spa-
tial period of the perturbation, and D~ is the optical
wavelength. Thus the z derivatives of the density and en-
tropy are neglected. Another relevant simplification is
the assumption that the Quid is an ideal gas. For an ideal
gas, one may use Eq. (9) to simplify Eqs. (16). One finds
that %=(y —1), and that c, To%' = [(y —1)/y]vo. A
third assumption that is often appropriate is that the pop-
ulation transfer has reached a steady state; often the pop-
ulation decay rate is on the order of nanoseconds, during
which time the acoustic and dissipative processes in the
medium have produced negligible effects [22]. With these
assumptions, the more familiar equation [1,2,5] for the
medium perturbation is recovered, but in this case dissi-
pative efFects are properly treated:

and y refers to the log-amplitude fluctuations. With this,
Eq. (17) may be made linear in the small fiuctuations y:

ViI =2IOV~+O(5y ) . (19)

where hn =(Bn/Bp), 5p+(Bn/Bs) 5s is the induced re-
fractive index variation, vg =c/no, c is the speed of light,
n0 is the refractive index of the unperturbed medium,
k0=k00n0 is the optical wave number in the Quid, and
kp0 is the optical wave number in free space. The quanti-
ty (Bn/Bp), is the change in refractive index per unit
change in density, at fixed entropy, and is equal to
(no —1)/po for no= 1. The change in refractive index
with entropy at fixed density is assumed to be zero for the
structureless simple fiuids we are considering here [24].
Returning to Eq. (20), going to the retarded frame, substi-
tuting the Rytov expression for E, equating real and
imaginary parts in (20), and linearizing, yields

V2
B,P — y=(ko/no)hn,

2 0

V2
B,y+

ko

(21'I

(22)

These last two equations are easily simplified by using
Fourier-transform techniques. One defines the Fourier
transforms as

and

y= f exp( —ik.x)5g(k)dk (23)

Now, the evolution of the electric field also must be de-
scribed. The intensity perturbations have been defined; a
complementary perturbation of the phase must also be
chosen. To do this, use the paraxial equation, with the
electric field given by E(x)=IO exp(g+iP). This ap-
proach for the optical field is consistent with the Rytov
approximation and with that of other authors [13,16,17].
These perturbations of the optical field must then be sub-
stituted into the evolution equation for the electric field,
given by

T

V2
a, +(1/v, )e, + „Z2~k0

i (ko—/no)b. nE —(a'/2)E, (20)

[a', —v,'V',—q, (-', +r)a, V', ][a, —(q, //)V', ]5p (5= f exp( —ik.x)5$(k)dk (24)

(y —1 2=(y —1)aV~I+ vo(go/g)V~V~5p . (17)

Equation (17) shows that the optical intensity can in-
duce density variations. In turn, the density variations
may alter the intensity through thermal blooming —the
density changes induce a refractive-index change that re-
sults in focussing or defocussing of the beam. One may
write the intensity as

k
B,5$+ 5y=(ko/no)5n,

2 0
(25)

where k denotes the transverse wave number in the fol-
lowing equations, and 5y, 5P, and 5n refer to the Fourier
transforms of y, P, and b.n, respectively. The above inho-
mogeneous equations then simplify to those correspond-
ing to a harmonic oscillator:

I(x, t)= ~Eo+5E(x, t)~ =Ioe z,
where Io= ~EO~ is the unperturbed laser-beam intensity,

k
a,5~—

2k0 2
(26)
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Additional notation for the Fourier components has been
dropped here and through the remainder of the paper
when no confusion results. In many cases, the direct
effect of absorption is unimportant; thus one may ignore
the absorption term on the right-hand side. One may
also simplify notation by changing the propagation vari-
able to the dimensionless variable g=k z/2ko; one ob-
tains from Eqs. (25) and (26), for each transverse Fourier
component,

8(z) = k—v(z)/r, r,P,
~=(~o/P„)k'/r, I,P,
p=uok/I, IoP .

(3 la)

(31b)

(31c)

One then obtains the following dimensionless version of
Eq. (30):

[8, +p +( ', +r—)pad, ](8, +e)5n

ay~ —5y=0, (27) p2 X + V p2~5n
p y

(32)

5n (k) = 5p(k)
2np Bp

np 1
5p(k),

Po
(29)

where e,, is a diagonal element of the dielectric tensor for
an optically isotropic Quid. Then one obtains the linear-
ized equation of motion

[a', +(uolkl)'+go(-', +r)lkl'a, ](a, +(qo/p)lkl')5n

= —(volkl) 1,Io5y+ vo(iso/g)lkl 5n, (30)
'V

where

1,=2(Bn/Bp), a(a, /c )

=2(no —1)(y —1)a/ypo,

so that I IIo is equal to the optical-path difference per
second per meter, induced by thermal blooming in the
steady state. Thus ( kon/)o(I, I )o( n2ko/lkl) is the
number of radians per second of the thermally induced
phase imposed by propagation over a Rayleigh range of
the perturbation scale in the steady state. Since our in-
terest is in transient heating of sufticient strength to alter
the beam profile, this number is expected to be greater
than one in relevant cases. This motivates our choice of
normalization of time; one may normalize the time vari-
able to the dimensionless time r, =l,Iopti and the nota-
tion is then simplified by writing

d~5$+ 5y =P5n, (28)

where P '=2no(k/2ko):—noPo
' is ProPortional to the

magnitude squared of the grating vector formed by in-
terference of the laser-beam perturbations with the un-
perturbed beam. Before proceeding it is worthwhile to
mention the utility of the Rytov formalism. The Fourier
component of the log-amplitude fluctuation may be ex-
pressed as

5y(k)= —,'[Eo5E(k)+E 5oE*( —k)]+O(5E)

thus this formalism automatically includes the four-
photon coupling processes treated by previous authors
[9].

To relate the propagation equations to the equations
for the medium perturbation, one may substitute the re-
fractive index for the density, assuming no =1,

(8&+1)Xz5n = p—5n +(8& +1) p e5n .2

[[i),—i8(g)] +p +(—', +r)pe[8, —i8(g)]J

(34a)

X [8, i8(g )+—e]5n —=X25n, (34b)

This linear partial-differential equation is a significant
result of this effort; it may be used to analyze thermal
blooming in most heating regimes relevant to laser propa-
gation. To make this equation more relevant to situa-
tions of interest, set 5n=5n~+5nT, where 5n~ is the
blooming contribution, and 5nT is the turbulence contri-
bution. The temporal operator operating on the tur-
bulence contribution yields nearly zero because the tur-
bulence is assumed to obey the frozen-Aow hypothesis
with diffusion:

[i),—i8( g)+ e]5n T =0 . (35)

Thus Eq. (34) may be simplified to give an inhomogene-
ous equation for the blooming contribution:

(8~+1) X2/p — e +1 5n~
(y —1)

(y —1)
1 —(8&+1) e 5nT . (36)

Another simplification is applicable in cases in which
the turbulence 5nT is predominantly of low spatial fre-
quency; in such cases

(i)&+1)[(y 1)/y)e5nz l «5nz
and the second term on the right-hand side is negligible.
This is then the form of the equation used for our
analysis. Equation (36) is to be supplemented with Eq.

Now we have three dimensionless equations, (27), (28),
and (32), in three unknowns, 5n, 5$, and 5y. Two of
these unknowns may be eliminated to obtain a simplified
equation of motion. To eliminate the phase perturbation
5P one may diff'erentiate Eq. (27) and use Eq. (28) to elim-
inate B&5$. One obtains

(Bg+1)5y=P5n . (33)

Applying the (i)&+1) operator to both sides of Eq. (32)
and substituting p5n for the differentiated intensity in the
resulting equation leads to the following expression, in
which simplified notation is used for the explicit form of
the differential operator,
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5n~(r=0)=d, 5n~(r=D)=d 5n~(r=0)=0, (37a)

(33) to obtain the intensity perturbation from the
refractive-index perturbation and with Eq. (27) to obtain
the phase perturbation from the intensity perturbation.
This method allows relatively easy computation of all the
dependent variables with closed-form expressions.

The initial conditions remain to be specified. For the
blooming-induced refractive-index variations, 5nz =0
and all its time derivatives are zero at t =0, for all g and
all k. This merely restates the assumption that the laser
does not heat the medium until it is turned on. At the g
boundary of the solution region, the value of /=0 corre-
sponds to the laser transmitter location. At this bound-
ary the initial conditions are specified and propagate to

At g'=0, 5nz(/=0), and dgnz(/=0) are deter-
mined by the intensity and phase, respectively, of the
laser beam. The relations are as follows:

frequency co and optical wave number kp, and
5E exp[i(ro&t —

k& z)] is the electric field amplitude of a
perturbation which may be nearly copropagating or near-
ly counterpropagating with respect to the laser beam.
Hence, k, =(+ko+5k, )z+k~e~. Note in Eq. (38) that
we utilize the assumptions of monochromatic radiation
and of only one Fourier component of the perturbation.
These assumptions apply to this section only; thus in this
section only we neglect the important linewidth [21] and
four-wave mixing [9] effects. Keeping only terms linear
in 5E, and equating temporal and spatial frequency com-
ponents on both sides of Eq. (16a) leads to the amplitude
of the medium perturbation. Avoiding the restrictive as-
sumptions after Eq. (16a) and utilizing the corresponding
normalizations of Eqs. (31) and of the preceding text
leads to a dimensionless dispersion relation for the
refractive-index perturbation, which in this case is given
by

&x

g=o p g=o

(y —1)2/P— (a&5m )
g=o p g=o

(y —1)
X2/p — e 5n

y

(37c)
where

X (i5co/r2+ 1)5n =—6E
(39)

(37b) I [(i 5'�/p ) + 1 + (
4 +r )p( e /p )( i 5' /p ) ](i 5' +e )

—@e]

These equations, (36), (33), (27), and (37), determine the
evolution of the heated medium for all times and posi-
tions provided the intensity perturbations remain small
compared to Ip. The possibility of compensation for at-
mospheric turbulence will alter the initial conditions, and
this aspect of the problem is treated in Sec. VII.

Before discussing the solutions in detail, important
general remarks may be made from the form of the re-
sulting Eqs. (34) and (36), especially regarding scaling of
the interaction. The dimensionless scaling parameters
give physical insight into the result, and provide useful
back-of-the-envelope estimates. These parameters are
discussed in the fo11owing sections.

III. DISPERSION RELATIONS

The dispersion relations of stimulated thermal scatter-
ing have been an important part of the study of stimulat-
ed scattering [3,7,9]. In stimulated thermal scattering the
intensity that drives the material excitation derives from
the interference of the laser beam and a sma11 stimulated
wave,

I= ~Eo exp[i(cot —koz)]+5E exp[i(co, t —k, z)]~

(38)

where z is the propagation axis, Eo exp[i (cot —koz)] is
the laser-beam electric-field amplitude of optical

5~=(~, —~)/r, I,p,
r, =r/r, I,p,
@=uoa, T/yc~ =c, T%' luo,
e(z)= —I v(z)/r I,P,
e=(rioly)k /r, IoP, k = ~k, +koz~,

i =uok/r, loP .

(40a)

(40b)

(40c)

(40d)

(40e)

(40f)

(40g)

As in Sec. II the quantity 1/P is proportional to the
squared magnitude of the grating vector formed by in-
terference of the laser-beam perturbations with the un-
perturbed beam. Thus, in the backward-scattering case,

p= po«o = 1
I'

1—
2Pio

1

2Pj o 2np

where I/P~o=2(k~/2ko) is the normalized Path delay of
a beam traveling at an angle 8=k~/ko with respect to the
propagation axis.

Solving for 6n and substituting into the linearized,
Fourier-transformed, and dimensionalized paraxial equa-
tion (20) yields the second equation needed to form the
dispersion re1ation for STBS or STRS:

[(5k, /ko )+(54u/co ) + I /P~o+ a/2ko ]5E

= (5n In() )Eo

= —(5E/Po)/I [(i5'/p ) + 1+( 4, + r)/'4(e/p)(i 5'/p) ](i5'/e+ 1)e—@e] (i54u/r2+ 1),



6868 R. HOLMES, R. MYERS, AND C. DUZY

where +(5co/co) refers to copropagation ( —) or counter-
propagation (+) of the optical perturbation with respect
to the laser beam. The nondimensionalization of Eq. (41)
is achieved by division with the optical wave number ko;
this contrasts with the nondimensionalization of Sec. II,
in which the non dimension alization is achieved by
division with kp/Pip The present normalization is more
suitable for the general case. Equation (41) gives the
dispersion relation for stimulated backward thermal
scattering as a function of the dimensionless parameters
of the problem

8, p, e, r, p, 4, I 2, and Pp . (42)

With eight dimensionless parameters, a wide range of
behavior is possible. For many potential applications,
these parameters have typical values. For example, r =0,
8=0, cIi=0, 1/pip=0, g=l, and I 2)p)e. In the fol-
lowing, the spatial gain, defined as Im(5k, ), is calculated
explicitly in the STBS and STRS limits, and sample gain
profiles as a function of frequency are shown. The imagi-
nary part of Eq. (41) therefore provides the gain
coefficient for the stimulated process as a function of the
pure real frequency ofFset 5'. First consider the STRS
limit in which the population decay and the acoustic re-
laxation rates are much greater than the medium decay
rate, I 2&)e', p»e, and ~5co/e~ &3. Using the nominal
values given above for the remaining parameters and ig-
noring terms of order (e/p) and order (e/I z), one finds
that the gain g (5co) per unit length is given by

g (5co) =(kpp/P)5co/[5co +e'] (STRS), (43)

where e'=(1 —C&)e. Note that the gain is positive for
frequency-upshifted (anti-Stokes) light, with correspond-
ing absorption for the downshifted light [3]. The gain is
at maximum at 5' =e', with a maximum value of
kpp/(2PE ). The gain linewidth is asymmetric with a full
width at half maximum (FWHM) roughly equal to
2(3)'~~@' for STRS with e/p &&1. In addition to gain,
dispersion is also present. The real part of the line corre-
sponds to dispersion that results in phase perturbations
and relates to spontaneous molecular scattering
[3,6,21,25]. The real part has a peak value of kpp /(Pe') at
5co=0, with a FWHM of 2e'.

Now consider the case in which the same equalities
hold but with ~(5co —p)/e~ &3. Again ignoring terms of
order (Fjp), and now ignoring terms of order (p/I 2),
and of order (e/p)@/jt. ,

g(5co) =(kppjP)p'(p' —5co')/[(p' —5co')'

+(e"5co) ]5co (STBS),
(44a)

where e"=(~+r)pe. For STBS, one finds a maximum
and a minimum clustered about 5~=p and similarly
for 5' = —p. The peak gains occur at 5'
=+@(1+(e"/p, ))' . The average absolute value of peak
gain and absorption is equal to kpp/(2Pe"). The FWHM
of these gain curves are of the order of e". The ratio of
the peak STRS gain to the peak STBS gain is roughly
equal to ( ', +r)p/(1 —4), i.e., —the normalized ratio of to-
tal viscosity to total conductivity. The real, dispersive

about 5'= +p, and similarly for 5co= —p. If this expan-
sion is used in the small-damping regime in which
(e"+e)/p «1, then the STBS gain profile at 5co=+p is
approximately

—( kpp /2P)(5co —p )
g (5co)=

(5co—p) +(e"') (44b)

where e'"=bja =(e"+We)/2 This .then implies a de-
cay rate of

I „Ippe"'=(k /2)[imp( —', +r)+(y —1)AT/pc~], (45)

in accord with previous authors [6,8,9,25]. Within this
approximation, the peak gain is kpp/413m"', with an asym-
metric linewidth of width 2(3)'~ e'"' (FWHM). Further-
more, the ratio of the peak Rayleigh gain to the peak
Brillouin gain is 2e"'/e' [3].

Corresponding to Eqs. (43) and (44b) for the gain are
expressions for the dispersion, which derive from the real
part of the dispersion relation. From these expressions
for the dispersion, assuming only conductive relaxation
(negligible viscosity) in an ideal gas, and assuming the
weak-interaction limit ~5k, z & 1 applies, the Landau-
Placzek relation is recovered for the ratio of the spon-
taneous line intensities [6,25].

The dimensionless thermal difFusion decay rate e is
given by (40f) evaluated at the spatial frequency k corre-
sponding to the period of the material grating vector,
which is approximately 2ko for backward scattering.
Upon expansion of the ratio it is found that e/p=kl,
where l is the mean free path, and k =2ko for backward
scattering. This implies that the damping rate e may
exceed the acoustic frequency p, i.e., e/p ~ 1. Thus, the
corresponding scattering regime is also of interest. How-
ever, based on earlier remarks, the thermodynamic
theory underlying our calculations is of questionable va-
lidity when e/p is greater than about 10. Proceeding
then with the qualification that 10~@"/@~1,the gain
profile may be rewritten by ignoring terms of order p/e:

(kpp/I3)5co(p e"/~)
g (5co)=

[5co'—(1 —@)p']'+ ( e"5co )' (46)

This gain profile has a peak gain of kpp/(2/3e'), similar to
the STRS case above; see Eq. (43). The frequency off'set

at which this peak occurs is 5co = ( 1 —cIi )(p le'" ) e". The
STBS wings have combined with the central line in this
limit of large damping; the single peak now has a FWHM
of the order of (p/e")p. The line is antisymmetric about
5co=0 similar to the STRS profile of Eq. (43) but with an

parts of the Brillouin-shifted wings have a peak value of
kpp/(Pe") at 5co=kp. The dispersive part of the profile
is related to spontaneous scattering, as mentioned above.
Through spontaneous scattering this part of the line
profile has been observed experimentally [6,25].

To help relate these STBS results to those of previous
authors, one may expand the denominator of Eq. (41) in a
Taylor series about 5' =+p. thus the denominator
D(5co) may be written as

D(5co) =a +b (5co—p)+0 (5co —p)
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Re[5k, (5')] is of interest and is shown in Fig. 2. These
lines show the well-known central and Brillouin-shifted
profiles, mentioned above, that occur within the hydro-
dynamic approximation [20].

Figures 3 and 4 show variations in the gain profile.
Figure 3 predicts the gain profile with the ratio @=0.4,
corresponding to a monoatomic ideal gas. Figure 4 addi-
tionally includes the effect of a reduced population decay
rate for which I 2/p= 1 is assumed.

These results show qualitative agreement with previ-
ously published theoretical and experimental results. Ob-
viously, many real absorbing fluids exhibit behavior that
requires analysis beyond that presented here [20].

IV. DIMENSIONLESS SCALING PARAMETERS

From Eqs. (34) or (41) it is evident that there are
several dimensionless parameters that are the ratios of
several dimensional variables. These dimensional vari-
ables define the scales that are physically relevant; the di-
mensionless parameters define the regime of the scatter-
ing. For example, the dimensional time scale (I &IMP)
is equal to the time at which ~ rad of blooming are in-
duced over one Rayleigh range n pD /A of the perturba-
tion scale D~. The dimensional propagation distance
scale (k /2k') ' is equal to a Rayleigh range divided by
~ of the perturbation scale (D~ =2~/k). That these two
scales should be relevant is obvious. The distance scale
measures the range over which the phase turns into in-
tensity; intensity fluctuations are what drives the
thermal-blooming interaction. The strength of the
thermal-blooming interaction in turn becomes important
when it is comparable in strength to diffraction. This
strength of interaction occurs at the time scale (I &IMP)
mentioned above. If this "growth time" is comparable to
or greater than the times for amelioration processes such
as wind, acoustics, or diffusion, then the thermal-
blooming interaction is greatly affected. This is evident
from Eq. (34), which involves dimensionless ratios of
these time scales.

For example, the dimensionless scale 0 is the ratio of
the flow-transit time across a perturbation scale, divided
by the growth time and multiplied by 2m. Thus if the
variation of 0 is greater than 1, the heating effect is
smeared out over more than one half period of the per-
turbation, which averages out the induced fluctuation be-
fore it further intensifies. Similarly if e is greater than 1,
diffusion washes out the blooming-induced phase grating
before it can feed back on itself. Another key dimension-
less parameter p is equal to the ratio of the acoustic-
transit time divided by the growth time and multiplied by
2~. This last parameter is important at early times at
which the acoustic contribution to the heating-induced
perturbation is comparable to the steady-state contribu-
tion and can result in local focussing. If the heating-
growth time is much greater than the acoustic-transit
time of the perturbation, then acoustics are not impor-
tant for the thermal-blooming interaction as may be seen
from Eq. (34) (provided the linearized equations remain
valid). Thus these dimensionless quantities play an im-
portant role in determining the character of the scatter-

ing process, as may be seen from Eq. (34). Furthermore,
p/e and 0/e are proportional to the Reynolds number of
the acoustic perturbation and the flow, respectively. 0/p
is the flow Mach number. In addition to the above di-
mensionless parameters that determine the character of
the stimulated scattering, there are dimensionless param-
eters that characterize the medium —these parameters
are r, @, and/t. One may refer to Sec. II, or any number
of texts discussing fluid mechanics, to find an interpreta-
tion of these parameters.

V. SOLUTION PROCEDURE

—[(y —1)/y ]e] + 1)5n~(k, g, s)

= —5nT(k, g, t =0)/(s +e), (47)

where s is the transform variable. To put this expression
into a more obvious form, define a new variable G (s) as-
sociated with the rate of change of the perturbation along
the propagation axis. This new variable is defined so that
it clearly reduces to the correct no-heating value in the
corresponding limit. Thus,

1/[G(s) —1]—= [(s/p) +1
+ ( —', + r)/ ( e/p )s](s +e)

—[(y —I)/y]~ . (48)

Then Eq. (47) may be rewritten as

[c}&+G(s) ]5n~ = —5nT(k, g, O)[G(s) —1]/(s+@) .

(49)

This equation may be solved immediately:

5n~ = A cos[G (s)g']+B sin[ 6 (s)g ]
—J dg'5nT(g', 0)[G(s) —1]

sin[G (s)(g—g') ]
G(s)(s +e) (soa)

The constants A and B are determined by the initial con-
ditions at /=0. From Eqs. (37), one obtains

5n~(k, g=O, s) = —5y(k, g=O, s)[G (s) —I ]/P= 3,
(50b)

The above equations may be integrated numerically;
however, this procedure for solution of partial difFerential
equations may lead to instabilities and convergence
difficulties. To avoid these problems, a useful technique
is to apply Laplace or Fourier transforms to either the g
variable or the ~ variable. Since the ~ operator is more
complicated, more is to be gained by transforming it.
Also, since the temporal behavior is believed to have an
unstable (not periodic) behavior, the Laplace transform
appears more suitable than the Fourier transform [5].
Performing the Laplace transform with respect to 7i in
Eq. (36) leads to

((8&+1)[[(s/p) +1+( ', +r)p(e/p —)s](s+e)



A LINEARIZED THEORY OF TRANSIENT LASER HEATING IN FLUIDS 6871

5$(k, g, s) =B~5y= P(—B~5n~ )/[6 (s) —1] . (51b)

Thus one may write the following for the spatial-
temporal evolution of the Fourier components of the in-
tensity and phase (conduction of turbulent variations are
neglected):

5y(k, g, s) =5y(k, g=O, s) cos[G (s)g]

+5/(k, /=0, s) sin[6 (s)g]/6 (s)

+Pf dg'sin[6(s)(g —g')]
0

X5nr(g', 0)/G (s)s,

5$(k, g, s) = —5y(k, /=0, s)G (s) sin[G (s)g]

d&5n~(k, (=O, s) = —5$(k, g=O, s)[G(s) —1]/P

=BG(s) . (50c)
Equations (50a) —(50c) are used to obtain the explicit ex-
pression for the heating-induced refractive-index varia-
tions.

For the intensity perturbation, one may take the La-
place transform of Eq. (32) and solve

5y(k, g, s) = —P5n~/[6 (s) —1] . (51a)

This last expression seems to ignore turbulence-only in-
duced scintillations; this is not the case because as the
heating rate tends to zero, both 5n~ and G (s) —1 tend to
zero also. Thus this expression is not defined in that lim-
it. However, it will be seen that turbulence-induced scin-
tillation is included at time zero. A similar equation for
5P is derivable from Eq. (27):

Note that Eq. (52a) has a turbulence-only induced scintil-
lation term that remains as the heating rate tends to zero
and 6(s) tends to l. Also note that the initial conditions
at /=0 play an important role. Further, note that the
turbulence-induced refractive-index fluctuations are a
random process, thus so too are the phase and intensity.

The second moments (15'(k, g, r)1 ) and
(15$(k,g, r) ) of the above random variables are of in-
terest. In the case in which the turbulence is uncompen-
sated, the boundary conditions are relatively simple. In
many instances, however, the laser may be precompensat-
ed for the medium aberrations in order to more
effectively propagate the laser beam. This more compli-
cated case is treated in Sec. VII.

It is assumed that the phase and intensity Auctuations
on the transmitted beam arise from atmospheric tur-
bulence, the laser, and from optical imperfections. These
errors are assumed independent from one spatial frequen-
cy to the next. Also assumed independent are the phase
and intensity perturbations for a given spatial frequency.
The aberrations are assumed constant over the duration
of the pulse and are band-limited white out to spatial fre-
quency k„ i.e.,

(15',l') /~k, 's' forl1
1

& k,
5y(k, O, s)

0 otherwise,

(15yol ) /77k, s forl kl & k,
&15$(k,O, s)1'& = '

0 otherwise .
+5/(k, g=O, s) cos[6(s)g]

+Pf dg'cos[6(s)(g —g')]
0

X5nr(g', 0)/s . (52b)

(53b)

Finally, the turbulence-induced refractive index is as-
sumed to obey a von Karman spectrum:

(5nr(k g 0)5nr*(k„g„O))=0.033C„'(kor+k') "~6exp
21

k;„
k 7T

5(g —g) 5(k —k)
2k, ' 2

(54)

where C„ is the structure function of turbulence-induced refractive-index variations, kor is the outer scale of tur-
bulence, and k;„ is the inner scale [17]. The 5 function in g as well as the last factor of 7r/2 is a consequence of the Mar-
kov approximation [17]. The third-to-last factor of Eq. (54) is present because the 5 function is a function of g and not
z. Thus taking the second moments of interest, one finds the following expressions:

&15X(k g' r)I'& = 1 &+~~ 1 (15'. '&

f ds —cos[G (s)g]e" + z2& 6—l oo $ mk,

1 ~+~~ 1 sin G s8$— 8
2m ~ i~ s G(s)

2m. k
4 k0

[0.033(k~or+k )
"~ exp[ —(k/k;„) ]]

X f dg'C„ f ds e" sin[6(s)(g —g')]
(55)
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&1~x.l'» ,+,.
(l5$(k, g, w)l ) = f ds —G(s) sin[G(s)f]e" +

277 E—l oo S nk,

+P — [0.033(koT+0 )
"/ exp[ —(k/k, „) ]J

0

f ds —cos[G (s)g]e"
2% e—1 co S

X f dg'C„ f ds —cos[G(s)(g —g')]e" (56)

The last term in Eqs. (55) and (56) yields the
turbulence-only contribution for the blooming. In the
limit as the heating rate goes to zero, G (s) tends to 1, and
in this limit the first two terms tend to the diffraction-
only values, as does the turbulence contribution. The
above are the equations used to compute the power spec-
tral density of the phase and intensity and thus the struc-
ture functions and the far-field laser irradiance profile.

VI. COMPARISON OF ANALYTIC THEORY
AND NUMERICAL SIMULATION

In order to test the applicability of the linearized ana-
lytic theory described in the previous section, results
from this theory were compared to output from a wave-
optics-propagation computer program that includes the
nonlinearity of the optical intensity in Eq. (16). This pro-
gram models the density perturbations using Eq. (16a),
utilizing fast-Fourier-transform techniques for spatial
variations and numerical integrations for the temporal
variations. The first comparison involved the calculation
of the power spectra of the variance of the phase and in-
tensity aberrations as a function of time. For this calcu-
lation, it was assumed that the input conditions consisted
of random small-scale intensity aberrations imposed on a
plane wave. These perturbations were formed from
band-limited Gaussian white noise with spatial scales be-
tween 0.5 and 10.0 cm and had a total log-amplitude vari-
ance of 0.00025. For larger variances, difticulties arose
in calculating the power spectra of the phase, since the
severe small-scale thermal blooming present for large in-

put aberrations induced large phase differences between
adjacent grid points in our computer simulation that re-
sulted in failure of our phase-reconstruction routine. In-
creasing the number of grid points to eliminate this prob-
lem for large variances would have been computationally
prohibitive. It should be noted that the behavior of the
far-field spot is not subject to this limitation since it does
not involve phase reconstruction; however, grid resolu-
tion is sti11 an issue.

For the power spectra comparisons, the absorption and
laser intensity were adjusted to yield an average heating
rate of —10 rad/sec, a rate chosen to provide significant
thermal blooming within a 10 psec pulse. A laser wave-

length of 2.8 pm was used for this comparison. The
propagation distance was 5 m, with a corresponding
diffraction zone of 0.37 cm over the path length. The
simulated path comprised air at standard temperature
and pressure, with 17 Torr of chloroethane as the absorb-
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perturbation scale. The initial profile comprises Gaussian ran-
dom intensity modulation of total variance ((oI/Io) ) =0.001,
with a band-limited white-noise power spectrum. Solid and
dashed curves are analytical and numerical results, respectively.
(b) Frequency dependence of the logarithm (base 10) of the
ring-averaged power spectral density of the phase perturbations,
equal to log, o[~( [5$(x,z,„)] ) /( [5y(x, z =0)] ) ] before
blooming occurs at end of cell. Solid and dashed curves are
analytical and numerical results, respectively.
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ing contaminant. Results from these runs are presented
in Figs. 5 and 6. Figure S shows output from the begin-
ning of the simulation and Fig. 6 presents the output at
10 psec into the pulse. In Fig. 5, the two minima in the
power spectrum of the variance of the intensity indicate
the range of the band-limited noise. By 10 psec, the
minimum at the larger angle has shifted to a lower spatial
frequency reflecting the presence of acoustic relaxation at
smaller scales. Similar trends are seen in the plots of the
phase variance. For both time slices, agreement between
the linear analytic theory and the nonlinear computer
simulation is excellent, within the frequency band for
which both approaches are valid. This leads us to con-
clude that the linear theory contains most of the impor-
tant physics of transient thermal blooming, and that
nonlinear effects are unimportant for conditions of in-
terest. This is consistent with results obtained for
steady-state thermal blooming in a separate theoretical
effort [13].
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Figures 7—9 contain results from a finite-beam calcula-
tion. The following input conditions are applicable to
this calculation. A laser beam at 10.6 pm with a flat-top
intensity profile and a beam diameter of 8 cm passed
through a cell 5 m in length. The laser fluence was ad-
justed so that 10 rad of blooming occurred in 10 psec; air
with an absorbing contaminant was again the heated
fluid. Band-limited Gaussian noise was used to model the
initial intensity aberrations, with scale sizes between 0.5
and 8 cm, and with a variance of l%%uo.

Plotted in Figs. 7—9 are time-resolved results for the
angular dependence of the laser far-field spot. Figure 7
presents a plot of the far-field profile of the laser beam be-
fore acoustic relaxation. The profile is ring integrated
about the point of peak intensity. The structure of the
profile is due to the finite beam size. The minimum
occurring near 10 rad corresponds to the angular loca-
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FIG. 9. Angular dependence of the logarithm of the ring-
integrated far-field laser-irradiance profile after 15 psec of medi-
um irradiation. Note a 55% reduction in the peak far-field irra-
diance. Solid and dashed curves are analytical and numerical
results, respectively.

tion of the edge of the central lobe of the far-field spot.
After 10 psec of laser operation, the power at large an-
gles, which correspond to small spatial scales in the near
field, has increased significantly. This is shown in Fig. 8.
After 15 psec, the signal at wide angles has increased by
more than an order of magnitude over the unbloomed
values, and the Strehl ratio has fallen by more than 50%
as shown in Fig. 9.

Agreement between analytic theory and computer
simulation for the finite beam again seems quite good
over the common range of validity. Some discrepancies
may occur in this case because the analytic theory
presented here does not treat beam-edge effects, though
such a treatment is possible within the Rytov approxima-
tion and perhaps with a generalized Huygens-Fresnel ap-
proach [26]. However, such treatments account for
whole-beam effects only with greatly increased computa-
tional complexity. That whole-beam effects play a role is
evident from the altered shape of the central lobe.

The results from the comparison between analytic
theory and code simulation indicate that both methods,
developed independently, accurately model the physics of
transient thermal blooming. This approach rules out the
presence of both numerical instabilities and significant
convergence errors in the simulation. This approach also
validates the scaling relations obtained from the linear-
ized theory.

+5gq(k, g=g», s) cos(g,„)

+Pf dg' cos(g')
5nT(k, g', 0)

(58)+5ns(k, g', s)

At this point the counterpropagating beacon s initial in-
tensity and phase 5gb(k, g=g, „,s) and 5$b(k, g=g~», s),
respectively, are set to zero so that the returning wave is
unaberrated if perfectly compensated. Note that the
beacon phase at /=0 obviously depends on the blooming
disturbance, and from Eq. (50), the beacon phase in turn
depends on the initial phase P( k, g =0,s ) set by phase
compensation. Substituting from Eqs. (50) for 5ns in Eq.
(58) yields the expression for the compensating phase in
terms of known quantities

VII. PHASE-COMPENSATION INSTABILITIES

The previous sections show that aberrations will occur
as a consequence of heating of a medium by a laser beam
possessing transverse coherence. To mitigate these laser-
beam aberrations, one might propose measurement of
these (phase) aberrations, and subsequent precompensa-
tion of the beam in order to obtain good beam quality
after traversal of the heated medium. Unfortunately, the
following calculations show that precompensation of
phase only will result in instabilities that will intensify the
medium perturbations. On the other hand, several au-
thors have shown that phase and amplitude compensa-
tion may work [13—15]. Unfortunately, such amplitude
compensation has practical diSculties; hence the follow-
ing considers phase-only compensation [13—15,27].

With phase-only compensation, the initial phase at
/=0 is a function of the sensed phase. For the sake of
our analysis, it will be assumed the Fourier components
of the phase are corrected, and therefore a function of the
measured phase

5$(k, g=O, s)=c(k, s)P (k, s)+5$o(k, s), (57)

where c(k, s) is a proportionality constant, equal to —1

for perfect compensation, and tending to zero outside the
spatial frequency cutoff k, and the temporal frequency
cutoff Im(s, ). 5$o is a random compensation error, and

is the measured phase, which is equal to the phase of
a counterpropagating beacon wave that samples the tur-
bulence. From Eqs. (27) and (28),

(k, s) = —5yb(k, g=g, „,s) sin(g, „)

5$(k, g=O, s) 1+c(k,s)f dg'cos(g') [G(s) —1]~max, , sin[ G (s)g' ]
o G(s)

5n T( k, g', 0)
=+c(k,s)p f d p cos(g') +5po(kxs)

0 S

—c(k,s)5y(k, g=O, s)f dg'cos(g') cos[G(s)g'][G(s) —1]

p, (I,s) f '"d—
g cos(g') f dg"5nr(g", 0)[G(s) —1]sin[G(s)(g' —g")]/'G(s)s .

0 0
(59)
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The term in large parentheses on the left-hand side of
Eq. (59) will be denoted Q(s). Dividing (59) by Q(s) and
substituting 5$(k, g=O, s) into Eqs. (51) then yields the
phase and intensity errors 5y(k, g, s) and 5$(k, g', s), with
compensation. Equations (55) and (56) are then modified
accordingly. Written in this form, the equations are sub-
stantially more complicated with compensation—
multiple integrals such as those present in the last term
of (59) make the numerical evaluation significantly more
difficult. Nevertheless, useful information may be gained
from considering the pole introduced by the term Q(s).
This pole leads to a compensation instability described by
previous authors [14,27]. The resulting equation gives a
spectrum of temporal gains that agrees exactly with Ref.
[14], despite the very diff'erent form of the integral equa-
tion for the pole locations, given by s such that Q(s) =0.
Because this equation involves an integral along the prop-
agation path that implicitly includes transverse flow, this
form for Q (s) has a distinct advantage in its generaliza-
tion to random wind variations along the optical path.
Using this formulation allows the gain to be estimated as
a function of the wind profile; such a calculation is
beyond the scope of this paper.

VIII. CONCLUSIONS

The above results obtained through two different
methods suggest a number of important conclusions.
First, one observes that the linearized theory does prove
adequate for analysis of the STBS regime and that the nu-
merical simulation is stable and convergent. This may be
seen in the excellent agreement between the two ap-
proaches. Furthermore, the agreement shows that the
nonlinearities modeled by the full simulation are not
essential in cases of interest, despite the substantial Strehl
reduction.

Second, the results of Fig. 6 indicate that the simple t
analysis is not appropriate; such an analysis would lead to
no amplification of the intensity perturbations and to an
amplification of phase proportional to the square of the
angular frequency. As may be seen from a comparison of
Figs. 5 and 6, one does not observe these features associ-
ated with the simple analysis, i.e., a t time dependence
and a k spatial frequency dependence of the power spec-
tral density of the perturbations. Third, the modeling
predicts that much of the energy is redistributed in a
broad region about focus. This wide-angle scatter is

sometimes described as "lost energy" by other authors
for related phenomena [12].

The efforts of this work have been directed to an
analytically tractable description of laser heating. Such a
description provides closed-form integrals for the pertur-
bations of the laser beam and the medium. These in-
tegrals complement numerical techniques [28] for which
the convergence and resolution requirements are not well
defined. This is especially true for transient laser heating,
in which fine temporal and spatial scales, physical insta-
bilities, and backward scattering may be present. The de-
tailed mathematical description given here also shows
that STRS and STBS differ from other stimulated scatter-
ing processes such as Raman and Brillouin scattering.
Heating-induced scattering has most of its gain at higher
frequencies relative to the pump beam, unlike both Ra-
man and Brillouin scattering [3]. Thermal scattering is
intrinsically a scalar interaction; this characteristic con-
trasts with that of Raman scattering, for which higher-
order symmetries may contribute [29].

The analysis also derives the linearized equations in di-
mensionless form. These equations then provide useful
scaling information. The dimensionless scaling parame-
ters allow quick estimates of the importance of various
physical effects and admit straightforward physical ex-
planations. The effects of acoustic, diffusive, and convec-
tive energy transport are included in the model. The
model is simply extended to cases involving turbulence,
active precompensation, and exothermic laser-induced
chemical reactions. These effects might be important for
applications involving atmospheric propagation or intra-
pulse phase conjugation of laser-beam aberrations. The
expressions obtained for these extensions yield results
that concur with other authors in the nonacoustic re-
gime. These comparisons and those above suggest that
our theory successfully extends the linearized theory for
coupled optical-entropy perturbations (STRS) at late
times to optical-acoustic waves (STBS) at early times.
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