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Nonlinear magnetohydrodynamics by Galerkin-method computation
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A fully spectral numerical code is used to explore the properties of voltage-driven dissipative
magnetoAuids inside a periodic cylinder with circular cross section. The trial functions are orthonormal
eigenfunctions of the curl (Chandrasekhar-Kendall functions). Transitions are observed from axisym-
metric resistive equilibria without Row to helically deformed laminar states with Aow, and between pairs
of helical laminar states with different pairs of poloidal and toroidal m and n numbers. States of
minimum energy-dissipation rate seem to be preferred. At high values of the pinch ratio, fully developed
magnetohydrodynamic turbulence is observed.

PACS number(s): 52.30.—q, 52.55.Ez, 52.55.Fa, 47.65.+a

I. INTRODUCTION

This article reports some results from a computational
method of exploring electrically driven, dissipative states
of a conducting Quid. The situation contains much of the
essential magnetohydrodynamics (MHD) of confined
fusion plasmas in a torus. However, due to the lack of
good internal pointwise diagnostics for the MHD fields in
the present generation of tokamaks and toroidal Z
pinches, numerical computations provide the possibility
of much more detailed descriptions of the dynamical be-
havior than presently imaginable laboratory measure-
ments do. The price is, of course, the necessary omission
of some of the non-MHD features of a real plasma.

The computations reported here originate in an earlier
set performed a few years ago [1] with a pseudospectral
code interior to a rigid, perfectly conducting cylinder
with square cross section and periodically identified ends.
Those investigations started from a position of consider-
ably less understanding than we now have of just what to
expect. The Dahlburg et al. computations [1] had to be
prepared for essentially anything to happen. The history
of MHD computation had often been one of freezing out
dynamically important phenomena by assuming sym-
metries at the outset that were not satisfied by the phe-
nomena that turned out eventually most important.

The square-cylinder computations led, among other
things, to one result that was robust and unexpected: a
transition, above certain critical thresholds in the applied
toroidal voltage, to a nonaxisymmetric state involving
helical distortions of the current channel and a small but
nontrivial amount of Aow in the form of paired helical
vortices. In the presence of spatially and temporally vari-
able temperatures and temperature-dependent transport
coe%cients, the helical states could persist even while ex-
ecuting superimposed "sawtooth" oscillations [2].

A theoretical explanation of the behavior was sought
and the best explanation so far has seemed to be one of
attributing the presence of the helical MHD states to
their lower rate of energy dissipation due to resistivity
and viscosity [3]. An analytical solution was constructed
[4] through the first three terms in a perturbation series

(with the expansion parameter being formally the ratio of
the helical magnetic components to the larger axisym-
metric one), which showed that the steady-state solution
to the MHD equations bifurcated at the appearance of
the first linear (nonideal) instability. The unstable eigen-
mode [5] was constructed of Chandrasekhar-Kendall [6]
helical eigenfunctions of the curl and formed the variable
helical part of the nonaxisymmetric solution. This helical
equilibrium was shown to have a lower energy dissipation
rate than the axisymmetric one. Visual comparisons of
surfaces of constant values of the field components and
amplitudes, between analytically calculated and numeri-
cally computed cases, were encouraging enough to sug-
gest further exploitation of the Chandrasekhar-Kendall
functions [7].

A three-mode (I.orenz-like [8]) truncated Galerkin-
method corrlputation was explored by Chen, Shan, and
Montgomery [9]. Near the threshold at which the
phase-space point corresponding to the axisymmetric
state ("axisymmetric fixed point") became linearly unsta-
ble, the three-mode model exhibited behavior that was
qualitatively the same as the well-resolved computations
[1,2] and the minimum-dissipation theory [4,7] had sug-
gested: relaxation to the steady state of lower energy-
dissipation rate, represented by a helical fixed point of the
three-mode dynamical system. It was also suggested [9]
that, because of the ease with which the Chandrasekhar-
Kendall functions seemed to incorporate economically
the results that had originated in the earlier well-resolved
( —3 X 10 degrees of freedom) MHD computations [1],
they might be a useful expansion basis for a many-mode
spectral computation.

In Sec. II we describe the construction of such a spec-
tral code. A recent completeness theorem due to Yoshi-
da and Giga [10] fills in what had been a worrisome gap
in the mathematical underpinnings of such an expansion.
Though the ultimate operation of the code is rather sim-
ple, the analysis involved in its construction is not alto-
gether standard. One motivation in Sec. II is to put some
of the details on record before proceeding with a set of
applications that may extend well into the future. Some
of these applications are presented in Sec. III and will
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now be described brieAy.
Formation of helical states is discussed first, in some

detail, in Sec. III. It seems appropriate to characterize
the various axisymmetric and'helical regimes by three di-
mensionless parameters. They are (i) the Lundquist num-
ber S—=C~L/g, where Cz is a toroidal Alfven speed, L
is a characteristic length scale such as the cylinder radius,
and r) is the magnetic diffusivity; (ii) the Hartmann num-
ber H, which will be defined here as H —= CzL /&rjv, with
v the kinematic viscosity; and (iii) the pinch ratio for the
axisymmetric, zero flow .state 6O=B /(B, ), where 8 is
the wall-averaged poloidal magnetic field and (,B, ) is the
volume-averaged toroidal magnetic field. Op is to be
carefully distinguished from the true pinch ratio 6
which, once the helical deformations set in, can be
markedly lower than Op. The onset of the helical states
occurs as one crosses, moving up and to the left, a gen-
erally rising curve [7] in a plane whose x,y axes are H
and Op. The essential 1aminar dissipative capability of
the fluid is measured by H, and Op measures how hard
it is being driven. Op is proportional to the toroidal elec-
tric field at the wall.

The range of values of Op thoroughly explored here is
typically ~ 2.5. In the laboratory setting, Op for a
tokamak (2na/(L, q), where a is the radius of the period-
ic cylinder, L, is its length, and q is the "safety factor"
[11])is always less than 1, and for a toroidal Z pinch [12]
it is greater than 1. Our measured 6 values, in the helical
states, go up to about 2. In this region we see no final-
state behavior that could reasonably be called "tur-
bulent" for the S and H values we explore. (In fact, the
laminar helical states appear to become time indepen-
dent. ) These S and H values are very low (of the order of
100) relative to laboratory values, which are often in ex-
cess of 10 or 10 . The situation is much like that in Quid
mechanics where computational Reynolds numbers are,
and are likely to remain, much smaller than laboratory or
geophysical Reynolds numbers. In the future, we plan to
explore higher values of S and H, but they seem likely to
stay below 10 in the near-term future, an unfortunate
fact of life for the numericist. It has become apparent
that as long as Op barely exceeds the critical pinch ratio
for a given H, the helical states will appear regardless
of the value of H . This implies that the qualitative be-
havior just above the threshold is independent of H
within the MHD approximation.

In addition to the detailed exploration of the low-
pinch-ratio investigations, we have also explored the case
6o=—12.34 (corresponding to a computed pinch ratio
6 -=4.8) in enough detail to show that it is fully turbulent.
Between Op-=2. 5 and 12.34, therefore, there is a transi-
tion to MHD turbulence, and we plan to explore this
transition in detail in a future investigation; here we are
content to assert its existence. It is to be expected that it
will occur for lower Op as higher S and H values are
reached.

The routes by which the Op-2 helical states can be
reached can be varied by varying the scenario by which
the applied toroidal voltage is taken up to its maximum.
Several of these are described in Sec. III. Then some of

the details of the turbulent (6O—= 12.34, 6=—4.8) state are
presented. Finally, in Sec. IV the results are discussed
and future possibilities are analyzed.

II. ANALYTICAL BASIS FOR THE COMPUTATION

BB =VX(v XB)—gVX j=—V XE,
Bt

with the electric field E given by

BAE= —vXB+gj= — +V+ .
at

(2)

(3)

Here, v is the velocity field, 8 is the magnetic field, and
j=V X8 is the current density. The kinematic viscosity
and magnetic diffusivity are v and q, respectively, and
may be thought of as the reciprocals of Reynolds-like
numbers, both much less than l. (Both v and g will be
taken here as spatially uniform and constant, and typical-
ly equal to 0.045; there is no denying that smaller values
with allowed variability would be desirable for real-life
laboratory comparisons. ) Both v and B are solenoidal.
A is the vector potential for which B= V X A and
V A=O, while N is a scalar potential determined by
solving V 4&= —V (vXB). The pressure p is determined
by taking the divergence of Eq. (1), using V r)v/dt=0,
and solving the resulting Poisson equation for
p =p(v, B). This p is the mechanical pressure plus v /2.
The system of equations (1)—(3) is regarded as being elec-
trically driven by demanding that the axial electric field
shall have a nonvanishing spatial average over the bound-
ary.

The boundary conditions to be imposed on v and 8 are
v 8=0 and 8 8=0, where A=e„ is the unit normal to a
right circular cylinder at radius r =a (cylindrical coordi-
nates). Periodic boundary conditions are assumed in the
z coordinate with spatial period L, . The perfect conduc-
tor at r =a is assumed to be coated with a thin layer of
insulating dielectric, so that j.&=0 at r =a, also. For the
vorticity cu =V X v, we assume that m - &=0 at r =a,
which is implied by, but does not imply, no-slip viscous
boundary conditions; the inability to impose fully no-slip
boundary conditions on v is regarded as a shortcoming in
the formulation of the problem that it would ultimately
be desirable to lift. It is to be expected that fully no-slip
boundary conditions would impose a v-field boundary
layer near the wall which the present computation does
not apprehend. The magnetic field 8 is divided into a
uniform dc axial part Bp plus a spatially and temporally
variable part b.

Both b and v will be expanded in terms of
Chandrasekhar-Kendall orthonormal eigenfunctions of
the curl [5,6]. These are defined in terms of solutions to
the scalar wave equation (V +A2)/=0, where the eigen-

The equations solved are those of uniform-density, in-
compressible, viscous resistive MHD. They are, in a fa-
miliar set of dimensionless ("Alfvenic") variables,

Bv =v X co+ jX8—Vp +vV' v,
Bt
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value A, is yet to be determined. For g we will have

(imp —ik„z)
Pnmq ~m () nmq r )e

where k„=2nn!L„n =0,+1,+2, . . . , m
=0,+1,+2, . . . , and q =1,2, 3, . . . (three integers are re-
quired to index the functions). A,„=k„+y„.We
define the expansion functions by

A„=I„'~ [A,„VQ„Xe, +V X (Vf„q Xe, )], ( )

Ap= —e~ —Q aq Apoq,2

1 r~a =— —e-Appdx9
v 2

(10)

so that the projection operator P takes a simpler form.
(An alternative method which is equivalent in effect is to
use the dual basis of the expansion functions as the test
functions. )

We write, in general,

where I„ is defined as the normalization constant re-

quired to make

&=IoA0+Bo+z+ g I'm, A.m
n, m, q

1
nmq9 nmq V nmq nmq (6)

jpr B
2

e++Bpez + X knmq nmq
n, m, q

where the integral runs over the interior of the cylinder
0~ r (a, O~z ~L„and V =ma L, .

The An can be made orthonormal for a proper
choice of y„ for n +m &0. Determining the pnmq

and A, nmq by Anmq. 8=0 at r =a is the proper choice.
Clearly all the Anmq with n +m &0 are orthogonal to
the Ap . y„ is always greater than 0, but both signs of
Xnmq must be allowed.

The Appq require a little care, since the yppq are not
determined by the boundary condition App 8=0. A
natural choice to determine ypp is to require App to be
"Iluxless": i.e., je, Apo d X=O, where the integral

runs over the cross section of the cylinder. Since

j=V XB and we wish to permit the possibility of a net
current in the z direction, the expansion functions of B
and j must then be supplemented by e, and re+2, which
correspond to the net Aux of the magnetic field and the
current density, respectively.

The set of functions [ A„ I, truncated at some level,
together with re+2 and e„span a subspace S of the Hil-
bert space H in which the exact solution of Eqs. (1)—(3)
lies. Note that Eqs. (1)—(3) may be written symbolically
as

dt
=F(y),

where y is the exact solution. We may define P as the
projection operator P: H~S. Under a Galerkin approxi-
mation [13],our approximate solution y will satisfy

dy
dt

=&(I'(y)),

where y is the approximate solution which lies in S. It
can be easily shown that such an approximate solution
will conserve all the quadratic ideally conserved quanti-
ties of the original differential equations (1)—(3) such as
total energy, magnetic helicity, and cross helicity. We
have verified these conservation laws numerically, typi-
cally to an accuracy of one part in 10 over 10 poloidal
Alfven transit times.

Since re /2 is not orthogonal to { App ], we define a
new basis vector Ap, by using the Cxram-Schmidt orthog-
onalization procedure, as

j=joVX Ap+ g A,„g„A„
n, m, q

Jp z + X ~nmq knmq nmq
n, m, q

(12)

v=cooA0+ g g„A„
n, m, q

pr Vey+ X knmq Anmq
n, m, q

(13)

co=cooVX Ap+ g A,„g„A„
n, m, q

~0 z + P ~nmqknmq nmq
n, m, q

(14)

Here, g„and g„are complex, time-dependent expan-
sion coefficients which are the dynamical coordinates of
the problem, jp and cop are functions of time only, while

Bo is a constant (the imposed dc magnetic field).
and g„are introduced for convenience in calculatingV

the right-hand side of the MHD equations (1)—(3) and are
defined by

g„, m+n&0
B

knmq Jp&q &

m+n&0
V

knmq ~0 q ~

(15)

(16)

The computations are done with the expansions into
the orthogonal sets, as represented in the first lines of
Eqs. (11)—(14). In the second lines of Eqs. (11)—(14), the
series has been formally rearranged to combine the com-
ponents of Ao(r) into the suins over the Chandrasekhar-
Kendall functions, and to show that giving the full set of

is algebraically equivalent to giving the g„
[ Ap, e„A„ I forms a set of orthogonal basis func-

tions in which Galerkin's method amounts to substituting
the expansions (11)—(14) into Eqs. (1)—(3) on both sides,
taking inner products with the Anmq9 and picking off
what are in effect ordinary first-order differential equa-
tions for the expansion coefficients. At the first stage,
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A„' [v Xro+ j XB—Vp +vV v]d x,
Bt " V v

(17)

g'„q= —f A„*
q [VX(vXB)—qlVXj]d x,

II Aoll'= —f Ao A,d'x =a' 1

(21)

II Aoll too= —f Ap. [vXai+jXB—Vp+vV v]d x,
(19)

II Aoll jo=—f Ao [VX(vXB)—q)VXj]d x, (20)

where

Because all the spatial dependences of the fields have
been transformed away, the partial derivatives with
respect to time, in Eqs. (17)—(20) and hereafter, are in
effect total derivatives.

Performing the integrals in Eqs. (17)—(20) is very tedi-
ous and the result is

n'
n'm'quan "m "q" kn'm'quan"m "q" )Cnmqat nmq - - - " - q

n, m, q n, m, q

k„+i +
~nmq

B V ~ B 2 V
(J05nmq ~04nmq ) n Oknmq V7 nmqknmq

m II
q

m' q'

(22)

V B m ~ V B ~ V 2 B
n' m'

knmq X g ~nmq 4n m q4'n m'q C"nmq n
" tti " " + (JOknmq ~0(nmq ) kn Oknmq Q~nmqf nmq

I I I It tt tl n m q 2
I I I I

(23)

IIAOII'~ oio=EO o o+ X~q~ooqkooq+ Q &. q, (k.' q4". *q-—k.' q4'. *q»
Bt

q n, m, q', q'I II
(24)

n V Be
knmqknmq + X ~nmq'q'4nmq4nmq"

I It
n, m, q, q

II Aoll' j o =Eo qj o+n g ~ ~—
pp g) + g

q nmq nmq
(25)

The coupling coefficients

V„q ~ are given by

n' m'
nmq n" m" q" y n'm'q'

table of the numerically-calculated pnmq and knmq
table of the C„(„"--q-) is then itself numerically stored.
The first two terms of Eq. (24) represent the possibility of
an enforced poloidal rotation and a phenomenogical
damping of it that are included for completeness; hereaf-
ter, both F0 and v0 will be set equal to zero, throughout
this paper.

Define the inverse aspect ratio as

n
2)„,, = ga, A,„„C„,„

q

m q'

0 q
(27) 27M 0

I., R
(30)

q'n m
~nmq'q" p ~q ~poq Cnmq 0()"

q
q

(28)

Lf f 0 j,a dydz=
2~aI.,E0

(29)

is used, where the integral is over the surface of the
cylinder. Physically, this means that the averaged
current density at the wall is fixed at E0/g. The integrals
involved must be evaluated numerically, using a stored

In the derivation of Eq. (25), the electromagnetic driving
boundary condition

where r0 is the minor radius and R is the major radius of
a torus imagined as being approximated by the straight
cylinder.

If we renormalize the variables as g„'
q
=a

BI —1 B 2
knmq =a

knmq& Bp =a Bo, Eo =a Eo~ ~nmq ~nmqa~
y„' =y„a, g'=a g, and v'=a v, and hereafter
omit the primes, the radial dimension of the cylinder a is
eliminated. (In effect, lengths are being measured in units
of the minor radius. ) Our inverse aspect ratio, for the
runs reported here, is m. /4. We have the final set of ordi-
nary differential equations:
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a pv
Bt ~nmq

V V B B
n'

(g ~ g- ~ -—g ~ ~ g )c
m' q'

II

—1

nmq

(31)

V B
n' m'

knmq P P ~nmqk n'm'q4 n "m "q"Cnmqat I t I II II II
7 7

I
lm . V B ~ —1 V p B+ (jOknmq ~oknmq ) Oknmq l~nmqknmq

(32)

2 V Ve B Be
0 ~0 V X ~q ~ooqf00q + X +nmq'q "(knmq4 nmq" knmq4 nmq" )

n, m, q', q"
~ —1a 2 Ecx n v V Be

+0
g jo 0 ljO + q X q ~QQq COQq + 2 g knmqknmq + P ~nmq'q "5nmq4nmq"

q n, m, q nmq n, m, q', q"

(33)

(34)

where

ao= ——g1 1

y VOOq

(35)

Equations (32)—(35) are solved numerically by using a
variable step length, implicit Adams method. For some
cases where the system is numerically stiff, Gear's
method is used [14]. Since there is no fast-Fourier-
transform-like fast algorithm for the Bessel transform,
the three-dimensional convolution s appearing in Eqs.
(31)—(35) are evaluated directly. For a case with 320
complex modes and 10 real axisymmetric modes (1302
degrees of freedom), it requires 3.7 sec to evaluate the
right-hand side of the equations above and the code typi-
cally requires 500 sec per poloidal Alfven time on a
Cray-2 for a laminar (nonturbulent) case.

The code is tested for the ideal case in which g= v=0,
and no external voltage, in an attempt to determine its
accuracy. As expected, both the total energy and the
cross helicity are conserved up to rounding error.
(dE/dt, dH, /dt ~ 10 ' on a Cray-2, where E and H,
stand for total energy and cross helicity, respectively. )

Both E and H, are conserved to the order of one part in
10 within 5 Alfven times with the error tolerance of the
ordinary differential equation (ODE) solver set at 10

The results of the numerical solution are also com-
pared with those of the linear instability theory [4,7] for
the uniform current density state, which predicts that for
the particular set of parameters g =v =0.045 and
Bo=4.5, when the driving electric field Eo is increased
above 0.33, the mode with m = 1, n = 1, q = 1 becomes un-
stable first, and its amplitude has a growth rate of 0.279
when Eo=0.35. At the same set of g, v, and Bo, the re-
sults of the computation, starting from a low level of ini-
tial random noise, show that this m=1, n=1 mode does
start to grow out of the initial random noise at a constant
growth rate in the early stage immediately after the driv-
ing electric field is raised above the instability threshold
predicted by the linear instability theory. A least-squares
fitting gives the growth rate of the kinetic energy as
0.555, corresponding to a growth rate of 0.277 in ampli-
tude. This will be displayed graphically in Sec. III.

It will be noted that Eq. (33) has been written with the
possibility of a nonzero, volume-averaged, axial vorticity
coo=coo(t). This would be important in an application
(with an imposed poloidal rotation, for example) in which
a net vorticity Aux was expected. Rather than set coo=0
and discard Eq. (33), however, we compute coo at each
time step and monitor its closeness to zero as an addition-
al accuracy check. We find that it hovers about zero with
typical excursions of the order of approximately 10
The electromagnetic analog, Eq. (34), is of course quite
important, governing the net axial current response to
the applied electric field; Eo, unlike Fo, has not been
chosen to be zero.

As the number of axisymmetric modes retained
(q,„—mao) becomes large, ao as given by Eq. (35) be-
comes small. The coeKcients of the time derivatives in
such equations as Eq. (34) become small, which necessi-
tates smaller time steps in the (Adams-Moulton) ODE
solver with which Eqs. (31)—(34) are time advanced. This
results, in practice, in a relatively unrestrictive limitation
to moderate values of q,„(the smallest ao ever becomes
in the computations reported is about 0.0176, for
q,„=10). The test of the satisfactoriness of the approxi-
mation depends upon the existence of a range of q
corresponding to computable values of ao, within which
the answers become insensitive to further increases in

q,„. We have established the existence of such ranges in
all the computational regimes discussed except the ex-
treme case 60—= 12.34 (6-=4.8), where doubts are later
expressed about the adequacy of the resolution. We also
discuss, in the Appendix, the rather interesting transition
behavior in Eq. (34) between a differential equation for
jo(t) and what becomes an essentially algebraic deter-
mination of it as ao becomes small, in an analytically
soluble case.

Equations (31) and (32) are in effect the equations of
motion of a large number of driven, nonlinearly interact-
ing, coupled harmonic oscillators with damping. These
"oscillators" may, of course, be linearly unstable. The
principal numerical difhculty, aside from the task of
managing the large arrays, is the computation and
storage of the coupling coefficients and the eigenvalues
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. Once computed and stored for a particular inverse
aspect ratio e, this does not have to be done again.

III. RESULTS OF THE DRIVEN SOLUTIONS

A. Helical state formation

At fixed values of Bo, q, and v, and for given cylinder
dimensions, the axial electric field at the wall may be in-
creased from zero. In the laboratory situation, the elec-
tric field Ep(t) evolves temporally as part of the dynamics
of a circuit of which the plasma is but one element. Here,
we assume that Ep=Ep(t) can be programmed to follow
any desired time history. In the future, it is intended to
embed the present MHD code inside a large one that in-
cludes the dynamics of an external circuit.

For small enough Eo, and Eo constant, the only steady
state in the presence of uniform g is the zero-flow, ax-
isymmetric state with a current density of only a single
component j,=Ep le: the "copper wire" solution. As
Eo is raised incrementally, j, follows along as fast as the
finite resistivity will allow. Since the e6'ect of a changed
Ep(t) is felt first at the wall r =a, the current profile has

to redistribute itself as a function of radius each time.
This occurs according to the scenario described in the
Appendix.

If we continue to raise Eo, j, crosses an analytically
calculable I7] linear stability threshold at which the uni-
form current profile becomes unstable. At this threshold,
the resistive equilibrium bifurcates, and helically de-
formed steady states first become possible. Immediately
above the threshold, they are characterized by a pair of
poloidal and toroidal (axial) mode numbers (m, n) that
are the same as those for the first unstable normal mode.
The corresponding helical eigenfunctions are the first-
order parts of the helically deformed equilibria with flow
I:4].

As we continue to raise Eo, the conditions for the va-
lidity of the helical equilibria (so far only calculable as a
perturbation series) gradually cease to apply. It appears
that there exists a finite range of Eo between the critical
value at which a helical mode becomes unstable and a
second critical value, in which the preferred state of the
magnetofluid remains a helically deformed steady state
dominated by a single pair of (m, n) numbers and eventu-
ally, their higher harmonics (2m, 2n), (3m, 3n), etc. The
other modes damp exponentially to zero.

TABLE I. Final states of three runs with different selections of modes, Eo =0.5 Bo =4.5 &=v=0.045.

m, n, q

0,0,1

0,0,2
0,0,3
0,0,4
0,0,5
0,0,6
0,0,7
0,0,8
0,0,9
0,0,10
0,0, 11
0,0,12

1 1,1

1,1,2
1,1,3
1,1,4
1,1,5
1,1,6
1,1,7
1,1,8
2,2, 1

2 2 2
2 2 3
2,2,4
2,2,5
3,3,1

3 3 2
3 3 3
3,3,4
4,4, 1

4,4,2
5,5, 1

E

0.113688 782
0.006 613 172
0.000 007 651
0.000 000 228
0.000 122 740
0.000 000 710
0.000 020 481
0.000 000 093
0.000 002 962
0.000 000 146
0.000 000 707
0.000 000 069
0.073 518 276
0.001 233 361
0.002 716965
0.000 043 891
0.000 058 493
0.000 000 326
0.000 001 544
0.000 000 002
0.005 231 928
0.000 030 903
0.000 096 785
0.000 000 989
0.000 000 178
0.000 322 734
0.000 000 197
0.000 000 156
0.000 000 012
0.000 013493
0.000 000 013
0.000 000 000

Run 1

E

0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 MO 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 NN
0.037 009 276
0.001 981 446
0.000 768 223
0.000 025 060
0.000 011 624
0.000 000 071
0.000 000 139
0.000 000 013
0.001 632 140
0.000 016 356
0.000 020 867
0.000 000 174
0.000 000 757
0.000 037 968
0.000 000 488
0.000 006 562
0.000 000 006
0.000 000 000
0.000 000 221
0.000 000 000

E„
0.113808 081
0.006 629 716
0.000 007 753
0.000 000 316
0.000 117477
0.000 001 079
0.000 021 575
0.000 000 199
0.000 002 960
0.000 000 149

0.073 520 079
0.001 236 177
0.002 722 576
0.000 042 292
0.000 058 521

0.005 263 352
0.000 031 657
0.000 099 439
0.000 000 858

0.000 331 946
0.000 000 311
0.000 000 615

0.000 013 526
0.000 000 009
0.000 000 668

Run2

0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000

0.037 051 175
0.001 985 072
0.000 773 606
O.OOO 025 234
0.000 012 455

0.001 636 566
0.000 016473
0.000 019 370
0.000 000 437

0.000 040 347
0.000 OOO 595
0.000 006 224

0.000 000 034
0.000 000 189
0.000 000 017

E

0.113810286
0.006 629 306
0.000 007 743
0.000 000 318
0.000 117445
0.000 001 082
0.000 021 562
0.000 000 198
0.000 002 954
0.000 000 147

0.073 521 048
0.001 236 184
0.002 722 605
0.000 042 292
O.OOO 058 522

0.005 263 267
0.000 031 657
0.000 099 437
0.000 000 858

0.000 331 936
0.000 000 311
0.000 000 615

0.000 013 525
0.000 000 009
0.000 000 668

Run3
Ek

0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000

0.037 050 892
0.001 985 040
0.000 773 607
0.000 025 234
0.000 012456

0.001 636 535
0.000 016473
0.000 019 370
0.000 000 437

0.000 040 346
0.000 000 595
0.000 006 224

0.000 000 034
0.000 000 189
0.000 000 017
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We have performed several tests of the required resolu-
tion as applied to the laminar helical states. A typical ex-
ample consists of running the same problem with
different numbers of retained helical and axisymmetric
modes. The results of such a test are shown in Table I,
which exhibits, in order, the energetically largest modal
energies, for a particular situation. The situation is
ED=0.5 (60=1.23), 40 Alfven units after it is set at that
value. The other parameters are the same as in Secs.
III A and III B (g=v=0.045, B0=4.5, etc.). Shown are
the results of retaining 455 modes (443 helical and twelve
00q modes, "Run 1"), 330 modes (320 helical and ten 00q
modes, "Run 2"), and 25 modes (15 helical and ten 00q
modes, "Run 3"). Displayed are the m, n, q values and
the magnetic energy Eb and kinetic Ek returned by the
computation. It will be seen that while minor discrepan-
cies result between the 25 mode and 330 mode runs, the
differences between the 330-mode treatment and the 443-
mode treatment are entirely negligible.

We also address, in the Appendix, an interesting relat-
ed mathematical point raised: namely, what happens to
the computational scheme for very large q „,as ao in
Eqs. (32) and (34) becomes small.

As Eo is raised past a second critical value, we finally
observe transitions from a state dominated by one pair of
(m, n) numbers to another laminar state involving many
modes. One distinct feature of the latter is that all the
modes included in the calculation participate in the final
state and form a broadband energy spectrum. None of

them decays to zero as those modes other than the dom-
inant one and its harmonics do in the final state at a
lower Eo. All the modes are stationary in time except for
some small oscillations of the high wave-number modes
with low energy, at the noise level. We describe presently
a reproducible transition from (1,1) to a multimode state
with (m, n) =(1,2) and (3,4) as the two biggest modes, for
example. The reason for these transitions is not entirely
clear, but the evidence we have is consistent with a
minimum rate of energy dissipation as being the basis for
selection among competing helical states with different
mode numbers, at successive bifurcations.

Figure 1 is taken from the time development of a run
in which the Eo field is raised quasiadiabatically from
zero in small steps. Shown is only the step at which
Eo/g crosses the stability boundary (indicated by the
dashed horizontal line in Fig. 1) for the first time. This
run is for the parameter set B0=4.5, q=v=0.045 (so
that S=H=100), and a '=m/4. The dashed curve is
the axial current jo(t), which is following Eo, and by
about t=20 (times are always in poloidal Alfven transit
times), jo ( t ) has adjusted itself to the value

Eo/g =0.35/0. 045 =-7.78. The dotted curve (which, be-
cause of the close spacing of the dots, appears to become
a solid curve after about t= 10) is the total kinetic energy
(the scale is on the right of the graph), which is decaying
from initial broadband random noise deliberately distri-
buted among the modes. For the computation shown in
Fig. 1, there are 330 independent modes present, includ-

7.8—
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7.4—

7.2a

7.0—

68—

I
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I
I

I
I

l
I
I
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I
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I
I
I

I
I

I

I

I

I

I

— io'

— i08

)0-10

6.6—

20 40
time

60

FIG. 1. Time history of total current (dashed curve), total kinetic energy (dotted curve, the later stages of which appear solid), and
applied electric field (solid step), plotted vs t in poloidal Alfven transit times. For this step in the electric field, the current crosses, be-
tween t=5 and 10, the threshold for the appearance of the first linearly unstable mode. The dashed horizontal line is the current
threshold.
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gp-12
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time
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FICx. 2. Time histories of the largest helical modes in the ki-
netic energy for the same situation as shown in Fig. 1. Note
that a time-independent laminar state has been achieved by
about t=65. The dominant mode has (m, n) =(1,1), and second
most dominant mode, down by over an order of magnitude, has
(m, n) =(2,2).

ing all those with A,„&100 for m and n not both zero.
The 00q modes, up to q= 10, are required for the develop-
ment of the radial variation in the current and magnetic
field.

As the current density jo approaches its new uniform
value above the threshold just before t=20, the kinetic
energy begins to grow exponentially at a rate numerically
measured to be 0.555, compared with a theoretical value
of 0.558; this is thought to be satisfactory agreement. Eo
is held at this constant (supercritical) value and the kinet-
ic energy ceases to grow at about t=50. By t=60, it has
approached a constant value and there has been an ac-
companying depression of jo(t) to a constant value below
Eo/g. All quantities become time independent and this
saturated state with How will apparently persist
indefinitely.

Figure 2 shows the time histories of the largest nonax-
isymmetric modal kinetic energies (i.e., those with m and
n not both zero). Since the plot is logarithmic, it will be
seen that for all practical purposes, the helical part of the
final state is characterized by only a single
Chandrasekhar-Kendall function and it is the A&» mode
(m= 1, n=1, q= 1). Inspection of the corresponding plot
for the nonaxisymmetric magnetic modal energies reveals
the same dominance of the energy spectrum by the (1,1,1)
mode. Notice that the majority of the modes simply
damp away in about ten Alfven times. The single-mode,
perturbation-theoretic, helical equilibrium [4] appears to
be adequate to characterize the region immediately above
the stability threshold.

In another set of circumstances, the (l, l) amplitudes
were artificially set equal to zero after the (1,1) state had
become dominant (EO=0.35), in the manner of Cappello
and Paccagnella [15],who have speculated that the previ-
ously dominant mode, once removed, might remain ab-
sent. However, in our case, removal of the (1,1) state at
t=80 was followed by its regrowth and eventual domi-
nance by t =—125.

Figure 3 shows j,(r), B,(r), j (r), and B (r), the ax-
isymmetric parts only of the relevant fields as functions of
radius. Except for these modifications of the radial
dependence of the axisymmetric parts of the fields, the
state is essentially that predicted by the three-mode
Galerkin truncation [9]. Both B, and j, do not greatly
depart from their uniform "copper-wire" value.

Figure 4 shows the time histories of Eo(t) and jo(t),
and the kinetic energy as the electric field is stepped
through several increments for the same Bo, g, v, and
a ' as in Figs. 1 —3. The helical (1,1,1) state followed
along and continued to adjust its contribution. (No addi-
tional random noise was added after the time t=O).
Somewhat unexpected, however, was the observation that
the helical amplitude did not continue to increase, as Eo
was increased, according to the simple predictions of the
three-mode truncation [9]. Compensating adjustments in
the radial behavior of jo, B„etc., seemed gradually to
eliminate this increase predicted by the three-mode trun-
cation, and the state at the end of the sequence shown in
Fig. 4 seems to be returning to its axisymmetric copper-
wire values.

Figures 5 summarize the steady-state values of jo and
the total computed dissipation rate, Ohmic plus viscous,
as Eo is increased. The values characteristic of the (1,1,1)
state are shown as open circles. As Eo increases, the
departure between the helical state's dissipation and that
of the corresponding axisymmetric zero-Aow state at first
increases and then decreases. The corresponding kinetic
energies appear in Fig. 5(c). If one were to look at only
the open circles in Fig. 5(b), one might conclude that the
axisymmetric, zero-Aow equilibrium was again being ap-
proached near Eo =0.6.

This approach, however, is illusory, because at a lower
value of Eo between 0.5 and 0.55, the helically deformed
(l, l, l) state has itself become unstable. If a small but
finite amount of broadband noise is introduced, a sudden
nonlinear evolution is observed into a diferent laminar
helical state involving all the modes included in the cal-
culation. This corresponds to the darkened square in
Figs. 5(a) and 5(b), and is seen to be associated with a
lower dissipation rate than that for (m, n) =(1,1). This is
the first example of a transition between helical steady
states, and we do not know at this point how many more
such transitions may be expected as Eo is increased. We
have called it the "multimode" state.

A gray-scale spectral plot for the state (m, n) =(1,1) is
shown in Fig. 6, again illustrating the single-mode domi-
nance. But now, higher harmonics such as (2,2) are no-
ticeably involved and their prominence is greater than be-
fore. Figure 6 is for EO=0.35.

The departure of the MHD configuration from the
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FIG. 3. Radial profiles, at t=100, of the axisymmetric parts of the magnetic field and current density for the situation of Figs. 1

and 2: (a) j,(r); (b) 8,(r); (c)j (r); (d) 8 (r). Note that the pinch ratio 6=8„(a)/(8, ) is about 0.856, compared with the value
Op=0. 864 for the axisymmetric zero-Bow solution.

(1,1) state, under the addition of random noise at
Eo=0.6, indicates that some kind of transition to a pre-
ferred laminar state other than (1,1) has occurred by this
value of eo-—1.36. This is an example of what appears to
be a somewhat complicated transition behavior that
occurs in this intermediate range of Bo, well before any-
thing that could be called true MHD turbulence devel-
ops. We do not explore this transition behavior in detail
in this article. We may offer, however, a few additional
observations about the regime around Eo =0.55,
Bo-—1.36 before passing to an example of a fully tur-
bulent state for the high values of eo.

B. Transition between helical states

Shown in Fig. 7(a) is a plot of the evolving kinetic ener-

gy with individual helical modal contributions shown
separately. Initially E&=0.5 (6&=1.23) and the other
parameters are the same as reported above. The system
starts from the unstable axisymmetric equilibrium with a
small amount of random noise (at the level of approxi-
mately 10 in energy). In the earliest stage (t (10),
several linearly unstable modes start to grow out of the
initial random noise, while the majority of the modes
damp away as predicted by the linear theory [4,7]. As
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soon as the energies of these helical modes get to a level
where the linear theory ceases to apply, the system un-
dergoes a complicated nonlinear transient process and
finally, after t =—30, a stationary final state similar to that
which appeared in Fig. 6 is formed with the dominant

(1,1) mode and its harmonics (cf. Table I). The other
modes keep damping exponentially.

At t=60 the driving electric field Eo is stepped up
from 0.5 to 0.55. The previously dominant modes adjust
their amplitudes to a new level, while all the other modes

10-
CD

8-

time

3.5—

3.0—
CD

o

8 25

4
8
O

2.0—

1.5—

1.0—

time

FIG. 4. (a) Total current and (b) total energy-dissipation rate for the continuation of the run shown in Figs. 1 —3. The square steps
in (a) are the electric field E0, which is being gradually raised; the steps in {b) are the Ohmic dissipation for the associated "copper-
wire solution without flow, and the lower curve is the measured total dissipation. The flat dashed line in (a) is the threshold current.
Note the significant decrease in the gaps between the computed and zero-flow quantities at the last steps, just below 1=300.
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12—

0.3 0.4 0.5 0.6

0.3 0.4
E0

0.5 0.6

FIG. 5. (a) Time-averaged total current and (b) total energy-dissipation rate for the series of electric-field strengths between 0.35
and 0.6 shown in Fig. 4. The helical state with (m =1,n =1) follows along (open circles), with increasing E0, but by Ep=0.55 has
become unstable to the addition of a small amount of random noise. If noise is added at the energy level 10 at t =—300, an abrupt
transition to a laminar helically deformed multirnode state is observed; the new state is indicated in Figs. 5(a) and 5(b) by the black-
ened square at E0=0.55. In Fig. 5(c), kinetic energy and magnetic energy for the successive (1,1) states are shown. The cross and
square indicate, respectively, the kinetic and magnetic energy for the multimode state that the Ep =0.55 (1,1) state may be perturbed
into.

start to grow exponentially, and after another cornplicat-
ed nonlinear process, only the dominant part of which is
shown, in Fig. 7(a), a new stationary final state, is reached
again. But this time, the final state is not dominated by a

single pair of (m, n). Instead, a broadband energy spec-
trurn is formed with the two largest modes identified as
(1,2) and (3,4). The energies of all the other modes in-
cluded in this calculation are maintained at a low but
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axisymmetric value (eo—= 12.34) is observed. Between
these values of eo (2.0 to 12) or Eo (1.0 to 5.0) for these
values of v, q, there is a complex transition to fully
developed MHD turbulence. We leave the detailed ex-

loration of this transition to the future; it may be ex-p ora
pected to occur across a generally nsing curve in a p a
w ose axh axes are inverse Hartmann number square and

Fi . 8. Theaxisymmetric pinch ratio 80, shown in Fcg. . e
"tokamak regime" will roughly correspond to the lower

left-hand part of the curve and the "reversed-field pinch
(RFP) regime" will lie above it and to the right. From
the point of view of incompressible MHD, the two re-—2gimes can be located in the same (eo, H ) plane.

Figure 9 is a plot that combines the values of jo and
dissipation rate achieved for those runs with Eo ..0 and
the one with ED=5.0. The EO=5.0 state is highly tur-
bulent, and a time average is required to achieve the
values plotted. Figure 10 is a time history ofj 0(t) and a
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total dissipation rate for the Eo =5.0 run. A modal histo-
ry of the helical kinetic-energy amplitudes is shown in
Fig. 11, where the turbulence is apparent. It is equally
apparent in Fig. 12, which is a gray-scale modal energy

plot of the (m, n) energy spectrum for the velocity field
and magnetic field. The computed Kolmogoroff dissipa-
tion wave number is Ko——-33, which is to be compared
with the maximum allowed A,„of10. A larger modal

(a)

1.4—

1.2—

1.0—

0.8—

0.4—

O.2

1O' 10'
H-2

4

0-

I

-2—

„4 — I

I I

I I

I I

I I

I

I I

I I

I I

I I

I I

lO6 1O'
H2

4

FIG. 8. (a) Threshold curve above which the axisymmetric, zero-Bow current profile is unstable and above which are expected, at
first, laminar helical states, and then MHD turbulence (Bo=4.5, g= v=0.045, a= 1, e =~/4). Axisymrnetric zero-Bow pinch ratio
eo is plotted vs inverse Hartmann number squared. H decreases linearly with decreasing gv and eo increases with increasing
toroidal voltage. (b) Dominant m, n, A. (for the first unstable helical mode as eo is raised) vs H for the situation shown in (a).
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space will likely be required to obtain a well-resolved
solution for this case. The root-mean-square kinetic wave
number may be estimated as the square root of the ratio
of enstrophy to kinetic energy, and is approximately
equal to 7.23. Large (-0.1) excursions of coo about zero
also indicate that this run may not be well resolved.

IV. DISCUSSIQN

It is now possible to formulate with some confidence,
and within the limitations of one-Quid incompressible
MHD with scalar, uniform transport coeScients, what
the regions of qualitatively diQ'erent behavior are for a

80-

20—

0-
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(b)

250—

0
150—

F4

Q
OQ

100—

0—

Ep

FIG. 9. (a) Time-averaged current and (b) total energy-dissipation rate for Ep 1 and E0=5. The state with E0=S is highly tur-
bulent.
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periodic cylinder of uniform density magnetoAuid, sup-
ported by a dc magnetic field Boe„and driven by a fixed
toroidal wall voltage EoL, (L, is the length of the period-
ic cylinder).

For a given aspect ratio cz, there is first of all a quies-
cent regime for low enough g in which the current profile
is Hat and there is no Bow. This is the relatively uncom-

plicated regime below the rising curve in Fig. 8(a) (for as-
pect ratio a=4/n). As the plasma is driven harder (the
quiescent pinch ratio eo increases) or as the dissipation
coefficients decrease (the inverse Hartmann number
squared decreases), this stability boundary is always
crossed, and the mechanical activity begins.

As the stability boundary is crossed, a lower energy-

(a)

10
time

20

1200—

8
0
JS

.I
400

10
time

15 20

FIG. 10. (a) Time history of total current and (b) total energy-dissipation rate for the turbulent (E0=5.0) run. (Here, ez-——12, but
e—=4.8.)
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FIG. 11. Modal kinetic-energy history of the Eo =5.0 run.
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dissipation-rate laminar state forms and is characterized
by paired helical vortices and helical distortions of the
current channel. There is a single dominant pair of
( mn) mode numbers, which can be read off Fig. 8(b).
The analytical perturbation-theory version of the helical
state [4] seems to work satisfactorily at and immediately

above (in 60) the threshold, but ceases to work as 60 is
raised across a second threshold at which the system
changes from a single-mode-dominant laminar state to a
multimode laminar state. Large contributions from
higher 00q modes considerably distort the axisymmetric
parts of the field profiles. These are unfamiliar, and at
this point we do not have a satisfactory analytical repre-
sentation of them. Nor do we know what other possible
transitions among laminar states will be found as the
driving voltage is raised.

Eventually, at a third threshold, which we have made
no attempt here to quantify, the laminar states containing
the steady helical modes give way to what can properly
be called a fully developed MHD turbulent state. The
present spatial resolution for this strongly driven run
(6o-=12.34 and 6=-4. 8 may be higher than any laborato-
ry values of these parameters ever achieved) seems likely
to be inadequate (cf. Fig. 12). Larger numbers of modes
need to be employed, and future attention will be given to
this problem.

Two immediate problems suggest themselves as natural
applications of the code which has been developed: (i) de-
tailed exploration of the transition behavior within the
band above the curve where the laminar helical states
first appear; and (ii) characterization of the fully tur-
bulent state (spectral distribution, degree of anisotropy,
helicity content, level of Auctuations about the mean,
etc. ), which appears above this supposed band of laminar
states.

Longer-range generalizations which seem highly desir-
able include (i) the inclusion of spatially variable tempera-
ture, locally temperature-dependent transport coeffi-
cients, and an energy equation; (ii) the inclusion of finite
compressibility and nonuniform density; (iii) the embed-
ding of the MHD code within a slightly larger code that
includes the e8'ects of the external circuit; and (iv) com-
parison of the results with several tantalizing experimen-
tal hints of persistent helical states in toroidal pinches
and tokamaks [16—l8]. The largest uncertainty in any
detailed application of the theory is perhaps that of
knowing what numerical values of the transport and dis-
sipation coefficients to use inside a real confinement de-
vice.

It may be unnecessary to reiterate [3,4,9,19] that the
helically deformed states computed here are quite distinct
from the minimum-energy, or "Taylor, " state familiar in
the theory of the reversed-field pinch [20]. That state has
no fiow or vorticity (vo=O) and so cannot satisfy Eq. (2)
with nonzero q. It is also the case that the present helical
deformations set in at far lower thresholds in 8 than in
the "Taylor state, " thresholds that are sensitive to values
of v and g.

Magnetic Energy
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FIG. 12. Gray-scale plot of the modal energies for the fully
developed turbulent run with Eo =5.0. The fact that significant
modal excitation occurs out to the perimeter of the truncated
(m, n) space probably indicates inadequate spatial resolution.
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All the poles of Eq. (A5) are real and have Re(s) (0, ex-
cept for the pole at s=O. There are an infinite number,
which lie along the negative real axis between the values
of gk, oo . As q „increases, more poles appear, but do
not greatly change their locations. The higher-q poles
that are added correspond only to more short-lived tran-
sients whose behavior is not much altered by the decrease
in ao. Only the pole at s=O contributes significantly after
a time of order qk, oo&, and gives

jo(t) =Eo ~n

plus exponentially damped terms. The solution for jo(t)
is seen not be significantly affected by adding larger q

values in the axisymmetric modes, and while the shorter-
lived transients would eventually become a computation-
al problem at fixed time step if we let q „~~, it is clear
that no problems will result in the analytical solution to
the system (A2) and (A3).

Finally we compare, in Fig. l3, the results of running
the code on the system (A2) and (A3) with the exact
analytical solution of Eq. (A 1) previously described. The
deviations of the numerically calculated jo(t) at diff'erent

q „from the analytical solution are plotted. It will be
seen that the numerical solutions converge to the analyti-
cal solution very well. The inAuence of different q „on
the solution is limited in a very short period (t ( 1).
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