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Vlasov simulations of very-large-amplitude-wave generation in the plasma wake-field accelerator
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Simulations of the plasma wake-field accelerator are carried out by following the time evolution of the
plasma distribution function in one dimension via the Vlasov-Maxwell equations. Simulation results are
compared to numerical solutions of the nonlinear relativistic cold plasma equations and to previous
theoretical estimations of trapping and thermal e6'ects on plasma waves. It is found that highly non-
linear wakes are obtainable in the vicinity of the driving beam, where the thermal velocity spread of the
plasma is reduced. In this region, wake amplitudes can significantly exceed the expectations of relativis-
tic warm plasma models and agree closely with cold Quid theory. In all cases, however, particle trapping
and thermalization due to particle scattering from the large-amplitude plasma wave reduce the wake to
below the nonrelativistic wave-breaking limit after the initial accelerating peak.

PACS number(s): 52.75.Di, 52.40.Mj, 52.65.+z

I. INTRODUCTION

Novel plasma-based acceleration devices [1—3] are be-
ing actively researched due to their ability to support ac-
celeration gradients in excess of 10 GeV/m, which is
greater than two orders of magnitude beyond those ob-
tainable in conventional linear accelerators. The plasma
wake-field accelerator (PWFA) [2] is one such device,
wherein a moderate-energy electron beam drives a plas-
ma wave which, in turn, accelerates a high-energy elec-
tron bunch. This process has been demonstrated experi-
mentally [4]. Of interest in this scheme are limits on the
obtainable accelerating gradients and transformer ratios
in the plasma wake field.

The transformer ratio is defined as

structively, producing a wake field larger than that ob-
tainable in the linear regime. Solutions to the one-
dimensional (1D) cold fluid equations in this regime have
been found [7] and such solutions in which R ))2 have
been demonstrated. The viability of the nonlinear ap-
proach, however, may be limited by the effects of plasma
temperature and trapping of plasma electrons by the
large-amplitude wave. For the present study we will con-
sider, via simulation, generation of nonlinear plasma
waves by a symmetric beam pulse.

The properties of large-amplitude waves in cold plas-
mas have been studied by a number of researchers
[2,7 —12]. For nonrelativistic plasma waves, it was found
that, the peak electric field was limited by the nonrela-
tivistic wave-breaking field [9]:

R —=E+/E E,„=mv hco /e &Ewn:—mccv~/e, (2)

where E is the peak decelerating field experienced by
the driving electron beam and E+ is the peak accelerat-
ing field in the wake. The physical significance of the
transformer ratio is that the energy gained by the trailing
beam in a single acceleration stage 68'is given approxi-
mately by A8'=RR'0, where 8'0 is the energy of the.
driving beam. Theoretical results for linear wake fields
have suggested that driving beam pulses that are sym-
metric in the axial dimension produce transformer ratios
that are limited to R & 2 [5]. Further results showed that
higher transformer ratios may be obtained by using a
nonsymmetric beam pulse [6] or by operating in the non-
linear regime. The difficulties associated with generating
a shaped beam add to the attractiveness of the nonlinear
approach.

The nonlinear regime ( n, In 0
—1 ) dift'ers from the

linear regime (n, /no « 1) in that plasma waves are gen-
erated with a significant harmonic content. Here,
n, =n —no is the perturbed plasma density, n is the plas-
ma density, and no is the equilibrium plasma density.
%'aves at all harmonics of the plasma frequency sum con-

E =(mv co /e )(1——'p ——'p' +2@' )' (3)

where p=3T/mv h and T is the plasma thermal energy.
For relativistic plasma waves, E & Ewa is possible. For

a cold plasma, the limit is [8]

E,„=(mccv le)V2(y h
—1)'~ (4)

where y~„=(1—u~h/c )
' . This suggests that as v~h

approaches c, E »EwB is possible. As in the nonrela-
tivistic case, this limit is reduced by thermal effects. Kat-
souleas and Mori [14] performed a calculation similar to
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where m is the electron mass, v h is the phase velocity of
the plasma wave, e, assumed positive, is the elementary
charge, c is the speed of light in vacuum, and
co~ =(4vrnoe Im )' . As u~h approaches c, E~» -EwB. —
Note, for instance, that at n = 10' cm, EwB ——1

GeV/m. Coffey [13], using the nonrelativistic Vlasov-
Poisson equations and a "waterbag" distribution function
for the plasma electrons, showed that this amplitude is
reduced for a warm plasma. In this case,
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E,„=(mc co/e )(mc /4T)

Secondly, from a warm Quid plasma model, he found a
similar expression:

E,„=(mc co/e )(4mc )/27T)' (7)

In Eqs. (6) and (7) it was assumed that v h =vb, where vb

is the velocity of the driving beam, y~ =(1—
v&

/c2) '~ ))1, and yb )) I /p. These approximate expres-
sions are interesting in that they are (approximately) in-
dependent of y h. In a later calculation, employing a
three-Quid model for the thermal plasma, Rosenzweig
found [16]

that of Ref. [13) for the relativistic case. Again a water-
bag distribution function was used. They found

Z,„=(mccoy„/e )p ''4[in(2y'h'2p''4)]'~2,

which is assumed to be valid as long as it gives a smaller
value than Eq. (4), as is the case for the parameters of in-
terest. An alternative approach was taken by
Rosenzweig [15], who calculated the saturation ampli-
tude of the plasma wave in two ways. Firstly, from an
energy balance argument involving loading due to the
trapped portion of a Gaussian velocity distribution, he
found

II. 10 NONLINEAR VLASOV FORMULATION

BE,
Bz

= —4me (n + nb n—o ), (10)

where f(z,p„t) is the distribution function,
y=(1+p, /m c )', nb is the driving beam density, E,
is the electric field, and

n= J'dp, f .

For this system, Maxwell's equations reduce simply to
Gauss's law. Changing variables from (z,p„t ) to
((=et z,p„r=—t), we have

and

df + c—
O'T

Pz Bf Bf+eE,
ym Bg

'
Bp,

(12)

BE,
=4me(n+nb —no) . (13)

To simulate plasma wave generation we use the
Vlasov-Maxwell equations

'f + "' 'f + Z 'f =0Bt+ y B,
+'E

ap
=0

E,„=(mero /e)(ybmc /27T)'~

which gives results that are similar to those of Eq. (5) for
the parameters of interest here. This is not surprising in
that, with both the three-Quid and the waterbag models,
there are no plasma electrons with p )p«j„where pcpjt is
the thermal momentum in the three-Quid model and the
surface mome@. turn of the waterbag in the waterbag mod-
el. In either case, the onset of trapping is quite sudden.

In this paper we present simulations of plasma waves
driven by a nonevolving electron beam with velocity vb.
In terms of E+ and R, the useful acceleration distance
for such a beam is on the order of I.~ =Rybmc /E+,
where yb =[1—(vb/c) ]

'~ . These simulations, which
can be considered valid over distances z ((I.~, are in-
tended to examine nonlinear wave generation without ad-
dressing the various beam-physics issues associated with
the PWFA concept.

These simulations are carried out by following the time
evolution of the plasma distribution function in one spa-
tial dimension via the Vlasov-Maxwell equations. Direct
simulation via the Vlasov equation is an ideal way of ex-
arnining thermal and trapping effects because the
artificially high temperatures associated with typical par-
ticle simulations are avoided.

In following sections, we first describe the Vlasov-
Maxwell equations for this system. We include a discus-
sion of the cold plasma equations to which we will com-
pare our results. We then present simulations in the
linear and nonlinear cases, including simulations of the
so-called nonlinear PWFA [7] in which a plasma wave is
driven by a beam of length I.b /A, ))1, where

kp 2~v ph /&p to provide R» 1 and E+ /Ews ))

(1—P, )
B ay a

ag a, (14)

where f=f(g, u, ).
Analysis of the characteristics of the above equation

indicate that there exists a constant of the motion
tv =y —u, —P, which is the normalized electron energy in
the wake-field frame. Hence, any distribution that is a
function of this constant of the motion,

f(tv)= f(y —u, —P), (1S)

is a general nonlinear solution of the relativistic Vlasov
equation. In terms of the normalized momentum u„

The simulation is carried out by solving for E, ( g, r )

from the current value of f(g,p„r) via Eqs. (11) and (13)
and subsequently updating f via Eq. (12). Initially f
is uniform in z and Gaussian in p„varying as
exp( p, /2mTO), wh—ere To is the equilibrium plasma
thermal energy. We represent the driving beam as a fixed
charge shape that propagates with velocity vb but that
otherwise does not evolve. The details of the simulation
code are discussed in the Appendix.

For comparison to our simulation results, we consider
the cold Quid limit of the Vlasov equation, which we dis-
cuss here. For a nonevolving electron beam with vb —-c,
steady state may be assumed and derivatives with respect
to w may be neglected. It is convenient to work in terms
of the normalized scalar potential P=e@/mc, the nor-
malized electron velocity P, =v, /c, and the normalized
electron momentum u, =yP„where y=(1+u, )'~ . In
these variables, the relativistic Vlasov equation (12) be-
comes
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f(w) =n05(y —u, —
P

—1), (16)

where n0 is the ambient plasma electron density. Analyt-
ically, thermal eff'ects may be included by choosing a
more appropriate distribution function f(w), such as a
waterbag or a Gaussian distribution [17].

Using Eq. (16), various moments may be calculated,
i.e., the electron Quid density n(g) = f du, f(u, ) and the

electron fiuid velocity P, = n ' f du, ( u, /y )f ( u, ). One

flIlds

the distribution f(w) is related to f(u, ) by
du, f(u, )=dwf(w)ldu, /dwl, where ldu, /dwl =[1+(w
+P) ]/2.

We now consider the cold plasma limit. This limit is
valid as long as the thermal velocity is small compared to
the trapping width of the plasma wave, v,h « lv~

where u, is the bulk longitudinal motion of the electrons
in the plasma wave. This inequality holds for plasma-
wave amplitudes sufficiently below wave breaking. The
cold plasma electron distribution function is given by
f(w) =n05(w —1), i.e.,

A, =A, (v„h/c)[1 —3(v, i, /v h) ]'~z,

in agreement with our results, assuming Uph Ub.

We diagnosed the plasma temperature as

(21)

T=P/n,
with P given by [18]

P= f dp, (p, —p, )(v, —v, )f, (23)

where p, and U, are the average momentum and velocity
as given by moments f(z,p„r). In the linear runs, T in-
creased over the several plasma wavelengths of the simu-
lation region but with minimal impact on the results.

simulation parameters b,g= 10 cm and bp, /mc
=4X10 . After 1.6 cm of propagation, a near steady
state was established.

Subsequent runs at To = 19 keV showed deviations of
=5% from the cold plasma equations. These were con-
sistent with warm Quid calculations. For instance, Ref.
[14] points out that the warm fiuid oscillation wavelength
1s

n = n[o1+(1+/) ]/2 (17)
IV. SIMULATIONS IN THE NONLINEAR REGIME

aIid

P, =[1—(1+/) ]/[1+(1+/) ] .

Using Poisson's equation, the self-consistent nonlinear
equation describing P(g) is

k

2
[2nb /n +o(1+/) —1], (19)

where k =co„/C. Equation (19) describes the generation
of nonlinear wake fields in a cold plasma by a nonevolv-
ing beam nb(g) with vi,

-—c. A similar equation may be
derived to describe the generation of nonlinear wake
fields by an intense laser pulse [12].

The cold plasma equations, Eqs. (17)—(19), were previ-
ously derived by Rosenzweig [7,15] using cold Quid
theory and were subsequently used to analyze plasma
wake-field generation. Numerical solutions to Eqs.
(17)—(19) will be compared to the simulations discussed
below.

A series of simulations were performed with the beam
profile given in Eq. (20) with n&v/no =0.1, 0.2, 0.3, 0.4,
and 0.5, Lb=0. 24 cm Alp kb 100, and To=19 keV.
The peak electric field from each simulation and the cor-
responding theoretical value, from a numerical solution
to Eq. (19), are plotted versus nbolno in Fig. 1. Simula-
tion parameters were as in the linear-regime runs. As an
example, the beam density, electric field, and perturbed
plasma density, n, =n —no, are plotted in Fig. 2 for the
nio/no=0. 5 case. Figure 3 shows the corresponding re-
sults from the cold plasma equations. Note that in our
plotting convention E, & 0 is accelerating.

In the most highly nonlinear cases, nba/no=0. 4 and
0.5, several interesting phenomena were observed.

(i) Excellent agreement with the cold plasma equations

5 I I I I I
[

I I I I I I I
[

I I I1.
—Theory

x — Simulation

III. SIMULATIONS IN THE LINEAR REGIME

Simulations in the linear regime showed excellent
agreement with theory for To~5 keV. Here, we con-
sidered no =2 X 10' cm, such that A,z =2~c /coo
=0.236 cm and EBB=1.36 GeV/m. The driving beam
was of the form

0.5—

n b p siil j 7T [g —( c —v g ) r ) /L b j

nb= (c vb )r g (c vt )r+Lb (20)

0 otherwise

I I I I I I I I I I I I I I I ~0
0 0 10 0 ZD 0.30 0,40 0.50 0.60

Il bo/D

with nb0/no=0. 1, Lb =0.24 cm=kp, and yb =100. For
these runs, we modeled a region of phase space bounded
by 0& g& 1.024 cm and —10.2&p, /mc & 30.7 with

FICx. 1. Peak electric fields and corresponding theoretical
values plotted vs beam density. Theoretical values are taken
from numerical solutions to Eq. (19).
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T-P —Idp, fAy
1

y'
1

y
—3

(24)

where b, y =y —y, and we have assumed that n (g) is con-
stant over the accelerating region and the y »1 and
b,y ((y for regions in which f )0. This relation be-
tween T and y has been observed in conventional induc-
tion accelerators [19] and will be quite evident in the
highly nonlinear runs presented below.

The physics behind the initial peak in E„where
thermalization of the plasma electrons is associated with
a lower value of the wake amplitude, is less clear than the
situation near the driving beam. Thermalization is ap-
parently caused by scattering of the plasma electrons
from the large-amplitude plasma wave and may be associ-
ated with the fraction of plasma electrons that are nearly
trapped, remaining in the region of peak density for times
of the order of co

Evidence for this concept is provided by a run in which
we set yb =5. Lowering vph allowed a significant increase
(relative to the y ) 10 cases) in the density of trapped and
nearly trapped electrons and an increase in the thermal
energy in the wake by approximately a factor of 2. Fur-
ther evidence is provided in Fig. 4, wherein a lower value
of To increased (slightly) the thermal energy in the wake.
We speculate that the lower To provided a more coherent
nonlinear oscillation and stronger scattering of the elec-
tron distribution. The temperature diagnostic is difficult
to interpret, however, in that T is lowered in the de-
celerating phase of the plasma wave by the bulk accelera-
tion mechanism described above. In the accelerating
phase of the plasma wave, T is artificially increased by
trapped and nearly trapped electrons.

If we take T=50 keV, we can somewhat explain the
low value of E, behind the first peak by the theoretical
saturation limits given in Ref. [15] and quoted as Eqs. (6)
and (7) above. These given E,„/EwB=1.26 and 1.10,

tions in the region near the beam, where the wake field is
larger than might be expected for a T=19-keV plasma,
and the sudden thermalization behind the initial E, peak,
where the wake-field amplitude is somewhat reduced, are
unexpected results.

The close agreement between the simulation and the
cold plasma equations in the region near the beam may
be explained by a simple argument. In the region near
the beam, plasma electrons are accelerated in bulk in the
direction opposite the phase velocity of the wave. This
acceleration reduces the longitudinal thermal motion of
the plasma electrons. The resulting cold plasma distribu-
tion closely reproduces the results of the cold plasma
equations. From Eqs. (22) and (23),

V. NGNLINKAR PLASMA
WAKK-FIELD ACCELERATOR

For a beam pulse with nb =n /2 and Lb &A, , theory
suggests that transformer ratios R »2 may be obtained.
We consider a beam pulse of the form

nz/2, (c —U&)r g((c —
Ut, )r+L„

nb=
0 otherwise . (25)

The nonlinear cold plasma equations (17)—(19) have been
solved for this case [7]. Defining x =—(1+P ) and

co (t —z—/vb ), x(g) within the beam is given implicitly
by

g=x' (x —1)' + ln[(x —1)' +x' ] (26)

Defining g/=~Lb/A~ and x& ——x(g/), it can be shown
that the maximum fields within and behind the beam, re-
spectively, are given by

(27)

and

mC CO

Z = '(x —1)'"+ f (28)

such that the transformer ratio is

(29)

Vlasov-Maxwell simulations of the nonlinear plasma
wake-field accelerator were performed with parameters
similar to those of the linear and nonlinear cases above:
n =2 X 10' cm, To = 10 keV, n& given by Eq. (25), and
yb=100. In this case, however, we use Lb/A&=0. 85,
1.63, and 2.79 such that Eqs. (26)—(29) give R =2, 3, and

respectively. Equation (5) gives the much higher value of
E,„/EwB =2.22, suggesting that elements of the model
of Ref. [15], particularly the trapping process, represent
physics that comes into play before the limit of Ref. [14]
is reached. It is interesting to note that our results are in-
dependent of yb for yb ) 10, whereas Eqs. (4), (5), and (8)
vary with yb. This suggests that expectations based on
Eqs. (4), (5), and (8) may not be meaningful in this in-
stance as long as one assumes that v h =vb. The reason-
able agreement between the wake amplitude behind the
initial E, peak and Eqs. (6) and (7) suggests that the am-
plitude reduction from the first to the second of the E,
peaks is as much a matter of an artificially strong wake in
the beam region as a reduced wake in the region follow-
ing.

TABLE I. Simulation results for the nonlinear PWFA runs. Theoretical results are from numerical
solutions to Eq. (19).

0.83
1.63
2.79

2.09
2.94
3.78

R (theory)

2.09
3.00
4.00

E+ /E~B

1.81
2.74
3.63

E+ /E~B (theory)

1.83
2.82
3.86
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4, respectively.
Simulation results are summarized in Table I. Cold

plasma model results are also given. As an example, the
beam density, electric field, and perturbed plasma densi-
ty, n, =n —no, are plotted in Fig. 6 for the Lb/A~ =2.79
case.

As before, we observe a reduction in the thermal veloc-
ity spread of the plasma in the region near the beam,
anomalously good agreement with the cold plasma equa-
tions up to the initial accelerating peak, thermalization of
the plasma behind the initial peak in E„and a reduced
wake-field amplitude, E, & Ew~, thereafter. In the
Lb/A, =2.79 case, the temperature behind the initial E,
peak was diagnosed by smoothly setting E, =0 beyond
this point and allowing the oscillating plasma to "settle. "
Results indicate 50 & T & 150 keV.

Agreement with the cold plasma model up to the first
peak is made clear when Fig. 6 is compared to Fig. 1 of
Ref. [7]. In fact, the L„/A, =2.79 case shows a peak
electric field E, /E wB=3. 63, which, while down by 6%
from the cold plasma result, exceeds the expectations of
Eqs. (5)—(8). For a To=19-keV plasma, Eqs. (5)—(8) give
E,„/EwB =2.70, 1.61, 1.41, and 3.15, respectively. This
surprising result is caused by the reduction in the thermal
velocity spread in the plasma in accordance with Eq. (24)
and is verified by Fig. 7, which shows plots of T, y and

Ty ' for the I-blip
For completeness, we must comment on the numerical

measurements of the Lb/A~ =1.63 run. Here, by Fig. 7
and Eq. (24), T decreases by two orders of magnitude and
the thermal momentum p, h decreases by one order of
magnitude in the beam region. To properly resolve the
distribution function, we use a fine grid such that
hp, «p, h throughout. The expense of the simulation is
further increased by the numerical stability requirements
for the time step, b,r ~ bp, /eE, (see the Appendix).
Thus, we used cb.r=6.25X10 cm, b,/=1. 25X10
cm, and bp, /mc =1X 10 in this case.

20 —,

I
I

I 1
I

0 I I I I I I

0.0 0.5 1.0
('/X

1.5 2.0

FICx. 7. Plots of temperature T (dashed line), average gamma

y (solid line), and Ty' (dotted line) for the Lb/A, ~
=1.63 case

show a reduction in T in accordance with Eq. (24) over the re-
gion in which y » hy and the plasma density is constant.

For the Lb/A~ =2.79 run, such careful resolution of
the physics is prohibitively expensive. However, our
simulations of the Lb/A~ =1.63 case suggest that a care-
fully resolved simulation of the I.b/A, =2.79 case would
show both the peak field and the transformer ratio in-
creased by 2 —5 % over those values shown in Table I.

Our observation of E, ~EBB following the initial E,
peak is interesting in light of Eqs. (2)—(8). Again we find
relativistic oscillations of the hot plasma limited in a way
most closely corresponding to Eqs. (6) and (7). Taking
T=100 keV after the first peak, Eqs. (6) and (7) giveE,„E~B= 1.06 and 0.93, respectively, in reasonable
agreement with Figs. 6 and 7. As before, Eqs. (5) and (8)
give higher values of E,„.

VI. CONCLUSIONS
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FIG. 6. Simulation result showing beam density (dotted line),
electric field (dashed line), and perturbed plasma density (solid
line) plotted vs g at fixed time for the Lb /A, ~ =2.79 case.

Simulations of the plasma wake-field accelerator were
carried out by following the time evolution of the plasma
distribution function in one dimension via the Vlasov-
Maxwell equations. Results were in surprisingly good
agreement with numerical solutions of the nonlinear rela-
tivistic cold plasma equations in the vicinity of the driv-
ing beam, where the thermal velocity spread of the plas-
ma is reduced by the mechanism of Eq. (24). This reduc-
tion in the plasma thermal velocity allowed the genera-
tion of wake amplitudes that exceeded the predictions of
relativistic warm plasma models as given in Eqs. (5)—(8).

Thermalization of the plasma, however, apparently due
to particle scattering from the large-amplitude plasma
wave, limited the wake to E, ~ E~~ behind the initial ac-
celerating peak. The thermal energy in this region was
observed to increase with the density of nearly trapped
particles (those that remain in the region of peak density
for times of the order of co~ '). Wake-amplitude limits
behind the initial accelerating peak were in reasonable
agreement with Ref. [15]. This agreement may be seren-
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dipitous, however, given the complexity of the observed
phenomena.

These results were insensitive to yb for yb ~ 10 and to
the equilibrium plasma temperature over the range
3 & T, & 20 keV. Results were also insensitive to the pres-
ence or removal of the trapped portion of the distribution
function.

Finally, the nonlinear PWFA concept of Ref. [7] was
found to be viable, within the context of the one-
dimensional simulation, up to the first accelerating peak.
Here, a transformer ratio R =3.78 was demonstrated for
a case in which the theoretical value was R =4.

(A3)

(A4)

(A5)

where J and p are the current and charge densities, re-
spectively. The fields are given by
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APPENDIX: VLASOV-MAXWELL
SIMULATIONS IN ONE DIMENSION

To model beam-plasma and laser-plasma interactions,
we have developed numerical solutions of the relativistic
Vlasov-Maxwell system of equations for implementation
on the Connection Machine at the U.S. Naval Research
Laboratory. For further numerical discussions of the rel-
ativistic Vlasov equation see Ref. [20].

The code is formulated in (g,p„,p,p„r) coordinates
where g =ct —z and r = t. The Vlasov equation in this
case has only one spatial dimension:

and

(A10)

b.r~hg/2c . (Al 1)

We split the Vlasov equation into the following two
equations [21]:

The Connection Machine handles these equations well
if they are difFerenced explicitly. When difFerenced ex-
plicitly, however, the wave equation (A5) imposes a sta-
bility condition on the time step:

Pz df 8+e
ym t}g Bp,

pz y py zB B
Qmc Qmc

=0, (A 1)

df + c-
a~

Pz df
pm t}g

(A12)

where f(g,p„r) is a reduced distribution function for the
plasma, p and p are momenta that are determined from
canonical momentum conservation, e is the electron
charge, which we take to be positive in the simulations,
7'= [1+(p +p~ +p, )/m c ]', and E„E,E„B,and

By are determined from Maxwel 1's equations.
Here, Maxwell's equations are formulated in the

Lorentz gauge. In terms of the potentials 3„, A, and
o.= A, —N

"df 8
8 Bp,

E, + — f =0.
/me Qmc

(A13)

For the first of these equations, we do a simple upwind
difFerencing. For the second, we use a Aux-corrected
transport (FCT) algorithm [22]. As with Eq. (A5), the ex-
plicit ditt'erencing of Eq. (A13) imposes a stability condi-
tion on A~:

18@ Ba+2 =4m( J, —pc ), (A2) A~~ hp, / e E,+
Qmc Qmc

(A14)
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