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Coherent radiation from spatiotemporally modulated gyrating electron beams
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An electron beam from a cyclotron autoresonant accelerator passing adiabatically along a down-

tapered axisymmetric static magnetic field can propagate as an axis-encircling helix. This helix rotates
temporally at the fundamental pump frequency of the accelerator, and varies spatially with an axial
pitch that depends upon the difference between the pump frequency and the local gyrofrequency. We
show that the pitch can thus be freely adjusted so as to allow both frequency and wave-number matching
between the beam and a guided fast wave at each harmonic of the pump frequency. As a result, power
transfer from beam to wave can occur in a process that is first order in the wave amplitude. Examples of
a harmonic converter based on this concept are given for 94- and 1000-CxHz sources employing magnetic
fields no stronger than 10 kG. Since the electrons can maintain phase coherence during the interaction,
one can speculate that the power transfer can be fairly efficient. Practical advantages of this harmonic
converter for high-power applications may include alleviation of mode competition, direct output cou-

pling, lower wall heat loading, and simpler beam collectors than for corresponding cavity gyrotron oscil-
lators and noncryogenic magnets.

PACS number(s): 41.70.+ t, 52.75.Ms, 41.80.Ee

I. INTRODUCTION

Interactions of electromagnetic radiation with electron
beams having well-defined velocity-space distributions
are at the heart of a number of research investigations
and practical devices. The need for well-characterized
beams has led to the development of sophisticated
sources for producing annular beams with narrow
spreads in velocity both parallel and perpendicular to the
axial magnetic field in gyrotrons and cyclotron au-
toresonant masers. For these applications, rnagnetron in-
jection guns can produce beams that are nearly monoen-
ergetic, axisymmetric, and low in pitch-angle spread [1].

Free-electron laser research [2] and analysis of the
wiggler-free free-electron laser [3] have shown that fun-
darnental features enter the physics of wave-particle in-
teractions once a beam acquires spatially coherent modu-
lation. Furthermore, recent work has been reported on
the interaction of a beam with temporal modulation pro-
duced by a short rf accelerating cavity [4]. In this latter
work, clear experimental evidence was offered for
efficient conversion of energy from the temporally modu-
lated beam to radiation, without the customary starting
current threshold for an oscillator. Although the interac-
tion in that work was labeled a harmonic gyrotron, the
authors showed that the mechanism responsible for gen-
erating the radiation was not as in a conventional gyro-
tron. It was also pointed out that, since the beam re-
ceived most of its energy and all of its temporal modula-
tion from an external rf source, the device was essentially
a harmonic converter.

Interest in a harmonic converter as a source of tunable
high-power radiation at millimeter and sub-millimeter
wavelengths could be significant for at least four reasons.
First, the required magnetic field strength would be lower
than that for a fundamental harmonic interaction.

Second, phase stability at the harmonic could be achieved
by locking to the fundamental source frequency, and
mode competition could be alleviated. Third, the intense
heat load which must be dissipated on the walls or rnir-
rors of cavity oscillators might not be an issue since, as
shall be shown below, a waveguide coupler is superior to
a resonator for a converter. And fourth, a simplified
beam collector design might result if the potential can be
realized for very high converter efficiency.

This paper describes and analyzes a process in which
harmonic power can How cumulatively from a spatiotern-
porally modulated electron beam to a guided fast elec-
trornagnetic wave. This process could form the basis for
devices for the efficient production of millimeter and sub-
millimeter wavelength power as alternatives to gyrotrons
and free electron lasers. The term "spatiotemporal
modulation" is used in this paper to stress the fact that
coupled space-time variations are initially imposed on the
beam, as occurs at the first cavity of a gyroklystron
amplifier. Related means for imposing the modulation
are by cyclotron autoresonance acceleration [5] or, under
some conditions, by the short cavity acceleration mecha-
nism described in Ref. [4]. After such a beam is ac-
celerated, the electrons can follow helical trajectories
characterized by the phase variable $0+gz —pt, where $0
is the initial phase value, g is the axial pitch number for
the electron orbit gyrations (i.e., the pitch is 2m/g), z is
the axial coordinate, p is the temporal radian frequency,
and t is the time. For cyclotron autoresonant accelera-
tion, p would be the pump frequency at which the ac-
celerator is driven. A uniform axial magnetic field B is
present in the interaction region and, as shall be shown
below, g=y(p —0)/u, where u is the electron axial
momentum divided by the rest mass, and Q=e8/my is
the gyration frequency for an electron of charge —e,
mass m, and relativistic energy factor y. We shall as-
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sume for simplicity that the accelerator is excited in cir-
cular polarization and that, by virtue of undergoing
phase focusing in the accelerator, all electrons experience
the same magnitude of acceleration; only their phases
differ.

The interactions studied in this paper are those which
emerge in first order in the external wave-field amplitude,
rather than in second order, as is customary for linear-
ized wave-particle interactions. This lower-order interac-
tion is possible because the electron beam carries spa-
tiotemporal modulation which can drive the wave fields,
even in the absence of field-induced perturbations on the
particle motions. The analysis we present shows that
quadratic spatial growth for fast electromagnetic waves
interacting with such a beam may be obtained, and that
oscillations can occur in a cavity surrounding the beam.
It shall be shown that synchronous coupling from the
particles to the wave can occur only if both frequency
and wave-number matching occur. In prior related work
[4], the need for wave-number matching was not appreci-
ated, so that significant coupling could only occur at
waveguide cutoff or in a short output coupler. In the
magnicon interaction [6], strong temporal coherence is
used to provide highly efficient generation of cm-
wavelength radiation. The results we obtain when both
frequency and wave-number matching occur include
wave growth and power extraction at a frequency higher
than the gyrofrequency or one of its harmonics. In addi-
tion, as one is not limited to a cavity output coupler, a
long interaction region can be used to extract a large por-
tion of the power from the beam using a tapered magnet-
ic field and/or a tapered waveguide.

This paper is organized as follows. Section II reviews
the single-particle equations of motion in an axisym-
metric tapered magnetic field to characterize the parame-
ters for spatiotemporal modulation on a beam. Section
III develops the equations for growth of a guided wave
interacting with a modulated beam, and determines the
steady-state power level for a cavity surrounding such a
beam. Section IV analyzes the consequences of requiring
both frequency and wave-number matching and provides
examples relevant for power generation at millimeter and
submillimeter wavelengths. Section V restates the contri-
butions of this work and suggests areas for further work.

Qp= eBp/m y =p, (2)

where the energy factor is given by y = 1+v - v /c .
[Equation (2) may not be satisfied during the acceleration
itself. ] We now wish to characterize the normalized
momentum and coordinates of an electron as it drifts
along the static magnetic field. For a uniform magnetic
field it is only necessary to make the substitutions, for
z)0,

and

t ~t —yz/uo

e ~e cos(yQoz/uo)+e~sin(yQoz/uo),
(3)

e —+ —e„sin( y Qoz /u o ) +e~ cos( y Qaz /u o ),
where y is, of course, constant throughout the motion.
Substitution of Eqs. (3) into Eq. (I) yields, for the normal-
ized momentum,

v(z, t) =e„wocos[pt +y(QO —p )z/uo]

+e wosin[pt+y(QO —p)z/uo]+e, uo . (4)

In Eq. (4) the term y(QO —p)z/uo in the phases shows
the distinction between 2m uo/yQO, the spatial pitch aris-
ing from gyrations induced by the static B field, and
2wQ p /yp, the spatial pitch arising from temporal varia-
tions at the source. One can easily confirm that Eq. (4)
satisfies the equation of motion d v/dt =Q X v, provided
the convective derivative dldt =8/Bt+(uo/y)B/8 izs

employed. The coordinates r(z, t) for the particle follow
from dv/dt = —yQor, from which one concludes that
the electron gyration radius Rp =mp/yap.

If, as we stated above, one has, at the exit from the ac-
celerator, the condition Op=p and if the B-field is uni-
form thereafter, then Eq. (4) becomes

v(0, t) =e„wocos(pt)+ e~ wosin(pt)+ e, u 0,
where p is the radian frequency at which the accelerator
is driven. In order to obtain the circular motion in the
x-y plane indicated in Eq. (I), the axial magnetic field 80
at the exit of the accelerator would normally have to
satisfy the equation

v(z, t)=e„wocos(pt)+e„wosin(pt)+e, uo . (5)

II. ELECTRON TRAJECTORIES
IN AN AXISYMMETRIC TAPERED B-FIELD

In this section, we review the well-known trajectories
for electrons orbiting in an axisymmetric static magnetic
field. This is to provide a basis for the analysis in Sec. III
and to clarify some vague references to so-called "pre-
bunched" beams which occasionally appear in the litera-
ture. We shall assume that electrons have been accelerat-
ed by an ideal cyclotron autoresonant accelerator [5] and
at z =0 have entered a drift region free of fields, except
for a static axisymmetric magnetic field. As an entrance
boundary value, we take the electron momentum divided
by the rest mass (hereafter, normalized momentum) to be
given by

Equation (5) states that the particle phase is independent
of z. Thus, if a stream of particles is continuously ejected
from the accelerator, these particles would form an in-
stantaneous line parallel to the z axis, which line remains
parallel to, and rotates about, the z axis at the angular
frequency p =Op. The phase advance along the trajecto-
ry is precisely equal to the phase advance at the accelera-
tor, so that the particles are all in phase. Labeling such a
beam "prebunched" fails to convey the character of the
beam, which —in this instance —carries no axial density
variations. The elementary result given by Eq. (5) sug-
gests that strong coherent radiation might be expected
from such a stream of particles. However, this may not
necessarily be the case, as shall be demonstrated below, if
the particles are to couple to a guided wave with a finite
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axial wavelength.
Let us now suppose the static magnetic field to be grad-

ually tapered in the drift region, such that the particle
motion is adiabatic. In this case, the phase in Eq. (4) be-
comes

I

pt+r 0 -p (6)

where the axial magnetic field variation is embodied in
Q(z), and where, from the adiabatic conservation of mag-
netic moment, i.e., w (z)/y Q(z) =const, one has

' i/2

u (z)= VQ
—( V0 —u 0 ) (7)

0

with Vii=u (z)+w (z)=const. If the field taper de-
creases the gyrofrequency from Q0 down to a value Q&,
following which it is uniform, we can write, for the phase
in the uniform region,

pt +$0—y(p —0, )z /u, , (8)

where $0 is the value of the integral in Eq. (6), integrated
from the exit of the accelerator up to the beginning of the
uniform field region, where u& is the normalized axial
momentum in this region and where z is now measured
from the beginning of the uniform region. The gyration
radius obeys the equation R (z) =Ra[AD/Q(z)]'~ . When
the phase given by Eq. (8) is inserted in place of that
given in Eq. (4), we see how it is that the phase advances
with z. A stream of such particles will lie on a helix in
space with a pitch number y(p —0, )/u „which helix ro-
tates with time at the angular frequency p. Had the B-
field taper been increasing with z rather than decreasing,
one notes that the pitch number would be negative, cor-
responding to a rotating helix with a backward advancing
spatial phase. [Of course, if the field is increasing, it must
not increase so far that u(z) changes sign. ] Labeling
such a class of equilibria "prebunched" does not convey
the rich spatiotemporal qualities outlined here.

A stream of particles with the helical equilibria de-
scribed above can couple efhciently to a wave with a finite
axial wavelength, as shall be shown below. The phase
variation given by Eq. (8) is of the same form as one finds,
for example, in the first-order perturbations on a beam in
many wave-particle interactions, such as in gyrotron
traveling-wave tubes and free-electron lasers. But, an im-
portant distinction between those cases and what is dis-
cussed in this paper is that a stream of particles with nor-
malized momenta given by Eq. (4) and phases given by
Eq. (8) is a zeroth-order equilibrium that can couple
without additional perturbation to certain radiation
fields. As shall be shown, this can lead to rapid rates of
energy transfer from the beam to the fields, even in low-
impedence waveguide output couplers.

This somewhat pedestrian exposition has been to clari-
fy basic properties of low-density beam equilibria in a
static magnetic field that have either been overlooked or
imprecisely described in the past. We now have the basis
of considering, in the next section of this paper, the radia-
tion fields that can be induced by such a beam.

III. GUIDED WAVE INTERACTION
WITH A COLD BEAM

X 5(P —$0—gz+pt )

X5(x —R cosg)5(y —R sing), (9)

where the cylindrical normalized momentum coordinates
(w, P, u) are defined by v v=c (y —1) u=e, v,
w =v v —u, and cosP =e„v/w. The imposed uniform
static magnetic field is along e„and the accelerator radi-
an pump frequency is p. In Eq. (9), the electron gyration
radius R =m /r Q, the average density is XD, the effective
beam cross-sectional area is 3, and the specific axial and
transverse normalized momenta are U and W. Equation
(9) describes a beam of particles following identical heli-
cal axis-encircling orbits. The combination of both spa-
tial and temporal coherence in the zeroth-order electron
distribution function leads, as shall be shown, to novel
possibilities for wave growth. By developing the formal-
ism from the distribution function, we have laid the basis
for the theory to be extended to include guiding center,
energy, and momentum spreads, although these are not
specifically dealt with in this paper.

From Eq. (9), one has the following expressions, re-
spectively, for the beam density N(x, y, z;t), the axial
current density JD, (x,y, z;t), the dc axial current Ia„and
the x component of the transverse current density
J0„(x,y, z;t):

N(x, y, z;t)= f du f dw w f dP fa
= AN05(x —R cosP')5(y Rs—in/'),

Ja, (x,y, z;t) = —e f du f dw w f dP f0—
U= —eN(x, y, z; t)
r

I0, = f dx f dy J0, = eAND—U
(12)

and

Ja„(x,y, z;t)= —e f du f dw w f dP cosgf0—
W

eN(x, y, z; t) cos—g',
r

(13)

where P'(z;t)=$0+gz pt. We seek an expressi—on for
the power transfer between the electron beam and a guid-
ed electromagnetic wave whose electric field is given by

To simplify understanding of the way in which a spa-
tiotemporally modulated gyrating electron beam couples
to guided electromagnetic waves, the analysis presented
here is for a cold beam and a single-waveguide mode. In
view of the discussion in Sec. II of this paper, we can
characterize the beam electrons by the following distribu-
tion function:

NQA
fa(w, (b, u;x, y, z;t)= 5(w —W)5(u —U)
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E(x,y, z; t) =e„E„(x,y, z; t)

=e„[E„(z)coskiy+E,(z)sinkiy ]

Xsin(k~~z r—ut } . (14)

k~~
' [lnE (z)]&&1,

where q designates either r or s. In Eq. (14), the frequen-
I

In Eq. (14), symmetric modes (i.e., the TE„O modes with
odd values of r) are identified with the amplitudes E„(z),
while antisymmetric modes (i.e. , the TE,o modes with
even values of s) are identified with the amplitudes E,(z).
The amplitudes E„(z) and E,(z) are assumed to vary
slowly in space such that

cy and wave numbers are related by a guided wave
dispersion relation

(k +k )c =co
ll

(15)

where c is the speed of light. For a rectangular guide of
width a and height b, ki =qqrla for the TEqo mode. For
a standing-wave cavity field for the TEqpI mode, where

k~~ =le/I, one can find the power transfer using results
for a traveling wave by taking one-half the sum of the
power transfer found for co) 0 and ~&0. This is valid
since here power transfer is, to lowest order, linear in
E(x,y, z; t).

The spatial growth or decay of the field is determined
by the rate of energy transfer P (z, t) from the beam to the
fields where, to lowest order,

dP(z, t)ldz = —f dx f dy Jo„(x,y, z;t)E„(x,y, z;t)

e„[cos( 2n +1)$'+cos(2n —1)P']J2„(kiR )
=I E (z) 2[sin(2n + 2)P'+ sin(2n }P']J2„+,(kiR )

'sin(k
~~~z

cot )—, (16)

where the upper quantity in large curly brackets applies to symmetric modes and the lower quantity in large curly
brackets applies to antisymmetric modes. In finding Eq. (16) we have used the relationship

exp(i g sin8) = g [e„J2„(g)cos2n8+2iJ2„+i (g)sin(2n + 1)8],
n=0

where J2„(g) is the Bessel function of the first kind and e„ is the Neumann symbol, equal to 1 for n =0 and otherwise
equal to 2. The sum in Eq. (16) may be simplified by use of the identity J„,(g)+J„+,(g) = (2n /g) J„(g), to yield

dP(z, t) W m
=2IO, Eq(z) g J (kiR ) X '

~,
'X sin(k~~z cot), —

m=0
(17)

cos kjy
fax fdy

dEq(z)'X k~~E (z)sin (k~~z tot)+ —E(z) —sin(2k~hz 2ttit)— (18)

where cosm P' takes the odd values of m and goes with the symmetric waveguide modes, while sinm P' takes the even
values of m and goes with the antisymmetric waveguide modes.

For the electric field given by Eq. (14) we have, in general,

P(z, t)= f dx f dy E„(x,y, z;t)H~(x, y, z;t)
2

where H„ is the rf magnetic field and pp is the permeability of free space. Omitting the term without a time average and
performing the integrals over x and y, we find

dP(z, t) dEq (z)=ab Eoc ( k
~~

c /co )Eq (z) sin ( k
~~

z cot ), —
z dz

(19)

where co= 1/c po is the permittivity of free space. Equation (19) may be equated to Eq. (17), eliminating E (z) on both
sides, to yield

sin (k~~z cot )dEq(z) Idz = 21oz co W

cosmic'

gK X ' . , 'Xsin(k~~z cot), —
ab &pc kllc U sinm y

(20)

where K (kiR)=(mlkiR )J (kiR ). Integration over z should follow averaging over time, since the time of interac-
tion T(z)=zylU is a function of z. On the left-hand side of Eq. (20), we replace the time average by —,, anticipating
mT ))1. On the right-hand side, we require the integrals

=1 T
g (z) =— dt c so(mP 0+ mg'z —mpt)sin(k~~z —cot }

cos [m go+ ( m g —k
~~

)z ]—cos [(co —mp )T +m $0+ ( m g —k
~~

)z ]
2(co —mp )T

(21)
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T
h (z) =— dt sin(m /0+ m /'z m—pt )sin(kIIz —tot )

sin [(ai —mp )T+m $0+ ( m g —k
II

)z ]—sin [m $0+ m ~ k
II

}z]
2(co —mp )T

(22}

4~0,
E„(L)—E„(0)= g K G (L)

abEpc k)(c U m =1
(23)

for odd values of m corresponding to the symmetric
modes, and

4~0.
E,(L)—E,(0}= g K H (L)

abe0c k~~c U
(24)

where rapidly varying terms which average to zero have
been dropped.

As a result, we can integrate Eq. (20) to find

=H (L ) =L /2. The magnitude of the time-average
power transfer P (L) from the beam to the fields at the
mth harmonic can be found from Eqs. (23) and (24) using
the general expression

P (L)=abeoc(kIIc/co)E (L)/4,

where E is the field amplitude at the mth harmonic of
the pump frequency p for either the symmetric (odd m) or
antisymmetric (even m) waveguide modes, and where

kII =mg satisfies the waveguide dispersion relation at
co=mp. Equations (23) and (24) give E (L) so that, in

W,
for even values of m corresponding to the antisymmetric
modes. In Eqs. (23) and (24), we have the integrals

G (L)=f dzg (z)
0

and

P (L)=P (0)+Io,LE (0) KW

2

+ 120m (25}

H (L)=f dzh (z) .
0

The functions G (L) and H (L) may be expressed in
terms of the tabulated integrals [7] Si(L) and Ci(L). Ex-
amination of the properties of these integrals shows that
both G (L) and H (L) tend toward zero as L increases,
unless both (to —mp } and (kII

—mg) are themselves zero.
The vanishing of these two quantities will be referred to
hereafter as conforming to matching conditions. These
matching conditions can be understood mathematically,
since the integrands contain a 1/z factor multiplied by
terms oscillatory in z that are proportional to z for small
z. For purposes of what is discussed in most of the bal-
ance of this paper, we shall assume that both of the
matching conditions have been met. If this is so then
G (L) and H (L) can both be shown to be equal to L /2,
provided sinmgo= 1 for odd m and cosmgo= 1 for even
m.

The requirement for the two m.atching conditions, i.e.,
co=mp and kII =mg, can be understood on elementary
physical grounds. Unless the wave frequency matches
one of the frequencies present in the temporal spectrum
of the electron current, phase interference will prevent
any significant power transfer from the current to the
fields. Likewise, unless the wave s spatial variation
matches one of the space harmonics on the beam, spatial
phase interference will prevent significant power transfer
as well. However, if the system is short, such that both
(co —mp)yL/U and (kII mg)L are mu—ch less than ~,
then G (L) and H (L) may not have insignificant
values, and power transfer can occur. This was evidently
the situation for the experiments reported in Ref. [4].

We shall henceforth assume that both frequency and
wave number matching do occur, so that G (L)

sin(kII —m g)L
IG (L)I=IH (L}I=-

m
(26}

where, to maximize the results, m Po has been taken to be
an odd integer multiple of n/2 in evaluatin. g G (L), and
an integer multiple of m in evaluating H (L). Since the
harmonic power is proportional to the square of either
G (L) or H (L), we see that it drops to less than half
that for perfect wave-number matching when (kII mg)L—
exceeds 1.39. On the other hand, a competing mode can
probably be neglected if its wave number k

II
is such that

( k 'I mg )L. exceeds 3—m. /2, where Eq. (26) gives
G (L)=0.045(L/2). Similar considerations would ap-

ply to competition from modes at harmonics other than
the design harmonic.

for I0, in A.
Equation (25) indicates that power fiow into the

waveguide will occur whether or not an input amplitude
E (0) is present. If indeed E (0)=0, the power is seen
to increase quadratically with the interaction length L,.
This occurs since an exact impedance rnatch is achieved,
and power will How from the beam into the circuit so
long as the match is maintained, i.e., so long as frequency
and wave-number matching is preserved. This type of
power transfer cannot occur without initial spatiotem-
poral modulation on the beam.

Failure to achieve an exact match in either frequency
or wave number will result in values of G (L) and
H (L) less than L/2, with a concomitant reduction in

the growth rate for radiation at the mth harmonic. This
can be shown quantitatively by taking co=mp, but with
k

II
Am g. Equations (21) and (22) lead to
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The degradation in growth due to energy or axial
momentum spread can be calculated in the same way. To
illustrate, we consider a monoenergetic beam with a
spread in pitch-angle caused by a spread in parallel
momentum from u —hu /2 to u +Au /2. If the distribu-
tion in u is constant within this interval, we find the aver-
age value of G (L) or H (L) to be

G (L)=H (L)=——Si(z),L 1
m nz (27)

abLzzdz zz/Q = —
( jdz jdy jdz dz„E„), (28)

where Q is the quality factor of the cavity resonator, and
where the brackets indicate a time average. The ampli-
tude E which satisfies Eq. (28) is

E =8QIO, K
8'

' abeocoU
(29)

provided L = l~/k~~ =le U/ym (p —0), where l is the ax-
ial eigenvalue for the TE oi mode. This gives, for the
steady-state power level (in W) into the cavity,

where Si(z) is the sine-integral function, and
z

= k~~L(b u /2u ). From the tabulated values [7], one can
determine that Si(z)/z falls to less than 0.707 for z greater
than about 2.5. As a result, one can expect power growth
to decrease from the cold-beam value by a factor of 2 or
more once the fractional parallel momentum spread
hu/u exceeds about 5/k~~L. This result is similar to
what is found for traveling wave amplifiers and free-
electron lasers.

If a cavity rather than a waveguide surrounds the
beam, the power fiow is calculated as in Ref. [4]. The
field amplitude assumes a value such that the power
transfer from the beam balances the cavity losses. Thus,

IV. EXAMPLES

In this section we shall examine the consequences of re-
quiring both frequency and wave-number matching be-
tween the spatiotemporally modulated electron beam and
a single propagating waveguide mode. We shall also pro-
vide some examples of millimeter and submillimeter har-
monic conversion in a traveling fast wave output coupler,
as described by Eq. (25).

The waveguide dispersion relation, Eq. (15), upon sub-
stituting the matching conditions

becomes

mg=my(p —fl)/U,

'2
1==1

p2
(31)

2
kiR

p2im
P, —(1 —x)=f(x)=

px (32)

and difFerentiating f (x) with respect to x =0/p to find
the maximum. The result is

kiR =(1—P, )
' at x=x'=1 —P, . (33)

where Pi = W/yc and P, = U/yc. For maximizing
harmonic conversion, it is necessary to maximize
the harmonic coupling coefficient IC (kiR )

=(m/kiR )J (kiR ). This requires kiR to be as close to
m as possible. We can find the largest allowed value of
kiR by rearranging Eq. (31) into the following form:

=960~fQI11,( 8'/U) K Under these conditions30

for Io, in A, and where the geometric factor
f= (c /aiL )(L /ab). Equation (30) agrees essentially
with that found in Ref. [4], after one takes into account
geometric differences and the distinction arising from our
use of both wave-number and frequency matching. What
is seen from Eq. (30) is that power transfer increases as
the square of the dc beam current and linearly with the
cavity Q.

There are several reasons why a waveguide coupler is
preferred to a cavity. In order to effect both frequency
and wave-number matching, except at the lower harmon-
ic numbers, the axial mode number for a cavity long
enough to allow significant power extraction from the
beam could be quite high. This could place the operating
mode within a highly crowded spectrum of adjacent
modes, and perhaps exacerbate mode competition. Use
of a cavity will, in most instances, consume a greater
fraction of the generated rf power in wall losses than will
a waveguide coupler. Finally, with a waveguide coupler,
extraction of a large portion of the beam powr will re-
quire a precisely tapered axial magnetic field; implement-
ing this tapered-field concept within a short resonant cav-
ity could be a diS.cult task.

and

k
ii
c —cop

k~R =
2 2 1/2

mph y pi=m
( 1 p2)1/2 1+y2p2

(34)

which, in the limit ypi»1, allows K (kiR ) to go over
to J (m). This approximation is seen to be justified even
if pi is not particularly close to unity. Without wave-
number matching, ki R =m pi, and the values of
J (ki R ) can be smaller than those resulting from the use
of Eq. (34). This shows that the high-harmonic coupling
can be larger when wave-number matching is observed
than otherwise. The condition 0/p =x*=1 —p, shows
that the magnetic field strength required for both tem-
poral and spatial phase matching is lower than that re-
quired when only temporal phase matching is considered.

The values of J (m) are given in Table I for
m from 1 to 10. The asymptotic form [8] is
J (m)-0. 44731m ', which is seen to be accurate to
within 0.1% for m greater than 9. This approximate
form is valid for m values much less than the critical



COHERENT RADIATION FROM SPATIOTEMPORALLY. . . 6851

J (m)

0.44005
0.352 83
0.309 06
0.281 13
0.261 14

6
7
8
9

10

J (m)

0.245 84
0.233 58
0.223 45
0.214 48
0.207 49

value m„=3(yPj), a fact which emerges upon express-
ing J (kjR) in a Nicholson asymptotic expansion [8],
valid when k&R is slightly less than m. This expansion
gives

1 mJ (kiR )- — K, i3
3yPj mcr

(35)

where K, i3(s) is the Bessel function of the third kind.
For m ((m„, Eq. (35) goes over to the asymptotic form
used above, namely, J (m)-0. 44731m 'i, while for
m ))m„, one has

TABLE I. Values of J (m) for m from 1 through 10. The
asymptotic form 0.44731m ' ' is accurate to better than 0.1%
for m greater than 9.

energies less than about 2 MeV fall into this category.
Two such examples are given below showing the parame-
ters for devices that would produce power at a frequency
of 94 GHz, corresponding to a wavelength of 3.19 mm.
Equation (25), with E,„(0)=0, has been used to find the
ratio P (L)/L which, together with the other parame-
ters, is listed in Table II for two beam energies. The dc
beam power for both examples is 2 MW. It is tempting
to use the final entry in Table II to find the device lengths
needed for an output power of, say, 500 kW, namely 6.1

and 22.5 cm. However, use of results of the linearized
theory developed here out to these lengths would not be
justified, since energy depletion would probably terminate
the growth process well before the e%ciency reaches
25%. One can speculate that tapering of either the B
field or the waveguide dimensions can overcome the limi-
tations of energy depletion, a point which is discussed
below. Nevertheless, the relatively short growth lengths
found here do serve to give a measure of the strength of
harmonic coupling under conditions described.

The attenuation values for the copper waveguide have
been listed in Table II to show that the total power loss in
the device walls is probably less than 0.5 db. This follows
from adding attenuation to the wave growth as described
by the differentia1 equation

J (kiR )-
2&m

1/2

exp
mcr

(36)
dP (z) =2 Az aP (z),—

dz
(37)

It can be noted that these forms are not identical to those
which emerge in treating either spontaneous [9] or stimu-
lated [10] synchrotron radiation, which are derived as-
suming P, =0, in which case Pi in the above formulas is
set equal to unity. For the problem under discussion
here, P, is not zero, and the above forms apply.

For weakly relativistic beams i.e., where (ypj ) is not
very much greater than unity, one must use the exact
form given by Eq. (34) for kj R. Examples using electron

2
(e +aL —1),

~2L 2
(38)

representing the ratio of output power with attenuation
to that in the absence of attenuation. For the two cases

where A is the last term in Eq. (25), divided by L, and a
is the attenuation factor in Nps/cm (equal to the values
in Table II divided by 8.686). The solution of Eq. (37), di-
vided by its solution when o.=0, is

TABLE II. Parameters for two examples of harmonic converters providing output power at 94 GHz.

Beam voltage (kV)
Output wavelength (mm)
Harmonic number m

Pump frequency (GHz)
Beam current (A)
Momentum ratio W/U
Magnetic field (kG)
Axial wave number kii (cm ')
Perp. wave number ki (cm ')

Coupling constant K
Waveguide mode
Waveguide width a (cm)
Gyration radius (cm)
Frequency/cutoff frequency
Output frequency/gyration frequency
Waveguide loss (Cu, db/cm)
P (L)/L (kW/cm )

300
3.19
5

18.8
6.7
2.0
9.37
6.84

18.46
0.1347
TE30
0.51
0.201
1.066
5.69
0.040

13.6

500
3.19
9

10.4
4.0
2.0
6.25
7.57

18.17
0.1089
TE50

0.87
0.416
1.084

10.62
0.017
0.99
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TABLE III. Parameters for a harmonic converter providing
output power at 1000 GHX.

Output wavelength (cm)
Beam voltage (kV)
Hearn current (A)
Magnetic field (kG)
Pump frequency (GHX)
Harmonic number m
Momentum ratio 8'/U
Axial wave number (cm ')

Perp. wave number (cm ')
Waveguide width (cm)
Perp. mode number
Coupling constant E
Gyration radius (cm)
Waveguide length (cm)
Output power (kW)

0.03
4600

1.0
9.851
2.786

359.
10
29.4

208.4
3.51

233
0.0629
1.71

30
110

above, one has aI. =0.0279 and 0.0440, respectively, for
which Eq. (28) gives ratios of 0.991 and 0.986. If applied
to an output power of 500 k%', these would represent a
(nonuniform) heat deposition of only 4.6 and 7.3 kW.
These values are much smaller than heat load values for
94-GHz, 500-kW cavity gyrotrons. Furthermore, cavity
gyrotrons have much smaller surface areas upon which
this heat must be deposited. It must be stressed that the
device parameters for high-efficiency power extraction, as
well as the actual heat loading, cannot be known accu-
rately until a nonlinear analysis is carred out. The esti-
mates given here are not intended for more than order-
of-magnitude purposes.

Let us now consider a relativistic beam such that the
asymptotic form K (k&R ) —0.447 31m ' is appropri-
ate. This would be so, as an example, for a beam energy
of 4.60 MeV with W/U =10, so that ypi=9. 90.
Significant power can be extracted from this beam at a
high harmonic using fairly modest magnetic field
strengths. To show this, we provide an illustrative exam-
ple where 359th harmonic power is extracted from the
beam at 1000 GHz. Table III shows a set of parameters
for such a device.

As is seen, this device requires a magnetic field of only
9.6 kCz, which can be furnished from either permanent
magnets or nonsuperconducting coils. To resist mode
competition, both the harmonic number (359) and the
perpendicular mode number (233) are prime. This helps
to guard against coincidental solutions of the waveguide
dispersion relation at lower frequencies. At higher fre-
quencies, such as at twice the design frequency, the
dispersion relation would be satisfied, but here the har-
monic coupling coefficient IC (kiR) is much smaller
than at the design frequency. The linear efficiency for the
device is about 2.4%%uo, which is comparable to or higher
than that of many molecular gas lasers in the same wave-
length range.

However, there is a limiting efficiency for these
traveling-wave harmonic converters. This arises since

the harmonic coupling is affected by a spatial phase slip
between the wave and the modulation on the beam. (The
relative temporal phase is not affected by electron energy
depletion. ) The variation in relative spatial phase brought
on by a depletion in electron energy Ay is

kll m —(p —0) L = — Ay=-
u u cp, y

since U=const to first order. Once this phase variation
approaches m/2, energy transfer to the wave can cease,
and can even reverse sign. This condition amounts to
limiting the energy loss fraction to 4y /y (p, A, /4L,
where A, is the radiation wavelength. This limit is similar
to that encountered in free-electron lasers in the absence
of tapered wigglers. Similar considerations show that
wave growth would be limited by an initial spread on the
beam in energy, or in axial momentum. The linearized
efficiency values given above are seen to exceed this limit.

In principle, it should be possible to avoid spatial phase
slip due to nonlinear energy depletion by tapering the
magnetic Geld or the waveguide dimension. The taper
would have to be designed so as to hold constant the
quantity k~~

—my(p —0)/U over the length of the in-
teraction. Since all the particles would have identical
phases at each point along the interaction region, it
should be possible to maintain energy Aow continuously
from the particles to the Gelds by proper choice of the
field or guide taper profile. From these arguments one
can speculate that the device efficiency can be relatively
high.

V. CONCLUSIONS

An analysis has been made of the orbits of axis-
encircling electrons in a down-tapered axisymmetric stat-
ic magnetic field after acceleration using cyclotron au-
toresonance. It was shown that a beam with spatiotem-
poral modulation can be created which can drive guided
fast waves in a first-order harmonic conversion process.
As a result, wave growth in a waveguide can arise
without an input signal, and cavity oscillations can occur
without a threshold starting current.

The harmonic conversion process described allows
significant power How between a spatiotemporally modu-
lated beam and radiation fields at harmonics of the funda-
mental temporal modulation frequency. Power transfer
will only occur cumulatively if both frequency and wave-
number matching occur between the beam and the wave.
The harmonic range where power transfer can occur in-
creases as the beam energy increases. A harmonic cou-
pling coefficient is identified whose magnitude falls off as
m ', where m is the harmonic number, so long as m is
much less than the critical harmonic number 3(@pi),
where pi is the electron velocity component perpendicu-
lar to the magnetic field divided by c, and where y is the
relativistic energy factor. For m ))m„, the coupling
falls off as exp( —m/m„). Wave growth in a waveguide
is shown to increase quadratically with the product of
guide length and dc beam current. Use of a cavity as an
output coupler at high harmonics can be less e6'ective
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than a waveguide because of mode competition.
Examples for providing power at 94 GHz are given us-

ing 300- and 500-kV beams. Operation at the fifth and
ninth harmonics, respectively, is shown to require mag-
netic fields of only 9.4 and 6.3 kG. Other advantages in
this wavelength region, in comparison with cavity gyro-
trons, include phase locking to the fundamental pump
source frequency to combat mode competition, lower
wall heat loading, and potentially simpler beam collector
design, provided the anticipated high efficiency is
achieved.

An example for providing submillimeter wave power at
1000 GHz using a magnetic field of less than 10 kG is
also given. This device would operate at the 359th har-
monic with the waveguide in the 233rd transverse mode.
These high values do not necessarily invite problems
from mode competition since, as they are prime numbers,
satisfaction of the waveguide dispersion relation cannot
occur at lower frequencies. At higher frequencies, the
harmonic couplng coefficients are smaller than at the
design frequency. For the example given, 110 kw of 0.3-
mm radiation would be generated in a 30-cm-long
waveguide coupler.

The main outstanding theoretical issue has been shown
to be the efficiency limit for such a harmonic coupler

when the device parameters are uniform along the in-
teraction region. Spatial phase slip between the wave and
the beam modulations can be expected once hy/y
exceeds A, /4LP, . This phase slip due to energy depletion
can be avoided by employing a gradual taper in the mag-
netic field or the waveguide dimension, so as to hold close
to zero the spatial phase difference. Initial energy and
momentum spread on the beam is also expected to lead to
a degradation in the power transfer rates. However, it
appears possible to operate a cyclotron autoresonance ac-
celerator with strong phase focusing so that the beam
could be initially formed with a small spread.

Extension of these concepts to the shorter-wavelength
portions of the electromagnetic spectrum would appear
to offer an alternative to either molecular gas lasers or
free-electron lasers, provided beams of sufficient quality
can be produced.
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