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Surface waves in the regime of the anomalous skin effect
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We have formulated an effective description of surface waves propagating along the boundary between
a high-temperature, high-density plasma and vacuum or a high-temperature, high-density plasma and a
low-density plasma, within the framework of the anomalous skin effect. Since the anomalous skin effect
is essentially collisionless, we have investigated possible collisionless dissipative mechanisms. Two
mechanisms have been identified: phase breaking and capacitor heating. The possibility of exciting sur-
face waves by an external electromagnetic wave is also discussed. We propose two types of solid planar
targets that after being ionized by an intense ultrashort heating laser beam allow the excitation of surface
waves by an obliquely incident p-polarized electromagnetic wave.

PACS number(s): S2.40.Db

I. INTRODUCTION

The development of laser facilities [1] generating high-
intensity () 10' W/cm ) ultrashort pulses ( (1 psec) al-
lows the creation of laboratory plasmas with solid-state
density and very high electron temperatures ( =-10—100
keV). It has been demonstrated [2] that in the presence
of a strong electromagnetic field [E)E, , I )I, ; where
E, =e /r~ =5. 1 X 10 V/cm (E, is the atomic field and
I, =cE, /8~= 3.4 X 10' %/cm is the corresponding
laser intensity)] atoms of a solid target are ionized first
due to multiphoton ionization in the tunnel limit, and
second by electron impact within a time shorter than the
period of the laser radiation. One of the important
features of plasmas generated on the femtosecond time
scale is that, unlike in "classical" laser-produced plasmas
involving nanosecond time scales (see e.g. , Ref. [3]) (and
thus well-developed hydrodynamic motion), there is not
enough time to convert the electron energy into the ki-
netic energy of directed motion of heavy ions and hence
no hydrodynamic motion occurs during the pulse. This
means that the irradiation by ultrashort laser pulses leads
to the creation of a distinct boundary between the high-
density warm plasma and the vacuum. Our interest in
such a boundary is that it can support surface waves (see,
e.g. , Ref. [4]) propagating along it. In such a simple
geometry these cannot be excited directly by the heating
laser radiation, but can be, for example, driven by elec-
tron thermal fiuctuations [5]. The conditions here are,
however, different from those in "standard" surface-wave
phenomena [4]—namely, high electron energies can lead
to a situation where the electron mean free path substan-
tially exceeds the penetration depth of the electromagnet-
ic field (e.g. , due to the laser radiation or due to electron
thermal fiuctuations) into the plasma. In such a case re-
lationship between the current density and associated
electric field is nonlocal and one deals with the so-called

anomalous skin effect [6]. Nonlocality is the main feature
of such a plasma that allows surface-wave propagation
along the plasma boundary. The spatial distribution of
the evanescent electromagnetic field within the plasma is
not exponential, as in the absence of spatial dispersion,
and it can be determined only when the electron distribu-
tion function is known.

It is beyond the scope of this paper to analyze the full
self-consistent problem in which the distribution function
is determined by the presence of the electromagnetic field
[7,8]. Instead, we assume that the electron distribution
function is known and isotropic. The last assumption
permits us to simplify the calculations and is not impor-
tant for the analysis of surface-wave excitation in this
case. We assume also that the amplitude of the field asso-
ciated with a surface wave is small, causing only a pertur-
bation of the background distribution function. A disper-
sion relation for surface waves in the regime of the anom-
alous skin effect is presented and analyzed for some spe-
cial cases. We also discuss the possibility of exciting a
surface wave propagating along plasma surfaces created
by an intense ultrashort heating laser beam by an oblique-
ly incident p-polarized low-intensity probing beam. This
may be of some diagnostic interest because information
about the plasma temperature is encoded in the reAection
properties for such probing beams.

II. THEORY

Let us consider a simple geometry where the plane
z=0 separates the half-space z &0 occupied by a warm
homogeneous plasma and vacuum (z (0). The plasma is
assumed to be characterized by an isotropic distribution
function which, however, is not necessarily Maxwellian.
Since our aim is to find solutions which represent surface
waves propagating along the boundary z=0, it is as-
sumed that an electromagnetic field associated with a sur-
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face wave with frequency co & co~, = (4m.e X, /m )'
where e, X„and m are, respectively, the electron charge,
the density, and the mass, has the following form:
H(z)=(H, O, O), E(z) =(O, E~,E, ) ~ exp[i(cot —ky )],
where k is the component of the wave number in the
direction of the wave propagation. The spatial distribu-
tion of the electromagnetic field is then described by a set
of Maxwel 1's equations,

4~ . & aE 1 BH
V XH=j+—,V XE= ——,VH=0,

c c Bt c Bt

dE
+ikE,

dZ z =0+

dE' +skE,
dZ z =0

=2ikHo,

(6)

While E is continuous across the boundary z =0,
dE /dz is an odd function of z and has a discontinuity
there. The discontinuities of E, and dE /dz at z =0 can
be, for the infinite-medium problem, related to the ampli-
tude of the magnetic field at z =0 as follows:

d Ey 2 dEz 4~
+k()E +ik =i koj

dz 2 dz C
(2)

where j is the current density and c is the speed of light
in vacuum, or, equivalently, by the following set of cou-
pled wave equations,

where Ho =H(z =0'+ ). Now, one can Fourier transform
the wave equations (2) and (3) over the whole space—Oo & z & ~ being careful of the discontinuities at z =0.
Such a transform then results into the following set of
coupled equations:

(ko —k )E, +ik =i koj,dz C
(3)

(ko ~ )E kaE, =—i koj 2ikoH—O,
C

Since we investigate the regime which corresponds to the
conditions of the anomalous skin effect, the current densi-
ty j in nonlocally related to the electric field E via the
tensor of high- frequency conductivity cr, i .e.,

j(z)=f o.(z, z' ) E(z' )dz' (4)
0

To Fourier transform the wave equations (2) and (3), one
has to continue the field quantities into the region z & 0.
This procedure, however, depends on the model used to
describe the reQection of electrons from the boundary
z =0. In what follows we will adopt the model of specu-
lar refiection [6]. Consistently, the field quantities are
continued into the region z & 0 in accordance with the
usual recipe [6],

Ey( —z ) =Ey(z), H( —z ) = H(z), —

E, (
—z)= E,(z); z )0—

(ko k )E km' =i koj
C

where the Fourier transform P„of a function E(z) is
defined in a usual manner,

p = f F(z)e '"dz .

Here j,„=o,~ „is the x component of the Fourier
transform of the current density and cr, is the Fourier
transform of diagonal terms of the plasma high-frequency
conductivity. The dependence of o. „on ~ is the signa-
ture of the nonlocal relationship between current and
electric field in the regime of the anomalous skin effect.
The off-diagonal terms of the tensor o. vanish in accor-
dance with our assumption that the plasma distribution
function is isotropic. Solving (7) and (8) for E~ and E,
then results in

and

2i koHO [ko k i ( 4n/c )koo
—„]- .

[k0 k i (—4~/c—)koo, ][ko xi (4~/—c )k. o—cr ]—k x

k ~
k 0 k i ( 4—m /c—

)k 0cr„ (10)

The spatial distribution of the electromagnetic field within the plasma then becomes

Ez(z)= f g(v)Hoe' 'd/c, E,(z)= f E „e ' 'dv .
277 oo k o k i ( 4—m/c )—k 0o, .

The expression (9) now allows estimation of the
penetration depth of the field into the plasma in two lim-
its: (a) when a surface wave is predominantly of elec-
tromagnetic character [4], i.e., for co « co „and (b) when
Q7 & cope but co co In the electromagnetic limit the re-

fractive index associated with the wave n =k /k 0 is very
close to 1 (i.e. , n —1 «1 ) and E', peaks for

1(4~/c )ko &m~y. l

= 1(4~/c )ko &m~..l
=~' »k02 .

The penetration depth (skin depth) then becomes
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d, = 1/K. This depth has different values and is described
by different expressions depending on the plasma parame-
ters. Thus for a dense collisional plasma when co»vej
but still co ((co „ the plasma conductivity becomes [9]
cr =i—co, /4mco [the real part of c» is small as O(v„lco)]
and d, -=c/co, »d„= (u ) '/ /v„, where d„. is the elec-
tron mean free path, v„ the electron-ion collision fre-
quency, and ( u ) '/ the average velocity of electron ran-
dom motion. Such a penetration depth corresponds to
the classical case [10] of surface waves propagating along
the boundary of an overdense plasma in a regime where
the plasma can be described macroscopically in terms of
a dielectric permittivity E=l —

co~, /co, i.e., when the
current density j is a local function of the electric field.
In the opposite limit of a strongly collisional plasma
when co ((v„, the plasma conductivity becomes [9]

c» =i co~,—/4mco+ co.~,v„ /4' co co~,v-=„ /4~co

which results in the penetration depth

d, —= (c/cop, )(co/v„)'/ (c/co,
and d, »d„.. Finally, in the case of a high-temperature
plasma when d„.& d„which occurs when

—,'m (u2)
&16,

1 keV

X,
10" cm '

one enters the region of the anomalous skin effect and the
relation between the current density and corresponding
electric field becomes nonlocal. Then,

where

+Reo „, o =~ Imo' +Reo (12)

2
Q)pe ko

Ima —=
41T co Ic ( u2)

(13)

Therefore, as long as n (((co,/co) one can estimate
that E peaks at

~pe co cK=K
c co ( 2)1/2

1/3

(14)

and, consequently, the penetration depth can be estimat-
ed as

1/3
( 2) 1/2

d =——
S

COpe CO C

Such an estimate of the penetration depth, however,
preassumes that Reo. « Imo, which holds when the ener-

gy gain per electron per transit through the skin layer is
small when compared to the initial energy of the electron,
m(u )/2, as is also the number of resonant electrons.
The first requirement can always be satisfied if the field
amplitude Ho is small enough. We will return to the dis-
cussion of these conditions later.

According to standard perturbation theory [9], the
plasma high-frequency conductivity can be expressed in
terms of the unperturbed electron distribution function f
as

le
0 yK

Eeo'
ZK

u» 1 Bf
kU KU U BU

f uz 1 df dv
CO kUy KUz

(16)

(17)

~(~t —ky) E B & ~(~t —ky) . & 0
y
— e e Z

while its z dependence in the plasma (z )0) is character-
ized by (11). Furthermore, since in vacuum divE=O, the
constants 2 and B are interrelated as B= ik 3 /Ki, where

1c=1k(on —1)' )0. Requiring continuity of E» and
ikE, +BE /Bz at z=0, one obtains the following disper-
sion relation for surface waves:

where co=co+I,O+ and where, as usual, the integration is
carried out along a Landau contour. For nonrelativistic
plasmas and surface waves with predominantly elec-
tromagnetic character (n —= 1), co »ku; however, due to
the field localization in the anomalous skin layer, the ker-
nels of the integrals (16) and (17) have poles at co —=1cu, .
These poles determine the real parts of o. „, i.e., the
eKciency of dissipation of the waves within the plasma.
One can thus identify two collisionless dissipation mecha-
nisms: (i) "phase breaking" ( ~c», ), when an electron
with u, & cola undergoes acceleration (driven by E» )

parallel to the boundary and leaves the skin layer before
E changes its sign (obviously, the efficiency of this mech-
anism is highest when co-=jocu, ); and (ii) "capacitor heat-
ing, " when an electron accelerated by E, leaves the skin
layer before E, changes its sign. Both mechanisms can
operate only when the electromagnetic field is highly lo-
calized in the space with the characteristic size I, «A, o,
where Xo is the vacuum wavelength corresponding to the
frequency co.

In contrast, in the electrostatic limit when n »1 and
co & cc)pe but co =—cope7 the penetration depth becomes
d,&„—-—c/neo, and in the limit n~~ the penetration
depth d,t„—+0, which corresponds to the fact that there
is no electrostatic field in a perfect conductor. However,
surface waves with predominantly electrostatic character
are not of interest to us because these waves are very slow
(co/k ((c) and, therefore, they (a) cannot be excited by
an external electromagnetic field, and (b) can be heavily
damped due to the large number of resonant particles
(the damping rate can substantially exceed the usual ex-
ponentially small Landau damping rate).

The theory which has been developed above provides
an understanding of the penetration of a p-polarized elec-
tromagnetic field into an overdense warm plasma and of
the dissipation mechanisms involved. In what follows an
analysis will be given of surface waves propagating along
a plasma-vacuum boundary or along a density discon-
tinuity within a stepwise homogeneous plasma in the re-
gime of the anomalous skin effect.

Let us consider the same plasma-vacuum boundary
z=0 as above. We now look for a solution where a p-
polarized electromagnetic wave propagates along such a
boundary and is evanescent both left and right from the
boundary. Consequently, in vacuum the electromagnetic
wave is characterized by
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(~, —k )g = —1
~,(g' —ikg, )

(19)
and, consequently, g' =iko and g, =(kd, )(kod, ). Then,
neglecting dissipation in accordance with our assumption
that Reo « Imcr, the dispersion relation (19) becomes

where

g = f g(~)dx (20)
oEikpd

~, [(kd, )
—1]

(23)

is the so-called surface impedance [6], and

keg(~)
ko —k i (4—~/ c)kocr„

and

g» =t f Kg(K) dK .

The quantities g», g„and g» have their analogs in the
classical (local and macroscopic) theory of surface waves,
where the plasma is described in terms of the dielectric
permittivity e2 = 1 —

co~, /co, and, in particular

n =E) 1+ CO

COpe

- 4/3 2/3(v')

while in the classical case,
2

Since 1 & e, &0, the dispersion relation (23) can have a
solution corresponding to a surface wave only if
kd, =kpd, & 1, which, in given conditions, is always well
satisfied for both the anomalous skin effect [see (15)] and
the classical case. The refractive index n can now be ex-
pressed in the following explicit form:

lK2 k LK2

kP &2 k0~2 kOE2
(21)

CO
n =E) 1+E)

COpe

where a2=ko(n —e2)' . Inserting these analogs into the
dispersion relationship (19), one obtains the well-known
classical dispersion relation for surface waves propaga-
ting along a plasma-vacuum [e(z &0)=e&=1] boundary

E)K2 = —1.
K)E2

(22)

Generalization to the case of surface waves propaga-
ting along a plasma-plasma boundary is straightforward.
To do so we will assume that the plasma occupying the
region z )0 is characterized by the same set of parame-
ters as in the previous case while the plasma occupying
the region z & 0 is rare, being characterized by the elec-
tron plasma frequency co„,i (&co,2. Since the linear clas-
sical theory of surface waves [4] requires that the dielec-
tric permittivity must change sign across the boundary,
then the necessary condition for a surface-wave solution
to exist is that cu co,

&
[see the dispersion relation (22)],

the condition for the anomalous skin effect to occur,

( 2) I/2 ) 1
CO C

is not satisfied in the underdense plasma (z & 0) and, con-
sequently, it can be described classically via
e&

= 1 —
cuz, &/cu . The dispersion relation (19) remains for-

mally the same where, however, now ~, =ko(n —e, )'
Obviously, the surface-wave-type solutions exist only for
Pl

The dispersion relation (19) is in general very complex
and represents an implicit relation between co and k. The
details of this dependence are affected by the particular
form of the electron distribution function, f, correspond-
ing to the overdense plasma. Nevertheless, a qualitative
analysis of (19) is possible in the electromagnetic limit
cope i & co ((cope when n exceeds, but is close to, E, . In
such a case one can approximate the surface impedance

as g =ikod„where d, is the penetration depth

UE
2 4/3

mc Q7

&E, & COpe

2/3

(25)

For example, for the frequency of a Nd glass laser,
co -= 2 X 10' rad s ', the solid-state electron density
N, = 10 cm, and the average electron energy
(E, ) =10 keV, one obtains b,E, /(E, ) =(vz /c) . Con-

V

sequently, as long as the quiver velocity of electrons
within the skin layer is relatively low, (uz /c) « I, the

relative energy gain per electron per transit through the
skin layer, b E, /( E, ), also remains small. Once
hE, /( E, ) is known, one can estimate Reo from the
following simple energy-balance relationship:

d(E, ) XE,
I3N, =PN, =Reer E

dt 't,

Therefore, in the electromagnetic limit the dispersion
curve (24) lies only slightly below the classical one, which
is not surprising when one realizes that in both cases the
electromagnetic field associated with surface waves is
spatially distributed mainly in the region z & 0, character-
ized by E =E&.

Since all previous considerations fall within the frame-
work of the anomalous skin e8'ect when d, & d„, the ener-

gy of the surface waves is dissipated in the collisionless
regimes of "phase breaking" and "capacitor heating. "
We will now estimate the efticiency of these mechanisms.

In the case of phase breaking an electron is accelerated
by E along the boundary during the period
t, =d, /u, & I /cu until it leaves the skin layer (here
u, = ( v ) '~ ). Therefore, the energy gain hE, per elec-
tron per transit through the skin layer can be estimated
as

AEe =eE&UE tsy E s

where UE =eE /mes is the electron quiver velocity. Sub-
stituting for d, and normalizing AE, to the electron aver-
age energy (E, ) =m ( v ) /2, one finally obtains
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which then results in

2
COpe

Reo. =P
4&CO

(26)

where the magnitude of the numerical factor P«1 de-
pends on details of the distribution function f and 13N, is
the effective density of electrons involved in the dissipa-
tion process.

In the case of capacitor heating an electron with aver-
age velocity v, )cod, is accelerated in the direction per-
pendicular to the boundary over a distance d, and gains
the energy AE, =eE,d, . Repeating the energy-balance
consideration of the previous case, one again obtains

2
COpe

Reo, =P
4&CO

(27)

Reo.
Imo.

CO C

( 2)1/2 (28)

where typically o. & 1, but not necessarily a «1, as is the
case for Landau damping of waves with phase velocity
substantially exceeding (u ); for example, for a Maxwel-
lian electron distribution,

cz =exp
CO2d 2

s

(u')
At the same time, in the regime of the anomalous skin
e8'ect,

CO C

( 2)1/2

and, therefore, our earlier assumption Reer « Imo. is
justified. If one considers a numerical example of the
plasma with m ( u ) /2= 10 keV and N, = 10 cm 3, one
obtains

( 2)1/2
—=0. 1

for co=2X10' rads ', which corresponds to the fre-
quency of the Nd glass laser, and

CO C

( 2) 1/2

for a CO2-laser .requency co=2X10' rads '. Also, un-

However, since (E, /E ) +=/, lg =k5, the energy of
surface waves with predominantly electromagnetic char-
acter (n =e'„and therefore k5 «1) is dissipated mainly
due to the phase breaking.

Finally, if now, by analyzing (16) and (17), one factor-
izes the coefficient P into two parts, one due to the finite
size of the skin depth d, and the other, a, purely due to
the details of the shape of the electron distribution func-
tion,

COds

( 2) 1/2

one can relate the real and the imaginary parts of the
high-frequency conductivity as

der these conditions the electron mean free path is
d„.=—3 X 10 cm and substantially exceeds the penetra-
tion depth of electromagnetic field into the plasma,
d, -=2X10 cm (for co=2X10' s ') and d, -=(4—5)
X 10 cm (for ro =2 X 10' s ' ), consistent with the
model of the anomalous skin effect. Finally, under the
conditions when Reo. « Imo. , one can introduce the
effective collision frequency representing the essentially
collisionless dissipative processes as

+ea Reo co c
co Imo. co, (u2)'/2 (29)

(30)

where Ko=(ko —k )' and y=ikg, —g'. It'is a well-

established fact in the theory of linear surface waves that
multilayered plasma structures that allow external excita-
tion of surface waves can act as total absorbers of the
pump wave [11]. The coefficient of reflectivity R as a
function of the angle of incidence 0 has a characteristic
dip R =0 for some angle 80 (which is larger than the an-

gle t9T&R for total internal reAection at the plasma-vacuum
boundary: sin OT,R

=e, ). Formally, the coefficient of
reffectivity vanishes when the numerator of (30) becomes
zero. This, however, in fact represents two conditions.
First, that the real part of the numerator becomes zero,
which happens when the dispersion relation for surface
waves [which in the special case when d ~ ~ reduces to

Since the energy of surface waves investigated above is
dissipated, these waves can exist only if they are excited
by some energy source, e.g., an incident electromagnetic
wave. However, as already mentioned, surface waves
propagating along a plane plasma-vacuum boundary
propagate with a phase velocity less than the speed of
light in vacuum, c, and therefore cannot be excited by an
external electromagnetic wave. If, however, a p-polarized
electromagnetic wave is incident obliquely at the angle of
incidence 0 onto a structure like vacuum —low-density
plasma —high-density plasma, such that co) co,&, where

cop ] is the e 1 ect ron p1as ma frequency corresponding to
the low-density plasma, it can excite a surface wave with
phase velocity co/k )c and wave number
k =kosinO=nko. Experimentally, such a situation would
correspond to the situation when a high-intensity ul-
trashort (heating) pulse impinges upon a solid high-
density (high atomic number) target overcoated with a
low-density (foam with low atomic number) film. The
film and a part of the substrate are then "instantaneous-
ly" ionized and no mass motion develops during the heat-
ing pulse if it was short enough. A p-polarized low-
entensity probing beam, which does not substantially
affect the electron distribution function formed by the in-
teraction of the heating beam with the target, is then
launched obliquely at the angle of incidence 0 onto the
plasma structure to excite a surface wave. This can be di-
agnosed by measuring the amplitude coefficient of
refIectivity R of the probing beam,

EiKOK&y + iKiy sinhKid +iKie, ko( coshKid

EiKOK, y i K&y si—nhKid i Kie&kop cosh—Kid
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(19)] is satisfied. Second, that the imaginary part van-
ishes, which occurs when the rate of the energy tunneling
through the evanescent layer of the plasma with lower
density [ ~exp( —2a.,d)] is exactly compensated by the
rate of energy dissipation within the skin layer ( ~ ima ).
Since vanishing reQectivity is a resonant effect occurring
when the pump wave is totally linearly converted into a
damped surface wave, the width of the resonant curve
R =R(8) is proportional to Imo, but is also sensitive to
d, because for R %0 there is another kind of dissipation
due to re-emission of the energy of surface wave back
into the vacuum. Therefore, the width of the resonant
curve R =R (8) is a function of the average electron ener-

gy m ( u ) /2, which may possibly form a basis for alter-
native diagnostics of the high-density plasma "tempera-
ture. "

Finally, we propose an alternative method for exciting
the surface wave by a probing beam incident on a high-
density, high-temperature plasma created by an ul-
trashort intense laser beam. This time, instead of coating
the solid target by a low-density film, one can corrugate
the surface of the target to form a grating [4]. An ul-
trashort heating pulse ionizes the target to some depth
and thus creates a static (during the laser pulse) plasma
grating on the surface. Bragg reQection from such a
periodic structure now provides matching of the phase
velocities of the probe beam and the surface wave.

III. CONCI. USIONS

An effective description has been formulated of surface
waves propagating along a high-temperature, high-
density plasma-vacuum boundary or a high-temperature,
high-density plasma-low-density plasma boundary within
the framework of the anomalous skin effect. Such plasma
density discontinuities can be created in short-pulse ( ( 1

psec high-intensity laser-produced plasma experiments.
Assuming that the plasma electron distribution function
is known and is isotropic, we have found the dispersion
relation for these waves. The dispersion properties of
surface waves are only weakly affected by the nonlocality
associated with the anomalous skin efFect. This is easy to
understand because most of the electromagnetic field of a
surface wave is spatially distributed outside the high-

density plasma. Furthermore, since the anomalous skin
effect is essentially collisionless, we have investigated pos-
sible collisionless dissipative mechanisms. Two mecha-
nisms have been identified: phase breaking and capacitor
heating. It has been found that under the conditions con-
sidered here it is the first mechanism that dominates.
This is because the component of the electric field associ-
ated with a surface wave (which in the linear regime is al-
ways p polarized) that is parallel to the boundary, Ex,
substantially exceeds the amplitude of the component
perpendicular to the boundary, E, . Possibilities for excit-
ing surface waves by an external electromagnetic wave
have also been discussed. We have proposed two types of
solid planar targets, which, after being ionized by an in-
tense ultrashort heating laser beam, allow the excitation
of surface waves by an obliquely incident p-polarized
electromagnetic wave. The amplitude of this wave was
assumed to be small (we called it a probing beam) relative
to that of the heating wave since we are restricted by the
use of linear theory.

The next obvious step is to consider the nonlinear self-
consistent problem in which the surface wave is excited
by the heating beam itself. In that case the electron dis-
tribution function is affected by the presence of the sur-
face wave, which, in turn affects the dispersion and at-
tenuation properties of the surface wave. If the heating
wave is now p polarized and obliquely incident onto a tar-
get at an angle of incidence such that it provides total ab-
sorption of the heating wave at the instant when its am-
plitude peaks, the net portion of the pulse energy ab-
sorbed by the plasma can possibly be substantially in-
creased. Since, to our knowledge, all existing theoretical
models of the interaction of ultrashort pulses with plas-
mas are very pessimistic and predict the absorption rate
at a level of -=10%, the proposed method of surface-
@ave-assisted absorption has, in our opinion, some poten-
tial.
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