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Although the positive I' representation (PPR) is widely used in the literature, there are still many

open questions concerning its use as a general tool for solving problems in quantum optics. Recent-

ly, there has even been doubt as to whether it gives correct results at all. We present two nonlinear

examples in which a comparison with independent methods shows the validity of the PPR. Then
we show that, in general, the PPR is not restricted to a lower-dimensional subspace. Finally, we ad-

dress the problem of initial conditions, which have to be chosen carefully to avoid incorrect results.
More specifically, we show that the explicit form of the PPR that was given in the original existence
proof leads to unphysical behavior when used as an initial distribution.

I. INTRODUCTION

Since the positive I' representation (PPR) was intro-
duced by Drummond and Gardiner' in 1980, it has found
many applications in quantum optics. This is mainly
due to the fact that it allows one to avoid the problems of
the Glauber-Sudarshan P function, which, in cases where
quantum noise dominates, may not exist. ' In contrast
to this, the PPR is always a well-behaved positive func-
tion that corresponds to a classical stochastic process.
This equivalence of a quantum process and a stochastic
process is of considerable fundamental interest in itself.
Moreover, it could result in a general method of solving
nonlinear problems in quantum optics by simulation of
the Langevin equations corresponding to the Fokker-
Planck equation for the PPR. This would be particularly
important, as there are many problems where no method
of solution beyond linearization exists. Unfortunately„
simulations in the PPR appear to be quite problematic.
Every time this method was applied to a nonlinear prob-
lem, parameter ranges were found where some trajec-
tories show large excursions from the average which re-
sult in "spikes, " even after averaging. It has been
shown that these spikes are not due to numerica1 errors
but are real properties of the stochastic differential equa-
tions in the doubled space of the PPR. ' However, no
satisfactory explanation of spiking has been given so far.
Recently, it has even been shown that simulations in the
PPR can produce wrong results. '

At this point the question arises on how the large num-
ber of successful applications of the PPR fit into this pic-
ture. The answer is that most authors use the PPR in the
framework of linearization. ' Since linearized prob-
lems can be solved exactly in any representation, the PPR
is here just a convenient way of writing down the equa-
tions. This means that most cases where the PPR has
been applied successfully are actually cases where one
does not need it.

As a matter of fact, there is only one known nonlinear
example where the method works perfectly well. This ex-
ample is the parametric oscillator with the driving field

adiabatically eliminated. ' In that case, the stochastic
motion is restricted to a bounded subspace, which elimi-
nates the possibility of spiking. Now one could speculate
that this is the generic case, and that it is just di%cult to
find the appropriate subspace in more complex situations.
In Sec. II we show that this is not true by analyzing the
above example in the case of nonvanishing detuning of
the cavity. In Sec. III, we present two additional non-
linear systems where the PPR gives correct results. For a
driven nonlinear absorber as well as for sub-second-
harmonic generation with both field modes pumped we
demonstrate that the simulation results agree with in-
dependent calculations in a regime where linearization
fails.

It is important to note that the PRR is not unique. '

On the other hand, tkis allows one to choose a positive
semidefinite diffusion matrix in the Fokker-Planck equa-
tion for the PPR. But on the other hand, this results in
ambiguity in the choice of the initial distribution. In Sec.
IV, we analyze the laser equations using the PPR and
show that the transient solution depends on that choice.
Whereas an initial 6 function results in the correct behav-
ior, the use of the explicit form of the PPR given by
Drummond and Gardiner in their original paper' leads to
unphysical results.

II. IS THE PPR RESTRICTED TC) A SUBMANIFOLD?

In a recent Letter, ' %'olinsky and Carmichael use the
PPR to describe the degenerate parametric oscillator.
After adiabatic elimination of the second-harmonic field
mode, they end up with the following set of Ito stochastic
difFerential equations (the scaling has been changed
slightly from that used in Ref. 10):

a=( —y i5)a+p(g —a—)+(g —a )'~ g, (t),
p=( —y+i5)p+ct(g —p )+(g —p )'~ $2(t) .

Here, y is the cavity damping, 5 is the detuning which is
zero in Ref. 10, and g is proportional to both the strength
of the driving field and the coupling between the modes.
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The real stochastic forces g, and gz are assumed to obey
(g;(tg'i(0) ) =5;J5(t) T. he fundamental field mode is de-
scribed by the Bose operators a and a, which are linked
to the complex amplitudes a and P via their normally or-
dered moments

( tm n) (pm n)

where the right-hand side can be obtained by averaging
over many trajectories of the Langevin dynamics (1). The
deterministic part of Eq. (1) has a fixed point at a=/3=0
characterized by eigenvalues A, ; and eigenvectors
e, =(x, , xz, x3,x4), where a=x, +ix2 and /3=x3+lx4.
They depend on the detuning 6 and are given by

&&(5)= —y+(g' —5')'~', e, (5)=(l,g, 1, —ri),
& (5)= —y —(g —5 )', e (5)=(q, l, g, —1),
&3(5)= —y+(g —5 )', e3(5)=( —g, l, ri, 1),

ed structure and may be very dificult to discover, which
would explain why only one such case has been found so
far.

To answer this question, we investigate whether there
exists an invariant manifold for Eq. (1) when one allows
for some detuning 5. If 6 is very small, one expects to ob-
tain that manifold just by a slight deformation of the rec-
tangle which is invariant for 5=0. At the fixed point
a=p=0, the manifold would then be tangent to the
plane subtended by the vectors e;(5) and e&(5). Howev-
er, for 5%0, the stochastic forces at the origin do not fall
into that plane. From this it follows that close to the ori-
gin, trajectories will not be restricted to a two-
dimensional manifold but will make use of the entire
four-dimensional space.

The conjecture that there exists no invariant manifold
for 5%0 is further substantiated by the results of a linear-
ized treatment of Eq. (1). Close to the origin a=/3=0,
the linearized equations are

&4(5)= —y —(g —5 )', e~(5)=( —l, g, l, q),
where

a = (
—y —i 5)a+g p+ v'g g, ( t),

p=( —y+i5)p+gn+&g (2(t) .
(4)

ri=g/5 —[(g/5)' —1]'~'=5/(2g) (5~0) .

For 5=0, the plane which is subtended by the vectors
e&(0) and e&(0) is invariant under the deterministic fiow of
Eq. (1). The rectangular portion of that plane defined by

1
a I, I/31

~ &g is also invariant under the stochastic part of
Eq. (1). Since Eq. (1) has to be interpreted as an Ito equa-
tion, it can easily be seen that a trajectory starting inside
that rectangular will remain there forever, which means
that no spiking will occur in this system. Indeed, Wolin-
sky and Carmichael found a completely well-behaved
analytical solution of Eq. (1) on the rectangular subspace
defined above. However, this success depends very much
on the fact that they were able to find the appropriate in-
variant manifold. Since there exists no practical
method of finding invariant manifolds of a nonlinear
dynamical system, an intriguing question arises. Does
spiking occur just because —due to numerical errors in
the simulation —the trajectories do not remain in the
correct subspace? Such a subspace can have a complicat-

The stationary solution of these equations can be given in
the form of a probability distribution P(a, p) which is
just the PPR. Below threshold, i.e., for g &y, one finds
for vanishing detuning 5=0:

P(a, P) =P( x„~x, x,34x)

=N exp[( —y /g)(x
&
+x3 )+2x]x3 j5(x&)5(x~),

which corresponds to the result of Ref. 10, X being a nor-
malization factor. As expected, this distribution is
nonzero only on the two-dimensional subspace defined by
x2 =x&=0. However, if one allows for detuning 5&0,
one gets the following solution which extends over the
entire four-dimensional space:

P(a, P)=P(x„x2,x3,x4)=N exp[ —
—,'x;(o. '); x ] . (6)

The matrix o. ' is given by

4y /g 4y'/(5g )

4y'/(5g) 4y(2y'+5') /(5'g)
0 4y /6

—4y/5 —8y /5

0 —4y /5

4y /Q —8y /5

4y /g —4y'/(5g )

—4y'/(5g) 4y(2y'+5')/(5'g)

We conclude that the solution of the problem of spiking
seems not to lie in the existence of invariant submani-
folds.

III. TWO NONLINEAR EXAMPLES
WHERE THE PPR DOES WORK

As was mentioned in the Introduction, most authors
use the PPR in the framework of linearization. With the
exception of the example discussed in Sec. II, in all

known applications to the PPR to fully nonlinear prob-
lems serious difhculties arise, such as spiking or wrong
behavior in some parameter regime. In this section, we
present two examples for which the PPR results can be
checked by independent calculations in a regime where
linearization fails.

The first example is a coherently driven single-mode in-
terferometer with a nonlinear absorber as it was used by
G-ardiner to illustrate the generalized P representations.
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B2——'K P P,
a 2

(8)

where P =P( rip) stands either for the CPR or for the
PPR and where e and K are the classical driving field and
the strength of the nonlinear absorber, respectively.
Since Eq. (8) obeys potential conditions, an exact station-
ary solution can be found in the CPR. This leads to the
following expression for the stationary moments (in this
formula, some minor errors in Ref. 37, p. 419 have been
corrected):

((at) a")=M „/M
where

(2e/K)"+ + " 2"
(9)

r!(n +r —I )!(m +r —1)!r=0

and where the r=O term has to be omitted when n=O
and I=0 or both. The classical dynamics corresponding
to the quasi-Fokker-Planck equation (8) has the physical
fixed point a=P=(e/K)' . Linearization at this fixed
point leads to the stationary photon number

(a a ) =—'+(e/K)6 (10)

For small nonlinear coupling, i.e., for e/K ))1, it can be
shown that Eq. (10) agrees with Eq. (9). However, for
e/K « 1, Eqs. (9) and (10) lead to difFerent results, which
means that linearization fails in this regime. Now what
are the predictions of the positive I' representation? The
Langevin equations derived from Eq. (8) in the PPR are

a = e Ka p—+i &K ag, ( t),
P=e KaP +i&K—P(2(t) .

The real stochastic forces g, and g2 are defined as in Sec.
II. Figure 1 compares the result of a simulation of Eqs.
(11) with the results of Eqs. (9) and (10) for the parameter
values %=2 and @=0.1, i.e., for a large nonlinearity and
a small driving field. All trajectories start at a=p=0.
Regardless of some spiking, the stationary value obtained
from the PPR is in perfect agreement with the CPR,
whereas the linear result is too small. To check the tran-
sient regime, a small-time expansion for the moments has
been carried out. For the photon number, one obtains up
to fifth order

(a a &(t)=e t ,'Ke t'+0(t ) .——(12)

The second-order term has been plotted in Fig. 1. One
sees that the small-time behavior of the simulation is
identical to Eq. (12). We conclude that in this case the
PPR is reliable —even far in the nonlinear regime.

The second example we want to discuss 's sub-second-
harmonic generation in an externally driven cavity which
contains a g' ' nonlinear element. For this system, the

For this system, both complex I' representation (CPR)
and the PPR obey the same quasi-Fokker-Planck equa-
tion,

28 (e—Ka p) — (e K—ap ) ——,K a2 ~ 2 1
~ 2

Bo. ap ' a~'
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Langevin equations in the PPR are '2, 19

a, = —y, a, +Xp, rr~+F, +QXa2(, (t),
+2= —y2u2 —

—,'gaj+I 2,
)' p +Xrrip2++i +V Xp42(t)

p~= )'A ,'X—p'i+F—2 —.

(13)

The stochastic forces g, and $2 are defined as above; X is
the nonlinear coupling constant; y& and y2 are the cavity
damping constants in the fundamental and second-
harmonic modes, respectively; and I'& and I'2 are the cor-
responding classical driving fields for which we assume
zero detuning. The quadrature variances in the funda-
mental mode, which are shown in Fig. 2, are obtained
from the second-order moments of Eqs. (13):

(~' —, & =1—2(,P, &+( ', &+(P', &+2(, &(P, &

+(~, &'+(p, &'. (14)

In Fig. 2, the results of a simulation of the Langevin
equations (13) are compared with a linearized treatment'
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FIG. 2. Sub-second-harmonic generation. Quadrature vari-
ances (6 x,+ ) (stationary value is greater than 1) and (6'x, )
(stationary value is less than 1) in the fundamental mode vs time
in dimensionless units. The parameters are y& =@2=1,g=0.15,
F] = —F2 =—.Solid line: simulation of Eqs. (13), 1000 trajec-

1 3 ~ 2

tories, time step At =10 . Dotted line: solution of the mo-
ment hierarchy. Dashed line: linearized theory.

FICs. 1. Photon number (a a ) =(Pa) vs time in dimension-

less units for the driven nonlinear absorber Eq. (8). The param-
eters are @=0.1 and E=2. Solid line: simulation of Eqs. (11),
10000 trajectories, time step At =10 '. Dotted line: stationary
value, Eq. (9), derived in the CPR. Dashed line: stationary
value, Eq. (10), derived from the linearized theory. Dashed-
dotted line: small-time expansion, Eq. (12), up to second order.
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and with the solution of the moment hierarchy of the
problem. While all of these methods lead to the same
stationary values, linearization gives an incorrect tran-
sient behavior. Especially the characteristic crossing of
the variances in the two different quadrature components
is not predicted by the linearized equations.

The moment hierarchy has been solved by truncating it
under the assumption that all cumulants of order higher
than n vanish. In this case, the three approximation or-
ders corresponding to n=3, 4, and 5, respectively, give
identical results which are shown as dotted lines in Fig. 2.
The slight discrepancy between these lines and the simu-
lation curves are due to the fact that the number of
summed trajectories is fairly low. Perfect agreement is
easily obtained by averaging over a higher number of tra-
jectories. This case is not shown because the dotted lines
in Fig. 2 would then be completely covered by the solid
lines. Thus, for the example of sub-second-harmonic gen-
eration, one finds again that the PPR treatment is correct
where linearization fails.

IV. IMTIA.I.CONDITIONS

In their original paper' Drummond and Gardiner give
an explicit expression for the PPR in order to prove the
theorem that a positive P representation exists for any
quantum density operator p. The expression is

P,„pg(~, /3) = exp( —
—,
'

fax
—/3*/2)

1

4~

X ( —,'(a+/3*)~p~ —,'(a+/3*}) .

As is shown in the Appendix for a particular example,
the distribution P,„&(a,/3) in general does not belong to
the class of positive P functions which obey a Fokker-
Planck equation. If one wants to derive a Fokker-Planck
equation in the PPR, one has to make use of the ambigui-
ty in the definition of the PPR in order to obtain a
positive-semidefinite diffusion matrix. This ambiguity is
therefore a necessary feature of the method.

Unfortunately, the same ambiguity exists for the initial
conditions which must be specified for the Fokker-Planck
equation. For instance, it can easily be shown that the
distribution

P(a, a*)= — (d —au*)a — (d —aa*)a*
Bt Ba

1

+2Q P(a, a*) .
BaBa*

(17)

The equation is scaled such that it depends only the
pump parameter d and the noise parameter Q. As the
laser equation has a positive-semidefinite diffusion matrix,
it is equivalent to the Langevin equations

a=(d —aa*)a+&Q g(t),
a *=(d —aa*)a*+&Q g*(r) .

(18)

a = (d —a/3)a+ &Q g(t),
/3=(d a/3)/3+&Q—g*(t) .

(19)

The most natural choice of a PPR describing the initial
vacuum 1s

P(a, /3, t =0}=5(a)5(/3) . (20)

in analogy to the Glauber-Sudarshan case above. This
corresponds to trajectories starting at a(t =0)
=/3(t =0)=0. Since the stochastic forces in Eqs. (19) are
the complex conjugate to each other, trajectories that ini-

tially obey the condition a*=/3 will always stay in the
subspace defined by this condition. This means that for
our choice Eq. (20) of an initial distribution, Eqs. (18) and

I I I I I I I I 4 I I I I I I I I I I I j I I I I I I I

The complex stochastic force g(r ) 'obeys
(g(t)g*(0) ) =25(t) and ( g(t)g(0) ) =0. These equations,
which have been solved in many ways, can also be solved
by simulation. For the initial state we choose the vacuum
which is described by the Glauber-Sudarshan P function
P(a, n*, t =0)=5 (cz). Therefore, all trajectories start at
a(t =0)=0. The result of such a simulation is shown by
the dashed line in Fig. 3.

Although there is no need to double the dimensions of
the phase space, we will do it nevertheless, replacing in
Eq. (17) a* by /3 in order to obtain the Fokker-Planck
equation for the PPR. The equivalent Langevin equa-
tions in the PPR are then

P (~,/3) = (pq /vr )'exp( —p ') cz ['—q '(/3(') (16)

is a PPR for the vacuum state p= ~0)(0~ for any real p
and q. Now Drummond and Gardiner suggest the use of
P„„, as the initial distribution, i.e. , to set
P(a, /3, t =0)=P,„„&(a,/, 3(pt =0)) for an arbitrary initial
state p(t=0). Since they claim that diA'erent positive P
functions lead to the same observable moments, they con-
clude that this should be a correct procedure.

Here we show that this is not true. Different positive P
f'unctions can give different observable properties, and the
use of P„j as initial distribution actually can lead to in-
valid results. The example we will use is the ordinary
laser which can be described by the following Fokker-
Planck equation for the Glauber-Sudarshan P function:

0
O

CL

I I I I
I

I I 1 I I I I I 1
I

I

t i(TIe

FIG. 3. Photon number vs time in dimensionless units for the
laser equation (17). The parameters are y= 1 and Q=0.25.
Dashed line: correct result, obtained via simulation of Eq. (18).
Solid line: unphysical result obtained via simulation of Eq. (19),
using Eq. (21) as initial distribution. The number of trajectories
is 3000 and the time step At =5 X 10 for both curves.
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P(a, /3, r =0)=
2 exp[ —

—,'(~a~ + ~/3~ )], (21)

(19) are completely equivalent and will lead to identical
results.

However, if p= ~0) (0~ is inserted in the expression for
the explicit form P„ i of the PPR equation (15), one finds

the initial distribution

difhculties of the method. We have demonstrated that
this is most probably not achieved by searching for sub-
spaces which are invariant under the stochastic Aow. No
solution to the problem of the positive P representation
would be complete without a clarification of the role of
the explicit form of the PPR and without a prescription
for choosing the initial distribution.

which is a special case of Eq. (16). If one chooses the
starting points cz(t =0) and /3(t=0) of the trajectories at
random according to the probability distribution equa-
tion (21), one obtains a result diff'erent from the previous
one. The solid curve in Fig. 3 shows a typical simulation.
Thus, the choice of P„& for the initial distribution leads
to spiking and incorrect transient behavior. For the
present example of the laser, the mechanism leading to
those difhculties is particularly easy to understand. The
four-dimensional deterministic Row of Eqs. (19) has an
unstable direction for a = —/3. Since the initial distribu-
tion equation (21) has a nonvanishing probability close to
this instability, some trajectories will make large excur-
sions in the unstable direction. These trajectories are re-
sponsible for the spikes and contribute to the unphysical
transient behavior.

APPENDIX

Here we show that, in the case of the driven nonlinear
absorber, the explicit form of the PPR equation (15)
obeys no Fokker-Planck equation. The master equation
for this problem is

p=e[at —ap]+ —,'K(2a pa —pa a —a a p),

which is equivalent to the Fokker-Planck equation (8). In
order to find the equation for P,„p(a,/3), it is useful to
derive operator correspondences in a way analogous to
Ref. 37. One obtains

8 1+ +—(ca+/3* ) P,„„i,Ba

V. CONCI. USION

Difhculties with the use of the positive P representation
arise only in fully nonlinear problems. Only nonlinear
deterministic equations develop additional instabilities
when they are transformed into the higher-dimensional
space of the PPR. Unphysical results and spiking are
caused just by those instabilities. We have shown that,
nevertheless, simulation of the Langevin dynamics de-
rived in the PPR can be a valuable method beyond linear-
ization for solving problems in nonlinear quantum optics.
It would be very important, both from a fundamental and
from a practical point of view, to overcome the remaining

pa ~—,
' (a+/3* )P,„, ,

a p —,'(a*+P)P,„„, ,
(A2)

pa + +—(a*+/3) P,„ i .
g/3*

If one inserts these relations into the term a pa~ in Eq.
(Al), one sees immediately that the partial differential
equation for P, p]I

contains fourth-order derivatives.
Therefore, this example shows that P„~ does not neces-
sarily obey a Fokker-Planck equation when a Fokker-
Planck equation exists for the PPR.
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