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Computation of spectral arrays in hot plasmas using the Lanczos algorithm
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We apply the approach initiated by Lanczos to compute large spectral arrays in hot plasmas. The
wave functions that form the basis for the Lanczos state vectors are derived from a self-consistent
"average-atom" model. We present calculations for a bromine plasma at low and at metallic density.

PACS number(s): 52.25.Rv

I. INTRODUCTION

When medium- or high-Z elements are partially ion-
ized either in astrophysical or in laboratory plasmas the
number of spectral lines can be enormous, which presents
a serious problem for the computation of the photoab-
sorption cross section. There have been several ways to
address this problem, all of which involve the accounting
of many-electron states, only to the degree of level occu-
pancies, that is to say to configurations, and account for
the large number of angular momentum states in a sta-
tistical way. We will adopt the nomenclatures of detailed
configuration accounting (DCA) and detailed term ac
counting (DTA) for the cases when only electronic
configurations, or electronic configurations together with
the definite J states are accounted, respectively. In the
present work we use the term DCA with the understand-
ing that we do not include configuration mixing. Elec-
tronic transitions due to photoabsorption are character-
ized by the change of the occupancy of a single particle
level, together with the usual AJ =0, 1 dipole selection
rule. When an atom is ionized down to the L shell, the
method of DTA is computationally feasible, and calcula-
tions for bromine L-shell spectra in the DTA scheme
were presented by Goldberg, Rozsnyai, and Thompson
[1]. In the absence of DTA the spectral lines are defined
only in terms of line clusters connecting an initial and
final configuration in the DCA scheme. Theoretical esti-
mates for the degree of dispersion of line clusters due to
the different angular momentum states were given by
Moszkowski [2], and more recently in a series of papers
by Buache et al. [3—6]. The shape of the line clusters is
usually expressed in terms of the second and, in some
cases, third moments of the transition strengths, and this
method is called the method of unresoIved transition ar-
rays (UTA's). The method of UTA is very useful for ob-
taining first-order information about a particular transi-
tion array. Its shortcoming is that it cari give only the
envelope of a transition array, and whether or not there
are regions of transparencies in between the peaks of the
individual lines of the array is beyond the capability of
the UTA to discern.

The algorithm developed by Lanczos [7—11] offers a
continuous transition from the method of DCA-UTA to
DTA, thus exhibiting whether or not the physical line
shapes merge the lines of an array into a continuous
profile. In the next section we describe the basics of the

Lanczos algorithm together with the physical model
upon which it rests. In Sec. III we present computational
results for a bromine plasma.

II. THEORY

ICE1;p ) =(El) lp & (lb)

Clearly the model space in which lCel;p ) is defined is
the daughter space, whereas lp ) is defined in the parent
space. Furthermore lCE1;p) is not, except in the most
trivial cases, an eigenvector of H, but it does contain in it
the complete E1 strength. The proof of this statement is
very straightforward. (Further exposition can be found
in Refs. 10 and 11.) The expression for the total strength
S„, is given by the following summation over all the
eigenstates [ l

d ) ] in the daughter space,

s„,=g(d l(E1)lp) (2a)
J

=g(d, lCE1;p )' (2b)

= ( CE1;pl CE1;p ), (2c)

We assume n bound electrons (n )2) in the field of an
ion and assume that the Hamiltonian (H) is known. We
group the n electrons into core and valence electrons,
where the core electrons are characterized by their strong
binding energies and by the fact that they completely oc-
cupy the core states. We start with a "parent" vector p )
of the n-electron system, which is considered an initial
state and which is frequently (but not always) the ground
state. For the physical processes of interest herein the

p )-state vector will be excited by the electric dipole
operator (El). In general the El operator induces a series
of one-electron excitations from the parent state produc-
ing the daughter basis space. The daughter space is
differentiated from the parent space from which it was
produced not only by the orbits that are reached but also
by the difference in parity between the daughter and
parent spaces. In all present considerations lp ) will be
an eigenstate of the system, i.e.,

Hlp & =E, lp & .

Now we apply the El operator to p ) to produce what
we call a collective-state vector for which we use the sym-
bol lCE1;p ), where
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ICEI;p &=gld, &&d, l(EI)lp & (2d)

By its very definition we see that the collective vector will
contain no contributions from any of the daughter-space
eigenvectors that do not carry dipole strength. The dis-
tribution of this strength can now be examined by using
the Lane zos algorithm, as we describe below. The
decomposition of the dipole strength is based on the de-
velopment of a truncated basis set, call the Lanczos set,
which begins with an arbitrary "start" vector designated
as

~
1 &. In our case

~
1 & is the normalized version of

CE1;p & meaning

1& = ~cel;p &/(CE1;p~CE1;p &' (3)

We now formulate the second Lanczos basis vector by

2& =(H —H„)il & a@, , (4a)

(4b)

IC2=[(H ) (H ) ]' =H— (4c)

It is easy to see that
~

1 & and ~2 & are orthonormal. We
proceed forming

where Eq. (2b) uses the definition (lb) and Eq. (2c), which
follows from the completeness theorem. Equation (2c)
shows that the total (El) strength is indeed contained in
the collective vector, ~Cel;p &. We now write down the
expansion of the collective vector in terms of the
daughter-space eigenvectors,

find the eigenstates of H to have the exact first 2i,„mo-
ments of what is frequently called the strength function
for any particular state vector. It is the physics that dic-
tates the character of this state vector, and in our case it
is that state vector which contains the entire E1 strength
[see Eqs. (2)]. In practice the Lanczos algorithm is useful
for many-particle systems when the number of eigen-
states for each J can be very large. Diagonalization of
the tridiagonal Hamiltonian given by Eqs. (6a) and (6b)
leads to a set of fictitious eigenstates that nevertheless
conserve the moments given by Eq. (7). It should be not-
ed that the generation of the Lanczos vectors given by
Eq. (6b) terminates at N, where N is the dimensionality of
the space spanned by the state vectors. In that case the
diagonalization of the N dimensional tridiagona1 matrix
leads to the exact eigenstates of the Hamiltonian. Thus
the Lanczos algorithm has the attractive feature that the
exact eigenstates can be approximated to any degree in
terms of moment conservation given by Eq. (7). For the
computation of spectral lines this algorithm is applied for
the initial and final states of the many-electron system,
where the initial and final states are distinguished by pro-
moting an electron from a one-particle level into another
in such a way that the parity changes. As stated before,
for the initial or parent states we carry the Lanczos algo-
rithm to its full limit, thus the parent states are eigen-
states of H.

To summarize the above, the Lanczos algorithm in the
upper limit of iterations is equivalent with the method of
DTA, in that its lower degree of iterations becomes
equivalent with the method of UTA when supplied with
the width

13 &
= [(H —H22)12 &

—H)2 I
I & ]/&3,

+3 I (H )22 (H22 ) (H12 ) ] 23

and in general,

(5b) D, I= [(i )H li &
—&i I Hli &'

+(f~H ~f& —(fH~f& ]'

(CEl;p~H"~CE1;p & =QAk(qk ~(E1)~p &

k

=gZ,"&d,. l(EI)lp &', (7)

where the summation is over the first i,„"quasieigen-
vectors"

~ qk & and quasieigenvalues A, k obtained by the di-
agonalization of the i,„dimensional tridiagonal Lanczos
matrix. It is to be emphasized that to get the same quan-
tity using the true eigenvectors ~dj & [see Eq. (2d)] one
would have to sum over the entire (daughter) microscopic
eigenspace. Equation (7) states the powerful character of
the Lanczos algorithm. Using it makes it unnecessary to

i +1&=[(H H;;)~i & H;—, ; ~i
—1—&]/K;, , (6a)

K;+,=[(H );,
—(H, , )

—(H, ),-) ]'~ =H;;+, . (6b)

In general, if the first vector
~
1 & is an eigenstate of any

operator which commutes with the Hamiltonian H (like
J), then all the other vectors will be eigenstates of that
operator, but of course, not eigenstates of H. However,
as shown in the Appendix, the nth Hamiltonian moment
of the collective vector ~CE1;p & satisfies the equation, for
n (2i,„—1,

where ~i & and
~f & stand for the quasieigenvectors in the

initial and final state, respectively. The beneficial feature
of Eq. (8) is that it is the proper UTA width correspond-
ing to the quasieigenvectors

~f &. If the eigenvectors are
true eigenstates of the Hamiltonian H, then the widths
are zero.

Next, we concentrate on the Hamiltonian. Our algo-
rithm rests upon the utilization of the average-atom (AA)
wave functions to generate the Lanczos state vectors and
the matrix elements of our model Hamiltonian. The AA
model, which is the starting point of our computational
procedure, is described by Rozsnyai [12], and also briefly
in Ref. 1. Here it suffices to state that the AA model as-
sumes that the electronic levels are populated according
to the Fermi statistics and that the AA problem can be
stated by a set of self-consistent equations which are rem-
iniscent of that of an isolated atom in the ground state.
Having obtained the self-consistent solution of the AA
problem we proceed by separating the electronic levels
into core and valence states. Core states correspond to
closed shells, and valence states to partially occupied or
empty shells. We write the Hamiltonian in the second
quantization formalism as
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H =gaka~&kITll &

k, l

+ —, X aaa a„kI
~

aml,
k, l, m, n 1 2r —r (9)

tential due to the core electrons, and is given by

e
V, (r)= fp,(r'), d3r'+V„, (p, (r)),

where the summation indices cover only the valence
states. In Eq. (9), T stands for the one-particle operator
given by

h Z h 1 dV~~()T= — V ——+ V, (r)+ (l.s),
2m r ' 4~2q2 r dr

where Z is the charge of the nucleus and V, (r) is the po-

where p, (r) is the density of the core electrons. The last
term in Eq. (11) stands for the exchange-correlation part,
approximated by a local potential which is a unique func-
tional of the electron density. In our model for V„, we
adopt the formula of Hedin and Lundqvist [13]. Since we
use a representation in which the Lanczos vectors are
eigenstates of the J and J, operators, it is useful to give
the matrix elements of the Coulomb interaction in Eq. (9)
in a representation where the two-electron wave func-
tions are eigenstates of the same operators. Thus we use

1
& [J~ nilijin212j2} I

I

I [n31j33n41.J4,J~}&

r, —r2

k ~ . ~ . ~ . k= g [fkR (n, 1&j&,n2lzj'2, n313j 3 , n414j '4) —g&R (n &1,j&,n212j 2', n~l4j4,'n313j 3)],
k=0

where the R Slater integrals are given in terms of the radial wave functions R„IJ(r) by

pk
k OO QO ( 2 2R (n(l)j, ;n212j2 ,n313j3', n414jq)= k+) R„(1 (r()R„( 1 (r2)R„( 1 (r))R„ I J (rq)r, rqdr)dr2

(12)

(13)

and the fI, and gk quantities are given by

fk —( —
)
' '

(2 iJill IIT 3J3 ~ 2Jzll II2 4J4

J& J2
X', .

j4 j3 k

c ll-, l,J, )(-,'12»llc II-,'13J3

(14a)

J& J2
X '

~

J3 J4
(14b)

In Eq. (12) the brace stands for a completely antisym-
metrized two-electron wave function which is an eigen-
function of the J and J, operators. For the case of two
equivalent electrons, only the first term appears in Eq.
(12).

Using the Hamiltonian as defined by Eqs. (9)—(14) we
create concrete physical electronic states in the following
manner. First, we truncate the AA occupational num-
bers to their nearest integer values creating the most
probable atom. In contrast to the AA, the most probable
atom is not fictitious but a physically permissible speci-
men. Next we create different electronic configurations
from the most probable atom by promoting and demoting
electrons in the valence levels. We also create different
charge states by increasing or decreasing the number of
valence electrons and repeating the same procedure. In
this manner we create a set of parent configurations that
define the set of ions before photoabsorption. For each

QP(J, a)=1 .
J,a

(16)

Using the procedure described above we generate all
the parent states with appreciable probability. We gen-
erate the daughter states from the parent states by apply-
ing Eq. (lb) and by using the El operator in its second
quantization form

(El)=egakag& k lrll &,
k, 1

(17)

where the summation index k goes over a truncated num-
ber of unoccupied valence orbitals and the index l goes
over the set of occupied valence orbitals. The above re-
striction with regard to the indices assures that (El)lp &

will be completely in the truncated daughter space. For

parent configuration we apply the Lanczos algorithm to
its extreme limit thus creating the set of parent electronic
states. We assume that the plasma is in local thermo-
dynamic equilibrium (LTE), thus the probability of the
states is given by the Boltzmann distribution

p(J, a)=EG(J) exp[ —[E'(J,a) N, (a)p]IkT—}, (15)

where E(J,a) and N„are the many-electron energy and
the number of valence electrons in a configuration a, re-
spectively, p is the Fermi level for the electrons in the
plasma, and kT is the temperature. In Eq. (15), G(J) is
the statistical weight 2J+1, and the constant K is deter-
mined by the normalization condition
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TABLE I. Parent configurations, number of bound electrons,
and probabilities for bromine at k T =270 eV and 2.6 X 10
g/cm' Nb stands for the number of bound electrons and the
numbers in square brackets are exponents of ten.

Configuration Nb

Number of
J states Qp(J, a)

each (El) ~p ) we apply the Lanczos algorithm either to its
extreme limit, this generating all the daughter eigen-
states, or by performing only a few Lanczos iterations,
thus generating a lesser number but moment conserving
quasieigenstates in the daughter space. A detailed
description of the Lanczos algorithm together with the
description of the computer code cRUNcHER was report-
ed by Resler and Grimes [14], and the reader is referred
to this reference for further details. We calculate the os-
cillator strengths connecting the parent and daughter
states and for the computation of photoabsorption we
have to supply the oscillator strengths with reasonable
line-shape profiles. Also, in a real plasma the bound-
bound cross sections are superimposed on the bound-free,

free-free, and scattering cross sections. The computation
of spectrum profiles and continuous absorption is de-
scribed by Rozsnyai [15—18], and the reader is referred to
the quoted references. In the next section we illustrate
our algorithm by presenting some calculations for a bro-
mine plasma.

III. NUMERICAL CALCULATIONS

We apply the method described in Sec. II to a bromine
plasma when partially filled L shells occur. We study two
cases: (A) kT =270 eV and 2.6X10 glcm density,
and (B) kT =500 eV and 3.12 glcm, which corresponds
to the metallic density. Under the plasma conditions cor-
responding to case A experimental emission data were re-
ported by Bailey er al. [19]. Intermediate-coupling calcu-
lations for case A were reported in Ref. 1, however, in the
present report we account for about twice as many parent
configurations as in Ref. 1. In Tables I and II we give

TABLE II. Same as Table I at kT=500 eV and at 3.12
g/cm .

[Ne]3s3p
[Ne]( 3p)'
[Ne]3s
[Ne]3p
[He](2s) (2p)'(3s)
[Ne]
[He](2s) (2p)'3s
[He]2s (2p) 3s
[F]
[He]2s (2p)
[He](2s) (2p) 3s
[He]2s (2p)'3s
[0]
[He]2s (2p)'
[He](2p)'
[He](2s) (2p)'3s
[He](2p) ~3s

[N]
[He]2s (2p)
[He](2p)'
[C]
[He]2s (2p)
[He](2p)
[B]
[He]2s (2p)'
[He](2p)'
[He](2s) 3s
[He](2s) 3p
[He](2p)'3s
[Be]
[He]2s 2p
[He](2p)'
[He]2s 3p
[He]2p 3s
[Li]
[He]2p

12
12
11
11
11
10
10
10
9
9
9
9
8

8
8
8

7
7
7
6
6
6
5
5

5
5
5

5

4
4
4
4
3
3

4
5

1

2
2
1

4
2
2
1

8
6
5
4
1

10
4
5
8
2
5

10
5
2
8
5

1

2
8
1

4
5

4
4
1

2

1.906[—4]
1.943[ —4]
4.842[ —3]
1.214[—2]
4.921 [ —5 ]
2.570[ —1]
9.842[ —3]
1.477[ —3]
4.024[ —1]
6.126[ —2]
4.230[ —3]
6.914[—5]
1.492[ —1]
5.986[—2]
2.244[ —3 ]
6.888[ —4]
5.464[ —5]
1.676[ —2]
1.385[ —2]
1.368[—3]
6.015[—4]
9.704[ —4]
1.974[ —4]
2.516[—2]
9.170[—2]
4.088[ —2]
3.058[ —5]
8.214[ —5]
2.539[—4]
1.564[ —3 ]
1.476[ —2]
1.330[—2]
4.108[—5]
3.465[ —5]
6.307[—4]
1.471[—3]

Configuration

[Ne] 3s 3p
[Ne](3p)'
[Na]
[Ne]3p
[Ne]
[He](2s)'(2p)'3s
[He]2s (2p) 3s
[He](2s)'(2p) (3s)'
I:F]
[He]2s (2p)'
[He](2s) (2p)"3s

[He](2p)'3s
[He](2s)'(2p)'(3s)'

[He]2s (2p)'
[He](2p)
[He] ( 2s )'(2p) '3s
[He](2p)'3s
[N]
[He]2s (2p)4
[He](2p)'
[He](2s)'(2p)'3s
[He](2p) 3s
[C]
[He]2s (2p)'
[He](2p)4
[He](2s)'2p 3s
[He](2p)'3s
[B]
[He]2s (2p)'
[He](2p)'
[He](2p) 3s
[He]2s2p
[He](2p)

Nb

12
12
11
11
10
10
10
10
9
9
9

9
9
8

8

8
8
8

7
7
7
7
7
6
6
6
6
6
5

5
5
5
4
4

Number of
J states

4
5

1

2
1

4
2
5

2
1

8

1

5

5

4
1

10
5

5

8
2
8
8
5

10
5
4

10
2
8
5
8
4
5

QP(J, a)

2.446[ —4]
2.723 [ —4]
1.273[ —3]
3.445[ —3]
1.622[ —2]
9.024[ —3 ]
1.950[—3 ]
4.561[—4]
9.985[ —2]
2.172[—2]
1.956[—2]
5.717[—4]
4.454[ —4]
1.979[—1]
1.032[—1]
5.570[ —3 ]
1.659 [

—2]
2.414[—3]
1.384[ —1]
1.499[—1]
2.043 [—2]
5.805 [ —3 ]
3.118[—3]
4.206[ —2]
8.523 [ —2]
2.291[—2]
7.951[—4]
1.575[ —3]
5.002[ —3]
2.000[ —2]
1.005 [ —2]
3.285[ —4]
1.836[—3]
1.820[ —3]
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the electronic configurations and probabilities of all the
parent configurations that were considered for the expli-
cit treatment of the Lanczos algorithm. Daughter
configurations were generated from each parent
configuration by considering all the possible n ~n' tran-
sitions where the principle quantum numbers n and n'
are 2, 3, and 4. We assume that under the plasma condi-
tions we are considering the above lines are the strongest.
The rest of the spectral lines we treated as one-electron
transitions between AA states. It is important to keep in
mind that the electronic configurations given in Tables I
and II are not those of isolated ions, but ions in the plas-
ma with the free electrons around them perturbing the
isolated ion states. In addition to the free electrons, we
also keep the AA populations of the sparsely populated
upper Rydberg states, which produces additional pertur-
bation on the electronic states of the valence
configurations. In order to obtain meaningful photoab-
sorption cross sections the free-free (inverse bremsstrah-
lung), bound-free (photoionization), and Compton
scattering cross sections were also calculated. The free-
free and scattering processes were calculated in the AA
approximation, whereas the bound-free processes were
calculated explicitly for each parent configuration.

Figures 1 —3 summarize the calculated photoabsorp-
tion for case A. In Fig. 1, we show when the Lanczos
iterations were carried out to the maximum both for the
parent and daughter configurations. This corresponds to
a full DTA calculation, and using the parent
configurations given in Table I, the number 2—+3 and
2~4 transitions was 12999. Figures 2 and 3 show the
results for the daughter configurations when the Lanczos

1 2
Rosse1and mean (1.260xl0 cm /g

10

3
10

2
10

1

10

1 0 I I I I I I I I I
)

I I I I I I I I I
/

I I I I I I I I I
(

f I I I I 1 I I I
j

I I I I I I I I I
(

I I I I I

g
I I r

0. 5 1.0 1.5 2. 0 2. Sx10

Photon Energy (eU)

FICx. 2. Same as Fig. 1 with only five Lanczos iterations for
the daughter states, yielding 1661 2~3 and 2~4 lines. The
lines have only the physical (Doppler, Stark, and electron im-
pact) broadening without the UTA widths.

algorithm was stopped after 5 iterations yielding only
1661 2~3 and 2~4 transitions. The only difference be-
tween Figs. 2 and 3 is the absence or presence of the
UTA widths in the individual line shapes, as given by Eq.
(8), respectively, and, as shown, the difFerence is consider-

5
10

10

1

Rosseland mean = 5. 157x10 cm ig

1 2
Rosseland mean = 6. 128x10 c()) /g

3
10 10

CL)

10
3

10

1

10 10

0
1 0 i I I I l I I I I

)
I 1 r I I I I I I

)
I I I I I I I I I

(
I I I I I I I I I

)
I I I I I I I I I

)

I I I I I ) l f 1

0. 5 1.0 1.5 2. 0 .".5xlo

1

10

Photon Energy (eU)

0
1 0 I I I I I I I i I

)
I I I I I I I \ I

(
I I I I I I I I I

(
t I I I I I I I I

)
I I I I I l I I I

(
I I I I I ) I I I

05 10 15 20 25x10

FIG. 1. Computed photoabsorption cross section of bromine
at 2.6X10 g/cm density and at kT=270 eV. the 2~3 and
2~4 transitions were computed in a full DTA treatment, yield-
ing 12999 lines. The other lines were calculated in the AA ap-
proximation.

Photon Energy (eUj

FIG. 3. Same as Fig. 2 with the UTA broadening given by Eq.
(8) included in the individual line widths.
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able. Above each photoabsorption plot we also give the
Rosseland mean opacity, which is important for
radiation-transport calculations. At this point we digress
briefly and make a few remarks about the line-shape
functions.

We assume that the Doppler and UTA broadenings,
when applied, yield Gaussian line shapes with the squares
of the widths adding up to an effective Gaussian width.
In addition, we convolute the Gaussian shapes with the
Lorentzian shapes due to the electron impact and by the
Stark profiles due to the positively charged ions. The
computation of the Doppler width is trivial, and we use
the UTA widths as given by Eq. (8), which is part of the
Lanczos algorithm. The electron impact and Stark
profiles are calculated for the AA levels as described in
Ref. [16],and we use the same Stark and electron-impact
profiles for each nl ~n'l' transition. Consequently, our
line profiles are not exact for a specified J~J' transition;
however, we feel that they are adequate for the analysis
presented in this paper.

To compare our calculations with experimental mea-

surements, we calculated the emission spectrum from the
plasma by using a simple solution of the radiative-
transfer equation given by

I(v) =B (v) I 1 —exp[ o—(v)pl. ]j, (18)

where I(v) is the intensity of the emerging radiation,
B(v) is the Planck function, rr(v) the frequency-
dependent photoabsorption cross section, p is the matter
density, and I. is the average distance inside of the plas-
ma through which the photons must pass before emerg-
ing and reaching the detector. Figure 4 summarizes our
calculations for the emission. Figure 4(a) shows the ex-
perimentally measured emission spectrum published in
Ref. [19]. The analysis of lines is also given in Ref.
[19]—here it is sufficient to state that the lines are from
neonlike to carbonlike configurations and that the free
electron density was estimated to be about 5 X 10 ' cm
Our LTE model at kT =270 eV and at 2 6X 10
g/cm density mimics the experimental conditions fair-
ly well. Figures 4(b) —4(d) show the calculated emission
as predicted by Eq. (18) with o (v) corresponding to Figs.

6

5-
(a)

29
10

(bj
-3

Thickness - 2. 5xlp cm

2. 0

Lw
co 3

ei

1.0

0

].6 ].8 '7 0 2. 2 2. '] x]0

I I ~ I

3
1.5 2.0 2. Sx10

Photon Ener gy (eV)

Photon Energy (eV)

3.0-

29—
10

-3
Thickness . .2. 5x]0 cm

3.0-

(n 29—
10

A

2.0

Cla
CO

-3
Thi ckness 2. Sx 10 cm

1.0-

Clo

w ].0
E3
4&

H
O

0 ii . . i, ii ii] )& tL i] ..u)I I~~I(~J
].5 3

2. 5x]0 1.5 2. 0

I $ I I I

3
2. 5x10

Photon Energy (eV) Photon Energy (eV)

FIG. 4. Measured, computed, and emitted from a bromine plasma. The experimental measurement of frame (a) was reported in

Ref. [19],the predicted emission spectra of frames (b), (c), and (d) were calculated by using Eq. (18) and the theoretical cross sections
of Figs. 1, 2, and 3, respectively. For L, the value 2. 5 X 10 cm was taken corresponding to the experimental conditions.
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FIG. 5. Same as Fig. 1 at 3.12 g/cm density and at kT =500
eV. Again, as in Fig. 1 the 2~3 and 2~4 transitions were
computed in the full DTA limit yielding 20666 lines.

FICx. 7. Same as Fig. 6 with the UTA widths included in the
individual line widths.
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FIG. 6. Same as Fig. 5, but with only five Lanczos iterations
for the daughter space yielding 2801 2~3 and 2~4 lines, and
without the inclusion of the UTA widths.

1, 2, and 3, respectively. For I. we took 2.5X10 cm
corresponding to the experimental conditions.

Figures 1 —3 illustrate the differences in the predictions
of a precise DTA, corresponding to Fig. 1, and between
representing the spectral arrays with a smaller number of
lines without or with UTA broadening. Although visual-

ly there is not much difference between Figs. 1 and 2, the
difference in the predicted Rosseland mean opacities is

more than 20%. The effect of broadening the lines with
the UTA widths is obvious in Fig. 3. With regard to
spectroscopic agreement between theory and experiment,
it seems that in the low-density plasmas corresponding to
our case study A, the application of the UTA widths pre-
dicts too smooth spectral features compared with the ex-
periment, as is evident in Fig. 4.

The purpose of our case study B was to investigate
whether or not in a high-density plasma the increased
physical line widths render the UTA method more appl-
icable. We increased the bromine density to that of me-
tallic bromine and at the same time we increased the tem-
perature to 500 eV so that the Boltzmann distribution of
the absorbing specimen is more or less the same as in case
A. Figures 5 —7 summarize the calculations for this
second case study. Figure 5 shows the photoabsorption
cross section at metallic density, 3.12 g/cm and at
kT =500 eV in the full DTA limit of the Lanczos algo-
rithm. The number of computed 2~3 and 2~4 spectral
lines was 20666. Figures 6 and 7 show the calculations
for the same condition but with only five Lanczos itera-
tions for the daughter states. In that case, the number of
predicted 2~3 and 2~4 lines was only 2801. Again, the
difference between Figs. 6 and 7 is the absence or pres-
ence of the UTA widths as given by Eq. (8). There is very
little visible difference between Figs. 5 and 6 despite the
large difference in the number of J—+J' lines, which were
treated explicitly. This is due to the fact that the strong
lines show up after a few Lanczos iterations, and the in-
creased pressure broadening has the tendency to smear
out the effect of the weak lines. The inclusion of the
UTA widths stiH has a visible smoothing effect, as is evi-
dent from Fig. 7, but the effect is not as dramatic as is the
low-density case. It should be noted that for case study 8
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the cross section of Fig. 5 should be regarded as the most
precise, and the inclusion of the UTA widths for the
lesser number of quasilines, as given in Fig. 7 appears to
smear out some structures in the photoabsorption curve.

IV. DISCUSSION

We have demonstrated that the Lanczos algorithm
provides a Aexible and continuous way to study spectral
arrays in between the DCA and DTA limits. This Aexi-
bility in accounting in the case of a large number of lines
in a spectral array is the most powerful and attractive
feature of the Lanczos algorithm. It is generally believed
that in the absence of a full DTA treatment the spectral
arrays have to be broadened by the proper UTA widths.
In the two examples shown in this report we have shown
that the inclusion of the UTA widths has the tendency to
smear out too much structure, which in turn a6'ects the
spectroscopic fidelity and Rosseland mean opacity as
well. Naturally, the accuracy of the analysis rests upon
the accuracy of the physical line shapes, which we believe
to be reliable in our calculations.
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APPENDIX: THE MOMENT CONSERVATION
THEOREM

In the following we demonstrate that the Lanczos ap-
proximation to the full Hamiltonian exactly conserves
the Hamiltonian moments of the full eigenspace up to the
2Nth moment, where N is the number of iterations pur-
sued in the application of the Lanczos algorithm (see Sec.
II). We use the symbol M„(X) for the nth Hamiltonian
moment for a given state vector lX), not necessarily an

eigen vector,

m„=(xla" lx) .

It then follows that M„ is given by the following n-
multiple sum over all the N, eigenvectors I le, ) I of H,
where N, is the dimensionality of the eigenspace,

(A2)
l)J). . . , k

where the summation goes over the internal indices
i,j, . . . , k. Now let us identify lX) as ll, ), the first Lanc-
zos vector, which is, after all, a matter of choice. Fur-
ther, let us assume we pursue the Lanczos algorithm to
the largest number of iterations possible, which is, of
course, N, . In that case the set of Lanczos basis vectors
I ilk ) I constitutes a complete basis for the same space
spanned by the eigenbasis I le ) ]. Therefore we can reex-
press M„ in an expansion in the Lanczos basis as follows:

(A3)
l)J, . . . ) k

Now because of the tridiagonality of H in the Lanczos
basis the sequence in Eq. (A3) I l l, ), l 12 ), . . . , l1~ ) I is
complete for n &2N —1 so that the multiple sum of Eq.
(A2) terminates at the ( 2n —I )th index. [For example,
there are only four terms contributing to Eq. (A2) for
n = 3 and the highest value of l is 2.] Thus an expansion
to the Nth iteration via the Lanczos algorithm is
equivalent to an expansion of the so-called strength func-
tion of a particular state vector up to the 2Nth Hamil-
tonian moment, if we include the zero-order moment
(XlX) as the first. This first moment was identified with
the total strength in Sec. II.

As we have seen it is not necessary to diagonalize the
Lanczos Hamiltonian to get the Lanczos quasieigenvec-
tors (as we call them)

l q ) and their associated
quasieigenvalues A, , in order to evaluate the moment M".
However, if this is done the expression for M„simplifies
since all off'-diagonal contributions to Eq. (A2) in the
quasieigenvector representation disappear. This explains
the simpler form of Eq. (7) in the text.
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