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Hydrogen spectral lines with the inclusion of dense-plasma effects
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Line profiles for hydrogen including the case of dense plasmas are investigated on the basis of a
many-particle approach. Using a Green s-function technique, electron contributions to the shift and
broadening from both separate-level and interferencelike terms are considered consistently. The theoret-
ical approach to the line profile has been improved by including dynamic screening of collisions, contri-
butions from hn =0 transitions, and cross-term contributions not only to the broadening but also to the
shift of the line. As an example, the line profile of H has been considered. An analysis of details of the
second-order approximation with respect to the atom-plasma interaction is given, avoiding the no-
quenching and dipole approximations. The effect of dynamic screening for high electron densities is in-
vestigated. Deviations from the linear dependence between the electron-shift contribution and the densi-
ty are expected for H for n, &2X10"cm at temperatures of about 10000 K.

PACS number(s): 52.25.Rv, 32.70.Jz

I. INTRODUCTIGN

Stark broadening of spectral lines provides a valuable
tool for investigations in the field of plasma physics. In
order to study the connection between the observed line
shapes and the microscopic processes within the plasma,
in principle, a quantum statistical many-body system has
to be considered. In the low-density limit it is sufhcient
to consider collisions of the atom and a perturbing
charged particle [1]. However, with increasing density
the concept of a single emitting atom within an environ-
rnent of perturbers becomes unrealistic. This means that,
instead of single-particle effects such as binary collisions,
collective degrees of freedom such as plasma oscillations
become more important.

Generally, a Green's-function approach seems to be
well suited to a rigorous description of these effects. In
fact, using the advantages of the diagram technique, it is
much easier to find a complete set of contributing terms
within a definite frame of approximations. Green's-
function approaches have already been used by different
authors to describe the Stark broadening of spectral lines
[2—7]. Besides investigations based on that technique, an
equivalent approach is rooted in a formal application of
kinetic theory in connection with a Liouville-operator
technique [8—12].

Recently, the concept of a general quantum-statistical
theory to the description of thermodynamic, transport,
and optical properties in dense plasmas has been accom-
plished [13,14]. In this way, a many-particle approach to
the theory of spectral lines has been developed using the
Green's-function concept. As a starting point, the rela-
tionship between optical properties and the dielectric

function has been chosen [15—17]. A diagram technique
has been used to select out the relevant approximations
within the perturbative expansion. It has been shown
[18] that this Green's-function approach corresponds, in
principle, to the kinetic-theory approach, and that the
semiclassical impact approximation [1] comes out as a
special approximation [17]. Furthermore, on the basis of
this approach, the shifts and widths of some argon lines
have been calculated and compared with experimental re-
sults [19]. Moreover, attempts have been made to de-
scribe nonlinearity effects with respect to the density
dependence of shift and broadening of lines in dense plas-
mas [19]. So, a general quantum-statistical approach to
spectral-line shapes is available. However, in evaluating
spectral-line profiles, overlapping lines have been exclud-
ed by neglecting degenerate or close-lying energy levels
within the unperturbed atomic system [17,19,20].

The aim of the present paper is threefold. First, im-
proving on previous work [17,19,20], overlapping lines
were included in the Green's-function approach. There-
fore the self-energy and vertex contributions to the elec-
tron shift and broadening were reconsidered, as described
in Sec. II. Thereby an additional contribution to the line
shift, the vertex contribution, was found for overlapping
lines. Second, based on the final expressions of Sec. II
and further approximations which are discussed in Sec.
III, line-profile calculations, in particular for H, were
performed. In Sec. IV a detailed analysis of the corre-
sponding results is given. Finally, Sec. V is devoted to
the question of whether or not effects of dynamic screen-
ing of the electron-atom interaction with increasing den-
sity are important. Such effects have been discussed re-
cently for some Cs t lines [21] and have been confirmed
experimentally [22].
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II. THEORY

Based on a Green's-function technique, a systematic
approach to spectral-line shapes in dense plasmas has
been developed (for a short introduction see Refs. [14—20)
as well as Appendix A). In principle, this Green's-
function approach is able to describe the optical proper-
ties of plasmas over the full density-temperature range.
Most descriptions of spectral lines in plasmas are based
on a quasistatic approximation for the ions and a col-
lisional formulation for the electrons. In fact, at least for

the small plasma parameters considered here, it is possi-
ble to decouple the ion and electron subsystems by treat-
ing the ion-electron correlation within a microfield distri-
bution, where the ion field is shielded by electrons in the
Debye-Hiickel form [23].

The objective of this paper is to investigate the electron
contributions to hydrogen spectral lines, reconsidering
the interaction between the bound and the perturbing
electrons in a systematic manner. The electron contribu-
tion to the line shape can be obtained from the imaginary
part of the corresponding polarization function [14-20]
(see Appendix A), whereas the line-shape function reads

X (i')(f'~[co H; (P)—+H/(P)+Re(X& —X;)+i lm(X;+X&)+il',&] '(f")[i"),
(2.1)

with

(2.2)

Because it is more convenient to treat the problem of
energy-level splitting caused by the ion microfield within
parabolic coordinates, the states i', i", f', and f" in Eq.
(2.1) have to be considered as the degenerate initial and
final states, respectively, within parabolic coordinates. In
addition, in Eq. (2.1) the "line-space" notation according
to Baranger [24] was introduced, allowing the Hamiltoni-
ans H; and H& to act only within the space of initial and
final states. W(P) stands for the microfield distribution
function, where P=E/Eo denotes the normalized and Eo
the Holtsmark (normal) field strength. In this paper the
microfield distribution according to Hooper [25] has been
chosen. Furthermore, the Stark splitting of the degen-
erate energy levels is defined by the corresponding opera-
tors C [26] while (i~r

~f ) has to be identified with the di-
pole matrix element for the transition between the states i
and f.

The level shift and broadening results from the self-
energy operator X, whereas the operator of the vertex
contribution I" generates the upper-lower interference
term. The self-energy and the interferencelike terms fo1-

low from the interaction between the radiating atom and
the plasma environment. Therefore, in order to deter-
mine X and I it is necessary to deal with a many-
particle problem. The latter can be treated in the frame
of a perturbative expansion. Using the Green's-function
approach, it is possible to carry out this perturbative ex-
pansion in a very systematic manner. Relevant parame-
ters for such a perturbative approach are the perturber
density and the atom-perturber interaction. Due to the
fact that our main concern is directed to weakly nonideal
plasmas, it is reasonable to restrict all of the following
theory to modifications in the line shape which are linear
in the density of the perturbing electrons. However, due
to the collective degrees of freedom, the effective
electron-atom interaction becomes a dynamic one.
Therefore, in calculating X and I, as the simplest ap-
proximation, a first-order Born approximation with
respect to the dynamically screened electron-atom in-
teraction has been considered. Of course, the developed
Green s-function approximation is more general and is
not restricted to the introduced simple approximations.

Analogous to Ref. [17], X and I were calculated at
the same level of approximation. The final expressions in
matrix representation read

(i'~X~i")= — f 3dq V(q) —f dcoIme '(q, co+i5)[l+nii(co)]
e (2n) 77

X g M '(q)[M~'. '(q)]
E, E (co+i 5 )— — (2.3)

with n~(co)=(e~ 1) ', P=—1/k T, iiand the Coulomb potential V(q)=4~e /q . Thus within the frame of our ap-
proximations it is sufficient to take the dielectric function of the electron gas e(q, z) in random-phase approximation
(RPA):

f, (Ep) —f, (Ep+q)
e(q, z)=1—2 f dp V(q)

(2n. ) p p+q Z

The expression

(2 4)
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M„' '(q)=ief, dp I»„'(p)[q' (p) —p (p+q)]1
(2.5)

enotes the isolated vertex function, where 4 is the wave function of the isolated atom. The upper-lower interference
term reads

{~'1&f'Ir'lf" & li" &
= — f dq I'(q)

e (2m) I I
n1'n 1'n2'n 2

~(0)
M.' ' (q)M', ', ( —q)M', '

n 2f' n1n2
h&0

1Yi «y'»

co(.o)
COIy

X f [1+n~(co)]lme '(q, co+i5)dco,
n1 2n ln2

(2.6)

with

I.;&,,„/,.= {i'((f'(co+H/ H; +—Re(XI —X;)+i Im(X;+XI )(f"& Iji" &,

~„+ r„= ' f ', dpf, (E, )—'
m, (2~) p

X g(2l+1)e ' ' sin5i(E~),
I

(2.7)

which corresponds to Baranger's result [24]. (See also
Appendix B for details. )

III. APPROXIMATIONS

In order to calculate hydrogen spectral lines, starting
from Eqs. (2.1)—(2.6) and considering only the low-density
limit, it is useful to introduce further approximations.

First, the Fermi distribution of the electrons may be re-
placed by the Boltzmann distribution

3/2

exp( —p /2m, kz T), (3.1)f, (E~)=—,'n,
m, k~ T

where n, and m, are the electron density and mass, re-

where cu';&' is the unperturbed transition frequency for
transitions between the energy level i and f. (For more
details see Appendix A.)

The self-energy and the vertex contributions according
to Eqs. (2.3) and (2.6) have to be considered as a generali-
zation of those for isolated lines [see Eq. (3.16) and (3.17)
of Ref. [17]]. In contrast to the latter, however, the gen-
eralized vertex contributions given by Eq. (2.6) lead not
only to the well-known contribution to the broadening of
the line, but also to an additional term, the vertex contri-
bution to the line shift.

The first-order Born approximation introduced above
is restricted to weak electron-atom collisions. The treat-
ment of strong electron-atom collisions has to avoid a
perturbative expansion with respect to the interaction.
However, in contrast to the case of weak collisions, col-
lective efFects such as screening lose their importance, as
is well known from the evaluation of transport properties.
Using the Green's-function concept again, and assuming
the electron-atom interaction as an elastic-scattering pro-
cess, the connection between self-energy contributions to
the level shift and broadening and the phase shifts 5& can
be derived ending up with

Ime '(q, co)=- Ime( q, co )

[Ree(q, co)] + [Ime(q, co)]
(3.2)

occurring in (2.3) and (2.6), can be simplified for hydro-
gen line profile calculations.

The main contributions to the shift and broadening ac-
cording to (2.3) and (2.6) are to be expected at the unper-
turbed transition frequencies co =co;'~' =E ' —E~ '.
Therefore, as long as the plasma frequency
co &=(4mn, e /m, )'~ is small compared to co'; ', for calcu-
lations of contributions from virtual transitions between
states with different principal quantum numbers (hnAO
contributions) using the RPA dielectric function, the ap-
proximation

Ime '(q, co) = —Ime(q, co) (3.3)

holds.
For the hn =0 contributions a Debye screened

electron-atom interaction may be applied, using

Ime (q, co)=- Ime(q, co)

(I+»c~/q )
(3.4)

if co,' ' &(co
&

is fulfilled. Here ~D denotes the inverse De-
bye radius»cD =(4m.n, e /k~ T)'

Both approximations work well if only the electron
densities are small (n, ~10' cm ). However, with in-
creasing densities, the energy difFerence between the per-
turbing states may become comparable to the electron
plasma frequency co &. Thus, for such a situation the use
of the approximations (3.3) and (3.4) is no longer valid,
and one has to take the full expression (3.2). This prob-
lem will be discussed in detail in Sec. V. As usual, in cal-
culating the electron contributions to shift and broaden-
ing, the level splitting due to the ion microfield has been
neglected. As with the problem of screening, this can be

I

spectively. Quantum effects that are connected with the
use of a Fermi distribution are not of importance in the
density region (n, (10' cm ) considered here. Howev-
er, further quantum efFects, as given by Ime ', are of
more importance in this region. They lead to a conver-
gent behavior of the integrals for shift and broadening ac-
cording to Eqs. (2.3) and (2.6). Furthermore, the expres-
sion
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done if the ion density is small (see Sec. V).
Finally, for the evaluation of the matrix elements in

Eq. (2.5), the multipole expansion was avoided, using in-
stead the more general expansion of e'q' into spherical
harmonics Y& (8,$),

Oo

e' '=4~ g g i'J, (qr) Y; (& ) Y, (&„),
1=0m = —I

(3.5)

0.005

0.000

0.003

0.002

0.001

I

I

I

cutoff parameter (Ref. [31])

r--t I

T = 13200 K

Ii.J~
I

I

I --'-'

I

I

l L~

0123456789L

where j& stands for the Bessel function. Considering
weak collisions one can restrict to only 1=0 and 1 contri-
butions in Eq. (3.5). That corresponds to an inclusion of
multipole contributions up to dipolelike terms.

In order to investigate the contributions of strong col-
lisions, the phase shifts occurring in Eq. (2.7) have to be
evaluated. An adequate treatment of strong collisions
can be formulated on the strength of close-coupling equa-
tions [27]. For simplicity, here a partial summation of
the perturbative expansion has been used. In a first ap-
proximation this leads to a static polarization potential
for the electron-atom interaction (see Refs. [28,29] and
Appendix B).

In order to get an idea of the shift and broadening be-
havior with respect to strong collisions, the shift of the
central L component corresponding to the 001~000
transition (in parabolic quantum numbers) has been eval-
uated. In Fig. 1 the results of the phase-shift calculations
are compared with those of the Born approximation [Eq.
(2.3)] in an adiabatic approximation. In addition, a com-
parison is made with shifts which are obtained after car-
rying out the transition to the semiclassical approach in
Eq. (2.3) (compare, e.g., Ref. [17]) and using the dipole
approximation in calculating M„' '(q). It is obvious from
Fig. 1 that the treatment of strong collisions by phase-

shift calculations leads to an improvement of the first-
order Born approximation. But it is to be seen also that
the contributions of strong collisions are further overes-
timated as the result of the introduced adiabatic approxi-
mation.

As a very simple way to avoid the overestimation
occurring in the Born approximation for small 1 (strong
collisions), the introduction of a cutoff procedure has
proved feasible. Here the procedure suggested by Griem
[31]will be applied: The q integrals in Eqs. (2.3) and (2.6)
will be cut at a maximal value q,„=1/p;„, where pn;„
is to be calculated in agreement with Ref. [31]. The
strong-collision contributions to the broadening are es-
timated within a Lorentz-Weisskopf approximation; they
introduce an additional shift of about 20% of that due to
weak-collision contributions.

IV. RESULTS AND DISCUSSION
OF THE LINE-SHAPE CALCULATIONS

FOR LOW-DENSITY PLASMAS

I(AA)
1.0—

n, = 6.4 x 10'6 cm

g", I = 12000 K

0.5-

In order to test the theory given here, the profile of the
H line for hydrogen was calculated and has been com-
pared with experimental results. After evaluating Eq.
(2.1), for H the profile of Fig. 2 resulted. An excellent
agreement between the unified theory calculations [32]
and our theory can be stated. At this point it is impor-
tant to recall that the latter should be considered as a
correct low-density result within the framework of the
static-ion model [33,34]. Therefore this agreeinent may
be regarded as an indication that the treatment of strong
collisions given in Sec. III can be justified.

On the other hand, a remarkable difference between
our results and that of Ref. [1] has been obtained. The
reason for this discrepancy is the inadmissible approxi-
mation in determining the vertex contributions. In Ref.
[1], in fact, contributions to the vertex term resulting
from the degeneracy of the corresponding atomic levels
were not taken into account. To prove the effect of this

FIG. 1. Electron shift contributions to the 001 state (parabol-
ic coordinates) as a function of the angular momentum numbers
/. , results using Eq. (2.7) and the phase shifts based on
Eq. (B6); ———,results from treating the perturbing electrons
in agreement with Eq. (2.3) within adiabatic approximation;
—.—- —,results from treating the perturbing electrons classi-
cally within adiabatic approximation [the corresponding q in-
tegrals in Eq. (2.3) are performed within the limits

q = [p /( l + 1),p /I] with p =+3k' T/m, ].

I I

-10 -5
1

10

FIG. 2. Calculated H -line profiles compared with experi-
ment. , experiment (Ref. [36]); X X X, unified theory
(Ref. [32]); ———,Ciriem (Ref. [1]);———,this paper.
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approximation on the line shape, the entire profile has
been recalculated neglecting the degeneracy with respect
to vertex corrections, which corresponds to a setting of
n) =ni. =i'=i", and n2=n2 =f'=f" in Eq. (2.6),

I'. = f ' dqM' ' ( —q)M'"(q)V(q)'f' 2 (2 )
f'f'

X f dro[1+ni)(ro)]

Xlme '(q, ro+i5}5(ro} .

(4.1)

The resulting profile (Fig. 3) then nearly coincides with
that of Ref. [1]. Our theory, of course, is not restricted to
a no-quenching approximation (i.e., contributions from
nonradiative transitions between states of different princi-
pal quantum numbers are considered). Furthermore,
from Eq. (2.3) it follows that the correct quantum-
mechanical treatment leads to both shift and broadening
contributions for virtual transitions with hn =0.

In agreement with Eq. (2.1), the full profile of the H
line can be found after a weighted superposition of all
shifted and broadened components of the line. Therefore,
in principle, the line shift is obtained only after this su-
perposition procedure. A weighted summing of all shift
components as proposed in Ref. [31]is an approximation.
Furthermore, the vertex contributions as given by Eq.
(2.6) should not be neglected; for H it amounts to about
20% of the shift.

Table I shows a comparison of different calculation
procedures for the electron contributions to the H -line
shift. The result of the correct superposition is compared
with that of a weighted summing procedure. Values of
Ref. [35] have been included. Although the coincidence
of the line shift by Griem [35] with the results of the
weighted summing procedure of the self-energy contribu-
tions should be viewed as fortunate, our self-energy con-
tributions to the shift agree very well with the results
there. Nevertheless, it is obvious from Table I that the
use of a weighted sum is problematic. The agreement be-
tween the calculated shifts of Ref. [35] and those of this
paper has been reached only by the inclusion of the ver-
tex contributions.

As discussed in Sec. III the multipole expansion was
not used. Instead a decomposition of M„'0'(q) into spher-
ical harmonics [see Eq. (3.5)] has been applied. Note that
the first (1=0) term of this series does not occur in a mul-

l(AA)

1.0—

O.S

xl, =6.4 x 10
T = 12000 K

t 1

1

i
I

t 1

I ~ e,. t
If 4(

II ll

I
i
I

I

H

i r

s ~I)»(~)

FIG. 3. Calculated H -line pro61es from different treatments
of the interferencelike contributions I . ———,as in Fig. 2
based on Eq. (2.6}; X X X, as ( ———), but neglecting in I'~
the degeneracy of the atomic levels; —.——,Griem (Ref. [1]).

tipole expansion. Calculating the matrix elements
Mn'~'(q} defined in Eq. (2.5) according to (3.5) one finds
that the leading contribution of the second (l= 1) term is
connected with the dipole matrix by

M(0), l = 1
( ) M(0), dipole ( in + I i~ }

[(ly+ + ly&)2+ 2](n+a)

(4.2)

It is obvious from Fig. 1 that for small distances be-
tween the atom and the perturbing electron, the dipole
approximation fails to work. But, as usual, due to the
cutoff for strong collisions, errors resulting from the di-
pole approximation do not inhuence the final results.
This is also true for the higher-order terms in Eq. (3.5)
which are small and have been neglected.

For the sake of completeness the profiles for L and L&
have been calculated also bearing in mind that the
inhuence of the ion dynamics effects cannot be neglected
as before. In fact, their incorporation results in an in-
crease of the L half-width by a factor of about 2 and,
furthermore, leads to a remarkable reduction of the dip
in the center of L& [37-40], while for H the half-width

TABLE I. Electron shift of the H line at —' of the intensity maximum (n, =10' cm, T=12000
K).

Line shift including vertex corrections to the shift
and width (superposition procedure)

Line shift including vertex corrections to the width
only (superposition procedure)

Line shift without vertex corrections (superposition
procedure)

Line shift without vertex corrections (weighted
summing procedure)

Griem (Ref. [35])

0.641 A

0.625

0.781

0.645

0.645
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—0.1

, =2x10 c
T = 13200 K

0.1 DA(A)

ne ——2 x 10'7 cIII—3
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FIG. 4. Results for the L -line profile. , experiment
(Ref. [42]); ———,Griem (Ref. [1]);———,this paper.

1 AA(A. )

decreases only by about 15% [34,41] for the discussed
plasma conditions. Our numerical results are included
together with others in Figs. 4 and 5. They exhibit the
expected behavior.

Furthermore, a comparison of measured and calculat-
ed shifts for the L, L&, and H lines is given in Table II.
In order to make a comparison, the experimental results
contained in Ref. [35] have been used. In calculating the
shift (hA, =hA, ,&+ hA, ;,„), contributions arising from the
quadrupole interaction with the ions have been taken
from Ref. [31]. From Table II it follows that our final re-
sults agree quite well with those of Ref. [35]. Of course,
this was to be expected considering the results of the
preceding discussion.

V. EFFECTS WITH INCREASING DENSITY

Up until this point, all the discussion of the theoretical
and experimental results have dealt only with Stark
broadening of lines within a low-density plasma. Al-
though a many-particle interaction has been used in cal-
culating the En =0 contributions (via the Debye screen-
ing of the electron-atom interaction), its infiuence on the
6nal results has remained only small.

On the other hand, the theory in Sec. II has been

FIG. 5. Results for the L&line pro61e. , experiment
(Ref. [43]); ———,Griem (Ref. [1]);———,this paper.

developed chiefly with the aim of studying the conse-
quences of many-particle effects on the line shape. From
the physical point of view, it is clear that with increasing
density, the model of binary electron-atom collisions loses
its applicability and, therefore, has to be replaced by a
many-particle concept.

This idea has been stressed already in Ref. [49], and
corresponding evaluations were carried out for L . How-
ever, considering small plasma parameters, only small de-
viations between the Debye and dynamic screening have
been reported. Nevertheless, the authors claimed that
with increasing values of the plasma parameter and for
higher series numbers the discrepancy can increase.

Unfortunately, there are only a few experimental re-
sults for hydrogen that can be used to answer the ques-
tion of whether or not one has to improve the model of
Stark-broadening processes with respect to dynamic
screening, and if so, at which densities one has to do so.
The described situation changes to some extent if one
considers other lines than those of hydrogen. Thus, for
example, deviations from the general linear behavior be-

TABLE II. Comparison of the full line shifts for L, L&, and H (n, =10' cm ).

EA,(A)
Expt.

Lyman a
Ref. [42]

Lyman P
Ref. [43]

Balmer a
Ref. [44]
Ref. [45]
Ref. [46]
Ref. [47]
Ref. [48]
Ref. [50]

T (10 K)

1.5

1.6

1.2
1.3
1.3
1.9
2.5
4.0

hA, ,„, (A)

0.003

0.005

0.52
0.43
0.57
0.31
0.43
0.64

This work

0.005

0.013

0.53

Ref. [35]

0.013

0.54

0.57
0.59
0.63
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tween shift and electron density could be measured by
difFerent authors, and suggestions for the explanation of
these findings have been given in Refs. [19]and [20]. Re-
cently, similar results were also reported for Cs I lines at
6213 and 6355 A [22]; the interpretation of these mea-
surements was successful only after explicitly considering
the dynamic screening effects [21].

Keeping the above in mind, the few experiments for
hydrogen at higher electron densities were reconsidered,
and in Ref. [50] again some deviations from the discussed
linearity for the H shift at n, =2 X 10' cm and
T=70000 K have been found. The discrepancy from
linearity was reported to be about 30%%uo, toward smaller

I

values. Unfortunately, this irregularity has not been dis-
cussed by the authors and, in addition, the value of exper-
imental errors has not been given explicitly. Further re-
sults of the H~ shift are available for n, =10' cm and
T=20000 K [47], but they do not give rise to any devia-
tion from linear behavior.

To compare our theory with the above experiments,
the shift of H was calculated for the relevant plasma pa-
rameters. Once again Eq. (2.3) was used, but the approxi-
mations (3.3) and (3.4) for the imaginary part of the in-
verse dielectric function were avoided, using instead Eq.
(3.2) within the RPA in the nondegenerate case [14]

n~
Rem(q, co) =1—V(q)

qk~ T
++ )Eg '1,—,— +

2q 2 ' ' ' 2' k~T 2q 2

2g 2
i

2 kg T 2' 2 (5.1)

n, &n.
Ime(q, co) = —V(q)

2q+k~T
~ exp

1 co+
k~T 2q 2

1 co

k~ T 2q 2

where &E& is the confluent hypergeometric function.
In addition, the level splitting due to the ionic

microf][eld was taken into account, which under these
condj~':~ns becomes comparable with the electron plasma
frequency. Tables III and IV contain the main contribu-
tions to the shift of the upper level (n„nz, m=0, 0,2)
from b,n=0 and En=1 transitions, respectively. It is
easy to see from Table IV that some reduction of the H
line shift can be explained by taking into account the dy-
namic screening of the electron-atom interaction.

On the other hand, due to the more or less symmetrical
splitting of the energy levels, the contributions of the
hn =0 transitions to the shift nearly compensate for each
other. That is why the concrete approximation of screen-
ing for them has a minor influence on the 6nal results.

VA'th decreasing temperature, the importance of

screening rises. But despite the rising importance of dy-
namic screening, especially for the En=1 contributions
for n, =10' cm at T =20000 K, a linear behavior be-
tween shift and electron density results because again a
compensation process takes place (compare Table IV).
This is quite interesting and in complete agreement with
the corresponding experimental results [47,50]. Finally,
the comparison with Ref. 50 for n, =2X l.0' crn and
T=70000 K also comes out in favor of the theoretical
model —although our calculated value suggests a smaller
screening of only about 9%%uo. Following our evaluations,
with decreasing temperature, the screening should rise up
reaching at 20000 K about a 15%%uo deviation from the un-
screened value. A more detailed study of the expected
shift lowering for H with increasing density will be
presented elsewhere [51]. Of course, for even higher

TABLE III. Wavelength shifts of the hydrogen H line (only upper level 002) from An =0 transitions (X~). Values in parentheses
are deviations from the unscreened case.

T (10 K)

20

20

70

70

n, (10' cm ) bE (Ry)

+6.556X 10
—6.556 X 10-'

Xy
+ 1.04 X 10
—1.04 X 10

Xg
+6.556 X 10
—6.556 X 10-'

Xg
+1.04 X10-'
—1.04X10 '

Xy

hA, (A)
no screening

+ 14.9
—13.2
+ 1.7
+29.8
—26.4
+3.4
+7.9
—7.1

+0.8
+ 15.8
—14.2
+ 1.6

b, A, (A)
dynamic screening

+ 1.5
+ 1.1

+2.6 (+53%)
+2.8
—0.1

+2.7 (—21%)
+0.8
0.0

+0.8 (0%)
+ 1.6
—0.1

+1.5 (—6%)

b, A, (A)
Debye screening

+ 1.9
—0.5

+1.4 (—18%)
+3.8
—1.2

+2.6 (—24%)
+ 1.1
—0.3

+0.8 (0%)
+2.2
—0.7

+1.5 (—6%)
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TABLE IV. %"avelength shifts of the hydrogen H line (only upper level 002) from hn = 1 transitions
and the sum of h, n=0 and 1 contributions (0+1). Values in parentheses are deviations from the un-
screened case.

T (10 K)

20

20

70

70

n, (10' cm )

1

(0+ 1)
1

(0+ 1)
1

(0+ 1)

(0+ 1)

h, A, (A)
no screening

+7.1

+8.8
+ 14.2
+ 17.6
+7.7
+8.5

+ 15.5
+ 17.1

AA. (A)
dynamic screening

+6.4
+9.0 (+2%)

+ 12.3
+15.0 (—15%)

+7.2
+8.0 (—6%)

+ 14.1
+15.6 ( —9%)

values of the plasma parameter the ion-electron correla-
tion has to be treated in a more consistent manner.

VI. CONCLUSIONS

The present paper is devoted to develop a many-
particle approach of a spectral-line shapes theory for the
case of degenerate atomic levels. In this way, the corre-
sponding Bethe-Salpeter equation as well as the vertex
equation were reconsidered. As a result, our quantum-
mechanical approach delivers contributions to the line
shift from En=0 transitions in a natural way. Further-
more, in contrast to the case of nondegenerate atomic
levels, additional vertex contributions to the shift have
appeared.

The calculated H line profile for low electron densities
agrees well with the unified theory results [32]. The
disagreement with the shape of Ref. [1]is shown to be t;he
result of the neglected degeneracy of the energy levels in
dealing with the interferencelike contributions to the
width there. In calculating the line shapes, the no-
quenching approximation sometimes used in more basic
approaches [9,12] was avoided. The same is true with the
multipole expansion for the electron-atom interaction.
To prove the usefulness of the weighted summing pro-
cedure introduced in Ref. [31] for the calculation of the
line shift, a correct superposition of all shifted line com-
ponents has been carried out.

Because of the quantum-mechanical approach used,
the expressions for the line shift and width do not diverge
within a Born approximation. But in order to deal with
strong collisions the electron-atom scattering has to be
treated by avoiding a perturbative expansion. Thus,
within the Green's-function approach, a connection be-
tween the elastic phase shifts 5i and the shift and the
width of the spectral lines was used. Considering the
electron scattering by the adiabatic polarization potential
of the emitting atom one finds a decreasing of the strong-
collision contributions compared to the result of a Born
approximation.

Finally, to investigate possible higher-density effects
with respect to the H hne shift, the few available experi-
mental findings were compared with corresponding
theoretical investigations. Analyzing the results, dynam-
ic screening e8ects seem to become evident with higher

electron densities also for the H line shift. The latter
would compare well with the recent experimental and
theoretical findings [19,21,22]. However, further investi-
gations have to be performed to obtain more confidence
in the appearance of this many-particle effect.

APPENDIX A: SELF-ENERGY
AND VERTEX CONTRIBUTIONS

TQ THE LINK PROFILE

Within the linear response theory, the dielectric func-
tion e(k, co) describes the plasma's reaction on an external
perturbing field with wave number k and frequency co.
Using the well-known relationship between the dielectric
function, the refraction index n (co), and the absorption
coefficient a(co),

lim e(k, co) = n (co)+ a(co)
k~p 2'

'2

(A 1)

e(k, co)=1—
i lim II(k, co+i5) .4m

k2S O
(A2)

Within the Green's-function concept 0 can be investi-
gated in a very systematic manner [14-17]. In the low-
density region it is useful to introduce a cluster decom-
pensation of the polarization function [15,19]

II(k, z) = IIi(k, z)+ Ilz(k, z)+ . (z =co+i 5), (A3)

where II& denotes the single-particle contribution. The
line spectrum of an isolated atom can be found from the
lowest-order contribution to IIz(k, z) given by the prod-
uct of two free-particle propagators

l
Gzo(nn', P, Qq') =

~et EP nn
nP

(A4)

a connection to the optical properties is given. On the
other hand, the dielectric function is related to the polar-
ization function
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II' '(k, z)=
0)

=i V'(k, z) = iV(k)
e(k, z) (A7)

Go (A5)
the self-energy X reads

where M2 ' is the vertex function for an isolated system
according to Eq. (2.5). Taking now into account the
inhuence of the surrounding plasma, one has to replace
G2 by the full two-particle propagator

GO

which leads to the corrected self-energy polarization
function. X denotes the two-particle self-energy. Using a
first-order Born approximation with respect to a dynamic
screened atom-electron interaction within RPA [see Eq.
(2.4)],

(A8)

The explicit expression for the matrix representation of
X is given by Eq. (2.3). In order to determine the polar-
ization function II2(k, z), the two-particle Green's func-
tion 62 has to be calculated. Therefore the Bethe-
Salpeter equation (BSE)

[H +ReX(co —i5) —(co+i5)]G2(co+i5)

Vi ImX(co i 5)G—z(co+i5) =i (A9)

has to be solved. For the case of the nondegeneracy of
the corresponding isolated atomic levels, the nondiagonal
elements of ImX were assumed to be small compared
with the diagonal ones [16,17]. Consequently, the diago-
nal form of 62

i5„„.
Gz(nn', co+i 5)= E„+(n~ReX(co —i5) [n ) (co+—i5)+i (n~lmX(co —i5)(n )

(A 10)

results (P =0, i.e., no Doppler broadening).
Considering emitting atoms with degenerate or close-lying energy levels, however, nondiagonal elements of the self-

energy cannot be neglected further on. Therefore, the BSE (A9) has to be solved, as usual, by a matrix inversion

Gz(coki5) =i [% (co) (a)ki—5)]

with

(Al 1)

& (co)=H +ReX(co i5) Wi Im—X(co—i5) . (A12)

Note that for hydrogen the nondiagonal elements of the imaginary part of the plasma Hamiltonian within a
spherical-wave-function representation and dipole approximation vanish for En=0 transitions. Finally, a straightfor-
ward calculation delivers

II (k, z) =4
I II fI fII

Mf' *(k)Mf'-'; (k)[g„(E; ) g„(Ef)]—
(A13)X(i'~(f'~[z Hf+H; ReXf+—ReX;+i Im—(X;+Xf)] '~f") ~i"),

with Eq. (2.3) and g„(E)= [expP(E —p, —p; ) —1] ', where p, , and p; are the chemical potentials of the electrons and
ions, respectively. Besides the correction with respect to 62, the second element in II2, the vertex part Mz, must be
considered now on the same footing. Therefore the vertex equation

M2= ~ =~+
M'"

2

(A14)

with

iK4 =
(o)
2

(A15)
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has to be solved. For the polarization function IIz this results in

Ilz(k, z) =4 g Mf '(k)Mf'-I (k)[g„(E, ) —g„.(Ef )]
Il Ill fl ftl

X (i'I (f 'I [z H—f+H; R—eXf +ReX;+i [Im(X;+Sf )+I'"]j 'If"Ii"), (A16)

where I r is the vertex contribution according to (2.6)
which corresponds to the well-known upper-lower cross
term. The electron contribution to the line profile follows
from the imaginary part of the polarization function
(A16).

the three-particle T matrix T3 will be written in terms of
the phase shifts [52]

T, ,(p —p') = — g (2l + 1)Pi(cos[ g(p, p') ] )
0

APPENDIX 8: CONTRIBUTIONS
OF STRONG COLLISIONS j. i5l(E

X —e ' l sin5I(E ) . (85}
An exact treatment of the electron-atom collisions has

to avoid a perturbative expansion with respect to the in-
teraction potential. If only shift and broadening of the
upper energy level are taken into account, the polariza-
tion function is given by

Ilz(k, z}= i

Note that shift and broadening result from forward
scattering (p=p') [24].

Thus the problem is transformed into the calculation of
phase shifts for which further approximations are neces-
sary. For simplicity, a partial summation of the pertur-
bative expansion has been used which yields the polariza-
tion potential [28]

(81)

where T3 is related to the three-particle propagator and
is taken in the channel of the two-particle bound state
and the perturbing electron. Shift and broadening of the
upper level are given by the self-energy

P& v

V (nPp, np+qp —q)

1 f dq'V(q')V(q —q')
1

(27r)

M„„-(q')M„.,„(q—q')
X

En P +E& En llP+ ql Ep Ql

(86)
X, ,(nP, n'P', z) = (82)

nP

p+il'„=p(n IX, ,(P,E„—i0)In ) . (83}

According to Eq. (83) the self-energy leads to

where T3 follows from the solution of the three-particle
problem containing elastic and inelastic (excitation} pro-
cesses. Considering only elastic electron-atom scattering
(n =n'}, the shift and broadening of the energy level fol-
low from [28]

For the I. line considered here one may neglect both
shift and broadening of the lower energy level as well as
vertex corrections. In order to evaluate the upper-level
shift of L, in a first approximation only the shift of the
dominant I. component corresponding to the transition
001~000 (in parabolic quantum numbers) has been tak-
en into account. Treating this component as isolated, the
kinetic energies of electron and atom may be neglected in
Eq. (86}, and an adiabatic approximation for the polar-
ization potential may be used [29]. For the present aim,
this polarization potential can be given by the interpola-
tion formula [30]

X, ,(nP, z)= dp T, ~(nPpn, Pp, z
1

(2n. )

2
V (R,n)=-

(R +ra}
(87)

+E,(p) )f, (Ep ), (84) Here a„denotes the dipole polarizability of the atom in
the internal state n

with f, the Fermi distribution function. In order to find
a relationship between phase shifts for an elastic-
scattering process and the upper-level shift and width,

a„=—2e g Id„„-I (E„—E„-)
n" (An)

(88)
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with

d„„-=fdr+„'(r)r+„-(r) .

The cutoff radius ro is determined by

(B9)

V (R =O, n)

(Bl 1)

with

(B10) Phase-shift calculations have been performed for this po-
tential using aoo&

= 156az (see Ref. [26]) and ro =4.998az,
where a~ denotes the Bohrs radius.
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