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Modification of spontaneous emission rate in planar dielectric microcavity structures
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The spontaneous emission rate and radiation pattern for a thin quantum well sheet enclosed by a
one-dimensional dielectric microcavity have been calculated. By placing the sheet in the node (an-
tinode) position of the cavity standing wave, the spontaneous emission in the direction normal to
the sheet will be decreased (enhanced). In the former case the theory predicts that the spontaneous
lifetime can be increased more than a factor of 10. In the latter case both theory and experiments
confirm that such a simple structure can couple a substantial amount (30—90%) of the spontaneous
emission into the cavity resonant mode. In both cases, however, theory predicts that the spontane-
ous emission lifetime will increase for structures without guided modes.

I. INTRODUCTION

In 1946 Purcell' predicted that the spontaneous emis-
sion (SE) rate, and thus the relaxation lifetime of an excit-
ed atom, would be altered if the atom was put in a cavity
with dimensions comparable to the transition wave-
length. The reason for the modified SE rate is that spon-
taneous emission can be viewed as stimulated emission,
stimulated by vacuum-field fluctuations. This view is the
basis for this paper. The rate of spontaneous emission y,
is given by Fermi's golden rule:

VSp
1

(l)
7$p

where ~,„is the spontaneous lifetime of the atom, d is the
material dipole operator, E is the electric-field creation
operator at the location of the atom, and p(co) is the den-
sity of optical modes per unit energy at the angular fre-
quency co. It is clear from Eq. (l) that the lifetime can be
altered either by modifying the mode density, or by modi-
fying the electric field at the location of the atom. In a
microcavity both the mode density and the vacuum-field
intensity will be diA'erent from those in free space or in a
bulk sample. Since Purcell's early prediction, it has been
shown experimentally, both in the microwave region, '

and the optical region, that the modification of the
mode density and electric-field strength in a microcavity
does indeed change the properties of the atom decay. In
recent years several groups have started to investigate
how to fabricate microcavities in solid-state materials, us-
ing electron-hole pairs rather than excited atoms as a SE
source. However, it has been an open question whether
the cavity has to confine the waves in all three dimen-
sions, or if a much simpler, planar structure can suf5ce.
In this paper we show that a planar solid-state cavity
structure, with cavity confinement in only one direction,
will modify the SE decay of a thin sheet of electric di-
poles noticeably.

II. SPONTANEOUS EMISSION
IN A UNIFORM DIELECTRIC MEDIUM

where the free-atom Hamiltonian is

H„=A'co, Ie)&eI,

and the free-field Hamiltonian is

Hp
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The atom-field interaction Hamiltonian is

(4)
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Here fk(r) is the spatial-mode function with a wave vec-
tor k that obeys the eigenmode equations

E(r)cok
fk(r) VX V X f„(r)=0-,

Co

where co is the speed of light in vacuum and e is the

Let us consider a two-level atom that has the transition
frequency coo and is located at r = ro. We assume that the
atom is initially in the excited state

I
e ) while the field is

in the vacuum state. The atom undergoes spontaneous
decay to the ground state g ) by means of an electric di-
pole transition with the dipole moment d =q & e IrIg ).
We also assume that the interaction of the atom with the
photon field is not too strong, so that the Weisskopf-
Wigner theory of spontaneous emission' holds. Even
when the atom is coupled with the microcavity internal
field mode, the internal field dissipation is much stronger
than the coherent coupling (vacuum-field Rabi fiopping)
between the field and the atom. Therefore, the spontane-
ous decay process proceeds exponentially.

The Hamiltonian of such a system is given by

H =H~ +HF+H~-F ~
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dielectric constant of the medium. The operator le ) (g l

and its conjugate lg ) (e l
are the projection operators that

represent the up and down electric dipole transitions.
The time-dependent solution of the Schrodinger equa-

tion for our system,

can be written therefore in the form

le(t) &
= A(t)l 1, IOJ &++B„(t)l0,1„&,

where A (t) and Bk(t) describe the probability amplitudes
for the survival of an initial state and for emission of a
single photon into the mode k. The amplitudes A (t) and
8&(t) obey the famous coupled differential equations and
can be formulated by using the Laplace transform tech-
nique within the framework of the Weisskopf-Wigner ap-
proximation. ' The solution for 3 (t) is

Here the spontaneous decay rate y, is

Note that modification of y, stems from the altered den-
sity of states, the altered global electric-field intensity,
and from the local-electric-field intensity modification.
In this paper we have concentrated on the former two
effects.

For a sheet of dipole moments oriented such that
dx dy d /2 and dz 0~ the probability of emitting a
photon in S polarization is isotropic but that of emitting
a photon in P polarization is proportional to cos 0, where
0 is the emission angle measured from the z axis.

If the atom is located within a dielectric microcavity,
the local electric field is no more related to a simple plane
wave but rather it is modulated by multiple reAection
effects. By assuming the plane wave, f& (r ) = [ek„/
(eV)'~ ]e'"", incident from a semi-infinite uniform dielec-
tric medium outside of the microcavity, we can calculate
the local electric field by a transfer-matrix method that
will be discussed next. The goal of the analysis in the fol-
lowing section is to study how the spontaneous lifetime

r, =1/y, and the radiation pattern are modified by the
planar structured microcavity.

III. THEORETICAL MODEL

y,p=7rg ld fk(ro)l 5(cok —coo),
k

while the radiative frequency shift Acu, is

Id fk(ro)l
bco, = —g P

2A' ( cok
—

coo )

(10)

P stands for the principal value.
If the atom is located within a uniform medium of rela-

tive dielectric constant e, the local electric field the atom
is subjected to is different from the macroscopic electric
field. " By starting with the plane-wave solution,
fk(r)=[ek „/( Ve)' ]e'"", far away from the atom, and
using a similar technique as when deriving the Clausius-
Mossotti-Lorentz-Lorenz equation, we find that the mode
function at the location of the atom is given by"'

X/2 cavity k cavity

The structure is shown in Fig. 1. The cavity, which
has an optical length of either one wavelength (k cavity)
or one-half wavelength (A. /2 cavity), is sandwiched be-
tween two dielectric mirrors. At the center of the cavity
there is a thin planar quantum well. An excitonic transi-
tion in the quantum well (QW) is used as a SE source.
The whole structure, including the mirrors, is surrounded
by some bulk material extending in the normal direction
to the interfaces for many, many wavelengths. In order
to estimate the spontaneous emission rate we must calcu-
late the electric field and the mode density at the location

ekp 3efk(ro)=
V )

I /2 2e
(12) Bragg mirror

where ek„ is a unit vector representing a polarization
direction and V is the normalization volume. The last
factor in (12) will henceforth be referred to as the local-
field correction factor.

The mode summation in (10) is evaluated by noting
that the mode density at frequency cok within the dielec-
tric is p(k)=(e ~

coi, /vr co)V. The total decay rate is
thus obtained as

5/2

(2e+1)

Cavity
sL

Bragg mirror

A l

gw&

where y,'„"'=eood /3~%co is the spontaneous decay rate
in free space. The probability of emitting a photon with
the momentum k and polarization p is given by

A.

(2e+ 1) A'c 4'y, (k,p, coo)=

FIG. 1. A cross section of the planar microcavity structure.
The cavity length is l„n, is the refractive index of the cavity,
and n; and I; (i = 1,2) are the refractive index and the thickness
of the respective layers. The refractive indices of the left- and
right-hand-side bulk materials are n& and n„.
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of the QW sheet. The planar cavity has been assumed to
have infinite lateral dimensions. This is a reasonable
model for the samples used in the experiments whose la-
teral dimensions were a few millimeters, which should be
compared to the cavity length (a few hundred nanome-
ters) and the wavelength (800 nm). The surrounding bulk
material has been assumed to be infinitely thick. The
conventional way of obtaining the mode density and the
electric field in the microcavity is to surround it with a
larger perfect cavity and solve the problem in the eigen-
modes of the larger cavity. As the dimensions of the
larger cavity tend to infinity the model will approach that
of a microcavity surrounded by infinitely thick bulk ma-
terial. However, the geometry of our microcavity does
not lend itself easily to such an approach. We have opted
for a different way to solve the problem. Our starting
point has been to expand the incident vacuum-field
modes in a plane-wave basis. This is, indeed, possible
since plane waves constitute a complete orthogonal set.
The vector potential and the electric field are described
by a linear superposition of plane waves in the form'

2
' 1/2

A(r, t)=g g eke(~t p~ d ~kg
2&ok e V

(15)
' 1/2

E(r, t)=i+ g
k p ——

&

ek„(aq„e' "—d k„e
' ") . (16)

For every wave we then calculate the enhancement or de-
crease of the electric field at the location of the QW sheet
due to the cavity-mirror interference. We also take into
account possible refraction of the wave. Thus, for every
direction we can determine whether the cavity enhances
or decreases the spontaneous emission into that mode.
Summing the emission into the plane waves over all
directions (i.e., k vectors), we can determine if the total
emission is smaller or greater than, say, if the QW sheet
were placed inside some specified bulk material.

In the calculation we can treat the vacuum-field opera-
tors Qk„and & k„classically, because the local field is ex-
pressed as a linear combination of those operators. When
there is no product term of operators involved, the com-
mutation relation [ak„,a k „.]=5kk 5» does not acct the
result and the difference between quantum and classical
analysis disappears. Of course, we need to evaluate the
zero-point Auctuation intensity quantum mechanically
for each incident plane wave. Expansion of the vacuum
fields in coherent plane waves, and calculation of the lo-
cal mean-square amplitude of the electric field is the very
basis of our calculations.

To start our analysis we assume that in one of the two
semi-infinite media surrounding the cavity mirrors both
the mode density and the mean-square value of the
vacuum-field fluctuations incident on the cavity are well
defined and isotropic. Since the mode density is assumed
to be isotropic in the medium, the plane waves must be
isotropically distributed in k space. Since we do not
quantize the modes, we cannot label them with a momen-
tum quantization number. Instead, we identify each
plane-wave mode by its angular frequency co, its in-

cidence angle 0, and its azimuthal angle y. Thus, the
number of modes per solid angle and unit energy in the
medium p(n, co) will not depend on the angle of incidence
or azimuth, but only on the angular frequency, and possi-
bly on the refractive index n =e' . However, in our cal-
culation we have neglected the frequency dependence of
p. This is a good approximation within the narrow fre-
quency interval we are interested in. The incident waves
from the medium are also all assumed to have a well-

defined, angular independent electric-field mean-square
value ( ~E(n)

~
). We then go about to establish the rela-

tions between the mode densities and the mean-square
values of the E fields incident from the two semi-infinite
media. It will turn out that, in general, both the mean-
square value of the E field and the mode density in the
other medium will depend on 0. However, the product of
the two will be independent of the incidence angle, as it
should be in any isotropic medium. Finally, we use a
transfer-matrix formalism to establish the relation be-
tween the E field at the QW position and the incident
vacuum fields. This is done numerically, for every in-
cidence angle, because a closed-form solution of this rela-
tion is very complicated in the general case. The price we

pay for not rigorously quantizing the modes will now be-
come apparent. We cannot quantitatively calculate the
total spontaneous emission, we can only predict the spon-
taneous emission pattern, and we can accurately compute
the ratio between the spontaneous lifetime in different
structures.

In both the left- and right-hand side bulk dielectric
there are left and right traveling waves (Fig. 2). We in-

dex, e.g., the right-traveling wave in the left-hand-side
bulk material rl, and thus 0& is the acute angle between
the z axis and the k vector of that wave (0 ~ 8 ~ m/2). In
general 0 changes as the plane wave propagates into a
new slab. The incidence angle in slab i, 0;, of a wave in-

cident from the left-hand-side bulk is given by Snell's law,

0; =arcsin
n(sin(8( )

nq

FIG. 2. Spherical coordinate system of the cavity structure.

where n, and n& are the complex refractive indices of slab
i and the left-hand bulk material respectively, and 0& is
the incidence angle of the wave in the left-hand-side bulk.
From this equation two things follow. First, due to
cavity-mirror reAection the ll mode traveling in the
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k,. =k(„=
con I

sin( 0z )cos( g )
co

(18)

k =ki =
&V V

conl
sin(8z )sin(y) .

cp

From the wave equation the z component of the k vector
can be derived as

mn; 1—
Cp

2 1/2
nzsin(8z )

(20)

In the general case the k vector will be complex, too.
If the cavity or mirror refractive index is higher than

both of the surrounding bulk refractive indices there is a
possibility of having a guided mode, a mode that is prop-
agating in the xy plane in the cavity (k is real) but is
evanescent in the bulk materials (k, is imaginary). Our
model cannot cope with such structures since it assumes
that all modes in the cavity couple to traveling waves in
the surrounding media. This is an important limitation
of the model and we ask the reader to note that although
our model still will predict correctly the spatial distribu-
tion of the SE radiation, the SE lifetime cannot be calcu-
lated for any structure that supports guided modes. For
our purposes this is not an important limitation, since a
structure that supports guided modes cannot couple all of
the emitted radiation into the direction normal to its sur-
face, as we would like it.

The density of modes in slab i can be derived as fol-
lows. Suppose that N modes per unit energy propagate
within the solid angle dQ& in the left-hand-side bulk ma-
terial, so that

N=p(nz)dQz=p(nz)sin(8z)dzpd8z . (21)

From (17) it follows that in slab i these modes will propa-
gate within a diIterent solid angle given by

(0z, y) direction will in general couple both to the rl mode
traveling in the (8z, qr+vr) direction and the lr mode trav-
eling in the

(arcsin[nzsin(0, )/n„], zp+ sr)

direction. We have assumed that there is no correlation
between the rl and lr modes. Second, since the propaga-
tion angle of a wave in any slab can be expressed in the
left (or right) -hand-side bulk incidence angle we will use
the incidence angle in the material with the highest re-
fractive index as our incidence angle coordinate, and let it
be a real number. Unless otherwise stated we will orient
the structure such that n&

+ n„, and thus 0I will be our in-
cidence angle coordinate and will be a real number. It is
clear from the equation that one must let 0; be complex
in order to be able to deal with complex refractive indices
or evanescent waves.

Continuity of the E field across a dielectric boundary
requires that the x and y components of the k vector of a
plane wave be equal in all layers:

nz cos(8z )
dQ; =sin(8;)dpd8; =sin(8z)dyd8z

n; cos(0;)

nz cos(8z )
=dQI

n; cos(8, )
(22)

Using (17) and the trigonometric identity sin (8)
+cos (0)—:1, (22) can of course be expressed in 0z only:

1/2
nz 1 —sin (8z)

dA, =dA)—
(n, lnz) —sin (0, )

(23)

Since the number of modes N within the two solid angles
dQ& and dQ; are equal it follows that

p(nz

)diaz

=p(n;, 8; )d0;,
so that

(24)

n; cos(8;)
p(n, , 0, )=p(n, ) ',

n,'cos( 8, )
(25)

where again 0; can be expressed in 8z by using (17). The
mode density is a function of the refractive index n,- and
the incidence angle 0;, which is reasonable for a planar
slab. Should index i denote the semi-infinite right-hand-
side bulk material, (25) would seem to contradict our as-
sumption that the right-hand-side bulk material is isotro-
pic. As will be shown next, our choice of mode-density
definition makes the mean-square expectation value of
the E field in the right-hand-side bulk material have the
inverse 0 dependence so that the product of the two is an-
gular independent.

Now we derive the relation between the mean-square
expectation values of the vacuum fields incident from the
left- and right-hand-side bulk materials. In general, a
propagating wave will experience loss while propagating
through a nonperfect dielectric. However, according to
the definition our waves cannot lose any energy since
they are in the vacuum state. What happens is that every
mode couples to other vacuum-field modes via scattering.
For an ideal linear lossy component the quantum-
mechanical scattering relation between incident and out-
going modes reads

E,„,=V'exp( aL )E;„+V'I ——exp( aL )E„„, (26)—

where a is the loss per unit length, I. is the length of the
component, and E„, is a vacuum-field-mode operator.
For classical waves, the second term in (26) is absent. If
the incident mode is in a vacuum state, the mean-square
expectation value of the outgoing mode electric field will

equal that of the incident mode due to the second term on
the right-hand side (rhs) of (26). The second term will
also ensure commutator bracket conservation. To in-
clude the scattering "loss" correctly in our theory we
look at a planar infinite boundary between two dielectrics
with refractive indices nI and n„, respectively. The z
component (normal to the interface) of the Poynting vec-
tor 8 at a reference plane just to the left of the dielectric
interface can be written
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S,= 1

2cop
Re( k&, )( I E„&

—
I E&& I ) +2Im( k&, )Im(E„&E&& ) (27)

n&cos(0& ) —n„cos(0„)Ea=
n&cos(0& ) +n„cos(0„)

for the S-polarized waves, and

Re}(IE„I' IE—„I'+~~E„E,*, )
1

2cop

x [k„*cos(0,)cos*(0, )

+k& cos(0&)sin*(0&}]} (28)

2n„cos(0„)+
n&cos(0& )+n„cos(0„)

(29)

(3O)

The wave incident from the right-hand-side bulk [(26)]
can be written

E,„=+exp( —j I k„ I
L )Eo++1 e—xp( —j I k„L )E„„,

for P-polarized waves, where Re and Im denote real and
imaginary parts, p is the permeability of the left-hand-
side dielectric, and the asterisk denotes the complex con-
jugate. The left-going wave E&& consists of two terms, a
reAected wave and a transmitted wave. Using the Fresnel
reAection formulas we obtain

where Ep is the vacuum field incident from the right-
hand-side bulk, a distance L along the propagation direc-
tion from the boundary. To derive the expression for
E„„,we assume that L is large enough to satisfy the rela-
tion exp( —Ilk„IL ) (( I so that the first term on the rhs
of (30) vanishes. Combining (27), (29), and (30) we obtain

S,= 1

PCp

nlnl cos(01 )cos 0&)Re[n„cos(0„)] n„n„*cos(0„)cos (0„)Re[n,cos 01)]

In, cos(0, )+n„cos(0„)I In, cos(0, )+n„cos(0„)I

(31)

for an S-polarized wave. Since the vacuum fields cannot
transport any energy along the direction normal to the
dielectric interface, the time average of S, must vanish
and thus

In&I Icos(0&)l Re[n„cos(0„)]

I n„ I cos(0„)I Re[n&cos(0& )]

Doing the same algebra for the P-polarized wave one ob-
tains

In&I Icos(0&)l Re[n„*cos(0„)]

In„I leo(0„)l Re[n&*cos(0&)]

The reason we obtain different results for S and P polar-
ization in the general case is that if either or both n& and

n„are complex, in general the waves can be planar only
in one of the media. In the other medium the waves will

be inhomogeneous and the S- and P-polarized beam sim-

ply no longer will be equal under rotational transforma-

tion. If both n& and n„reareal (no losses) the waves will

oe planar in both bulk materials and the result will be the
same for both polarizations and simplify to

n&lc so( &0)I Re[cos(0„)]
E„„ (34}

n„lc so( 0)
I Re[cos(0& }]

Now we are ready to check our results and to compare
our expressions with those in Sec. II. We look at the pla-
nar interface between two semi-infinite bulk materials.
Assume that the bulk materials have sufficiently small
losses for their refractive indices to be assumed real, but
that due to their infinite thicknesses, the first term on the
rhs of (30) can be ignored, and the vacuum field incident
towards the interface from the right-hand-side material
can be expressed in that of the left-hand-side material
through (34). The integrated mean-square electric field
over a small solid angle dQ& in the left-hand-side material
is IE&p&dQ&. Combining (25) and (34) the same quantity
in the right-hand-side bulk is given by

n&lc so( &0)l Re[cos(0„)] n„cos(0„)
pd&„= "

IE I

"
pdA„

n„c so( 0) cos(0&)
"

nt cos(0&)

n„lE„&l p~d0„/n& if n& sin(0&)/n„(1
0 if n& sin(0& )/n„~ 1. (35)

It is clear that this result makes our theory consistent, as
this product should be directionally independent for any
isotropic bulk material. From (35) we can see that this is
true as long as n„~ n& or 0& is smaller than the critical an-
gle. If 0& is greater than the critical angle, plane-wave

1

modes in the right-hand-side bulk coupling to the left-
hand-side bulk modes with incident angle 0; do not exist
(so the waves incident from the left undergo total
refiection at the boundary), and the result is zero. The
factorization in (35) in the mode density and mean-square
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field is somewhat arbitrary. These two factors always ap-
pear as a product in any bulk material; therefore, as
pointed out in Ref. 14, one is free to choose which of the
factors in (35) should be attributed to the mode density
and which should be attributed to the incident vacuum
fields. Comparing with the expressions in Sec. II one
finds in a material with dielectric constant a=n the cor-
responding product ~fk(r)~ p(k)=e' co&/m. co, which is
proportional to the refractive index of the material. This
is in agreement with (35) above.

To calculate the electric field in the QW we have used
numerical transfer-matrix multiplication. ' The x, y, and
time dependence of every mode are the same in every
slab, as manifested by (18) and (19). The z-dependent
part of the right- and left-hand-side traveling plane waves
to the left of, e.g. , a dielectric slab can be expressed in the
corresponding waves to the right of the slab (Fig. 3). The
simple transfer matrices for each slab are derived from
Maxwell's equations. ' ' Specifically, the matrix equation
for a homogeneous planar dielectric, with its normal in
the z direction, is

Reference
plane

I

nl

, Es

Dielectric
boundary

Reference
plane

I

I

s

Es
ll

Homogeneous
matrix

Boundary Homogeneous
matrix matrix

FIG. 3. Matrix representation of the structure. The right-
and left-traveling waves at the left reference plane in the struc-
ture are labeled E„I and EII, respectively. The total transfer ma-
trix between the two reference planes is the product of the three
matrices indicated in the 6gure.

E
Ell

exp( jk, b,z ) 0

exp( —jk, hz ) E&„
(36) B'„(8)

AB'„(8)

for both S- and P-polarization waves, if hz is the distance
between the two E-field reference planes. The matrix
above depends on the incidence angle 8 through (20) but
is independent of cp due to the symmetry in the xy plane.
This is true for every matrix equation due to the
geometry. Thus, although we use all three dimensions in
our theory, y will not show up until we write down the
expressions for the spontaneous emission rates. The
transfer matrix for a planar interface between two dielec-
trics is (index 1 is that of the slab at the left)

k2, k2,1+ 1—
k], k„

1

k2,1—
k],

k2,1+
k),

n )k2,
2

1+
n2k],fl2

2n& 1—n )k2,
2

n2k),2

n )k2,
2

1—
n2k),2

n k1 2z

n2k),2

(37)

for the S and P polarization, respectively. Chain multi-
plying the simple matrices (see Ref. 17), the relation be-
tween the waves at any two points in the structure can be
obtained. Specifically, the relations between the waves in
the QW layer and the incident waves can be written

B'„(8)AB', 2 (8)+ B',~(8)— Es
AB;, (8)

and

B2i(8)
Ei' w(8) =

AB' (8)
Es

B~i (8)AB', ~(8)+ Bz2(8)—
AB'„(8)

(39)

where the index s denotes field strengths and transfer ma-
trices for S-polarized waves, 3 and B are the complex
2X2 transfer matrices representing all the dielectric slabs
to the left- and right-hand sides of the quantum well, re-
spectively, and AB=A XB is the matrix of the whole
structure. Letting s~p, the equations look identical for
P-polarized waves.

The rate of spontaneous emission y can now be calcu-
lated using (1), (17), (25), (34), (38), and (39). The emis-
sion rate due to the S-polarized vacuum-field fluctuations
incident from the left-hand-side bulk per solid angle dO&
can be expressed

B ii(8i)+B2i(8i) . . . , , 3ngw
AB' (8 )

[d„sin (y)+d cos (p)]pon&Eor)

2

(40)

where g is a constant, n&w is the refractive index of the quantum well, d„ is the x component of the atom (or exciton)
dipole moment, etc., and the last factor is due to the fact that the field the atom "senses" is different from the plane-
wave superposition field [see Eq. (12)]. The rate due to the P-polarized wave reads
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yf(8/ m)=
2B 11 ( 8/ ) B21 ( 8/ )

AB~„(8/ )
[d, cos (y)+d sin (/I/1)] cos(8&w)

B11(8/)+B~i(8/) 3now

AB (8 ) 2 +1d sin(8 ) n E
'2

(41)

n/ cos(8/)Re[cos(8„) ] 3n QwXpo Eo "t
n„cos (8„) 2nqw+1

(42)

where 8&w is the incidence angle in the QW layer. To calculate the SE rate due to the vacuum-field fiuctuations in-
cident from the right-hand side we use (34). The S-polarization rate reads

AB;2(8, )
y'„(8/, V')= B',2(8/)+B~~(8/) —[B'~(8/)+B;, (8/)]- [d sin (y)+d1, cos (0')]

AB i, (8/)
2

and the P-polarization rate is

ABC/2(8, )
y~(8/, y)= B,2(8, ) —B2~(8/)+[B~, (8/) —B„(8,)] [d„cos (q&)+d sin (1I/1)]icos(8Ow)~

11 /

AB,2 (8/ )+ B 12(8/)+B~2(8/) —[B~p/(8/)+BI/(8/)] d,'l»n(8qw)l'
AB"„(8/ )

Xpo
n/ cos(8/)Re[cos(8„) ] 2

3n &w

n„cos (8„)
Eon

2ngw+ 1
(43)

The SE lifetime can now be calculated. It is simply the
inverse of the SE rate integrated over all solid angle:

SP

=f dA(y/+y$+y'„+y~)

=f dq& f d8 si/(n8 )(/y' +/y t /+y'„+y )~.

This equation assumes that if the two surrounding bulk
materials have difFerent refractive indices, the largest re-
fractive index material should be on the left-hand side.
For a general structure the integrand is quite complicated
(we always obtain it from numerical matrix-chain multi-
plication) so the integral is calculated most readily by us-
ing a computer. However, the SE rate for an atom or ex-
citon embedded in a homogeneous bulk material can be
calculated easily by noting that if n&~=n&=n„=n; for

~B»/AB'»
~

= ~B22~ =1, and similarly for the P
polarization matrices. From this it follows that yl=@'„
and yf=y~, which is of course expected from the symme-
try. One finds that the SE lifetime for an atom (or exci-
ton) in a bulk material with refractive index n will be

(2now+ I)
24mgpon &wE 0 ( d .+ d& +d )

(4&)

The last thing to calculate is the far-field SE intensity.
Our starting point has been to look at spontaneous emis-
sion as emission stimulated by vacuum-field Auctuations.
Each emitted photon will be emitted in the form of dipole
radiation, phase coherent with the stimulating electric
field at the atom. The phase and the amplitude of the
wave function of an emitted photon from one atom will

(B l~+B'22 )AB'„—(B'„+B2,) AB', ~1+
Bii+B2)

—1n„Re[cos(8„)]
X

n, cos(8, )
(46)

For a lossless structure the ratio of SE stimulated by the
same polarization, leaving the right mirror in the 0,
direction, is g =1—P/. For the P polarization the same

be equal thus at any two points located at equal distances
along a line through the atom. For a collection of atoms
located randomly in a bulk material this means that the
far-field SE radiation stimulated by a plane wave will be a
plane wave in the forward direction where all the wave
functions of the individual emission events add construc-
tively, and zero in all other directions, where the phase
relations are random, due to the random distribution of
atoms. In a thin film (much thinner than a wavelength),
however, the wave functions add constructively both in
the forward (k, k, k, ) and the refiection (k„k, —k, )

directions. The far field of the spontaneous emission will
be two plane waves with equal magnitudes and phases
traveling in the directions given above. This has recently
been demonstrated by an interferometric measurement. '

Since the emitted spontaneous emission has this partic-
ularly simple form, symmetrically (both in phase and am-
plitude) emitted plane waves, it is easy to calculate the ra-
tio of the emission leaving the left mirror to the total
spontaneous emission. Using reciprocity one obtains the
ratio g/ of the spontaneous emission leaving the left mir-
ror in the 01 direction, due to S-polarized vacuum-fields
as
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result holds, provided that s ~p in the equations above,
and that d„=d =d, .

IV. NUMERICAL RESULTS

We have used the theory outlined above to calculate
the SE radiation pattern and the SE lifetime reduction or
enhancement mainly for two diA'erent cavity structures.
To maximize the SE radiation, we put the QW sheet at
the antinode position of the cavity standing wave. To
minimize the radiation, and thus prolong the SE lifetime,
we propose to put the QW sheet at the node position in-
stead. In both cases the cavity may be either a A, /2 cavi-
ty or a A, cavity, depending on the reAection phase of the
Bragg mirrors (which in turn depends on the stacking or-
der of the high and low refractive index slabs).

When the cavity length is of the order of a wavelength,
the free spectral range for optical wavelengths is so great
that a typical exciton transition linewidth is narrower
than the cavity resonance linewidth, even if the cavity
mirrors are highly rejecting. Thus, we only have to wor-
ry about one longitudinal mode, since no spontaneous
emission will be emitted at wavelengths other than the
resonant wavelength. In fact, although the exciton tran-
sition linewidth is finite, in the following calculations we
have assumed a monochromatic SE source. This is a
good approximation as long as the cavity resonance
linewidth is much greater than the exciton transition
bandwidth.

To simplify the presentation, and reduce to the number
of degrees of freedom, we have assumed only two
diIterent refractive indices in the structure. In the
enhancement A, cavity, ni, n„n„and n, all have been
supposed to have the same, higher refractive index and
n2 has a lower index (Fig. I). Choosing the refractive in-
dices that way, there will be standing-wave antinodes
both at the cavity-to-mirror interfaces, and in the center
of the cavity. In the enhancement A, /2 cavity, ni, n„, and
n2 have been assumed to have the same, higher refractive
index, and n, and n, have the same lower index. The
enhancement A, /2 cavity thus will have standing-wave
nodes at the cavity-to-mirror interfaces and an antinode
in the center of the cavity. In the suppression k/2 cavity
n&, n„n „and n, have the higher refractive index and n 2

has the lower refractive index. This structure will have a
standing-wave node in the center of the cavity. Finally,
we have done some calculations on a structure with a A, /4
long cavity where n&, n„n„and n2 have a high refractive
index and n, has a lower index. This structure represents
a continuous Bragg reAector with a QW sheet placed in
iis center.

In Fig. 4(a) the normalized radiation intensity of a
quantum-well layer located at the center of an enhance-
ment A, /2 cavity has been plotted as a function of 01. The
dipoles in the QW layer have been assumed to be oriented
within the QW plane (d, =0). This radiation pattern can
be compared to that of the same dipole sheet sitting in a
transparent bulk material with the same refractive index
as the QW. This curve (dotted) drops from unity at nor-
mal incidence to one-half at grazing incidence. The
reason for this is that since electric dipoles only interact

with the electric-field component parallel to the dipole
orientation, a collection of dipoles with their dipole mo-
ments oriented in a plane will only interact with the S-
polarization waves at grazing incidence, whereas both po-
larizations will interact at normal incidence.

Four distinct regions can be seen in the plot: Close to
0 (normal incidence) the spontaneous emission is greatly
enhanced due to the cavity resonance. For slightly larger
angles there is a region where the spontaneous emission is
suppressed. This is due to the stopbands at each side of
the resonant window of the Bragg reflector cavity struc-
ture. The incident vacuum fields are reflected from the
structure and the field strength decays exponentially as a
function of mirror penetration depth. Inside the cavity
almost no electric field exists. At even greater incidence
angles, the Bragg reAectors are virtually transparent due
to the mismatch between the period length seen from this
angle, and the SE wavelength, and the radiation intensity
oscillates around its "bulk value. " For angles greater
than 8, =arcsin(nz/nI ) one would expect a very fast de-
cay in the SE intensity since the incident waves propaga-
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ting through the n2 refractive index layers are evanes-
cent. As can be seen from the figure, however, the waves
will propagate through the structure through resonant
tunneling in a band extending well beyond 0, . It turns
out that this larger observed cutoff angle is approximate-
ly given by arcsin(n /nI ) where n =(n, +nz)/2.

For a larger refractive index difference, the figure looks
similar, but more pronounced [Fig. 4(b)]. The SE intensi-
ty close to zero will increase enormously (the value at
O=O is around 46X10 ), and the "open window" will
split into two. The window closer to zero incidence will
be that of the P polarization. It will always be centered
around the Brewster angle Oz =arctan(n2/n

&
) where the

Bragg mirrors are transparent for the P-polarization
waves. The open window for the S polarization is found
just below O=arcsin(n In&) due to the resonant tunnel-
ing mentioned above. The reAectivity of the Bragg mir-
rors will rapidly oscillate between near zero to a few per-
cent from unity within this window. However, since the
waves are evanescent inside the cavity, both the wave
penetrating the left mirror and right mirror will decay ex-
ponentially as they propagate toward the QW layer.
Since the QW layer is placed in the center of the cavity it
will always be at the minimum of the total electric field.
Thus, the spontaneous emission will not be enhanced
even though there will be substantial standing waves in
the Bragg mirrors at a number of incidence angles within
the open window.

Increasing the number of layers of alternating high and
low refractive index material in the Bragg mirror, the SE
intensity close to zero incidence angle will increase. At
the same time the peak will get narrower. The SE inten-
sity integrated over the solid angle within the cavity
passband and stop band will remain virtually constant.
The number of layers in the Bragg reflectors thus will not
affect the SE lifetime, only the radiation pattern will be
altered.

In Fig. 5 the radiation intensity for a supression-type
A, /2 cavity has been plotted. It is similar to that shown
in Fig. 4(a) except close to zero incidence where the emis-
sion is suppressed instead of enhanced.

The efficiency with which the spontaneous emission is
emitted into the cavity resonant "mode" is calculated as

dp f sin(O)dO(y&+yf+y'„+y~)

f dy f sin(O)d O(y', +yf+ y'„+y~)
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Here Oo is the angular spread of the cavity resonant
"mode, " defined as the angle at the first minimum of the
SE radiation intensity. Since the structure does not sup-
port any guided modes the definition of Oo is of course
quite arbitrary. When looking at the radiation intensity
in a polar coordinate system, our choice will seem quite
natural. It is important to bear in mind though that what
we call the cavity resonant "mode" is not a true mode.
Since our one-dimensional structure does not have any la-
teral mode confinement and no preferred polarization
direction, the obtained radiation intensity is the effect of
the superposition of many modes. In practice one would
like to reduce those to one, or at most a few. That could
be achieved by a gain-guided structure or, as suggested in
the accompanying paper, ' by etching a cylindrical post
in the planar chip. In Fig. 6(a) the coupling efficiency is
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mirror layer with lowest refractive index. In {a) the cavity is
half a wavelength long; in (b) one wavelength long. The dipole
strength in the i direction is denoted d;.
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plotted for an enhancement k/2 cavity. It can be seen
that it increases from around 30% for nz =2.96 to over
90% when n2=1. 3. (The end point n2=1. 3 for the cal-
culations was chosen rather arbitrarily. However, it is
difticult to think of an optically suitable solid-state ma-
terial with even lower refractive index. ) It is also clear
from the figure that the coupling efticiency is higher for a
structure where the electric dipoles lie oriented only in
the QW plane than if they are randomly oriented. In Fig.
6(b) the same calculation has been done for an enhance-
ment A, cavity. The coupling e%ciency is slightly lower,
but again the coupling eKciency goes towards unity with
increasing refractive index (decreasing n, ).

The SE lifetime ratio ~, /T p o can be calculated from
(44) and (45). In Fig. 7(a) the ratio between the SE life-
time of an exciton sheet placed in an enhancement A, /2
cavity and the reference SE lifetime for the same exciton
sheet located in a transparent bulk material with a refrac-
tive index of 3.6 is plotted versus n, . Please note that
since n&w =3.6 has been the same in all the cavity struc-
tures and the reference structure, the local field-

correction factors have canceled in calculating the SE
lifetime ratio. Contrary to what one would expect from
such a "leaky" structure (which has cavity confinement
in only one direction), the lifetime of the excitons in the
cavity is longer than if the excitons were placed without
mirrors surrounded by the bulk material. This is due to
the fact that within the cavity passband and stop band,
the radiation intensity pattern is approximately a redistri-
bution of the vacuum-field fluctuations within that solid
angle. Outside the cavity stop band, the structure has a
passband for each polarization, but is otherwise highly
rejecting. In the passband region the vacuum-field Auc-
tuations at the QW layer are roughly equal to those in the
surrounding bulk material. In the reAection regions the
vacuum field does not penetrate the Bragg mirrors all the
way to the QW layer and cannot stimulate the excitons to
decay. These "dark" regions will cause the excitons to
live longer. In Fig. 7(b) the same calculation is done for a
A, cavity. Here the increase of the lifetime is even more
pronounced. However, if one's goal is to extend the SE
lifetime one should of course put the QW plane in a node
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position of the cavity standing wave. In Fig. 7(c) we have
used the suppression-type 1,/2 cavity in the calculation
yielding even longer SE lifetimes. Note, however, that it
is important that the QW is thin and accurately centered
in the cavity since the standing wave has a spatially quite
sharp minimum. In this calculation we assumed a 80-A-
thick QW. Finally, in Fig. 7(d) we have calculated the
lifetime ratio for a continuous Bragg reflector with a QW
centered in its middle. The "forbidden gap" in such a
reAector at the Bragg wavelength causes the lifetimes to
increase, but the effect is smaller than with the previous
cavity type. It is interesting to note that it makes quite a
difference whether the dipole moments are oriented in a
plane or if they are isotropically oriented. This has to do
with the fact that the d, dipole moment only interacts
with the P-polarized waves for which the grating is trans-
parent close to the Brewster angle.

V. EXPERIMENTAL RESULTS
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( ) ceps the pump-light intensity constant by regulating the&APC~ k
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The structures we have used are similar to those in Fig.
1, although not perfectly symmetric. The Alp 2Gap 8As
cavity (n, ), which has an optical length of either one
wavelength (A, cavity) or one-half wavelength (1,/2 cavi-
ty) is sandwiched between two dielectric mirrors each
made by 20 alternating layers of Alo 2Gao 8As (n& ) and
AIAs (n2). The A, cavity has two quantum wells, each po-
sitioned 4 nm from the cavity center (antinode position)
of the cavity and is predicted to have an enhanced SE
rate at the resonant wavelength. The A, /2-cavity sample
also has two quantum wells, each positioned 4 nm from
the cavity center (node position), and is expected to have
a reduced SE rate. In addition, we have measured the SE
radiation of a single planar QW sheet embedded deep
into a many, many wavelengths-thick slab of
Al p 2&ap 8As. The GaAs quantum wells have a narrow
linewidth (5 A) excitonic transition at 800 nm which is
used as a SE source. The excitonic dipoles formed by the
1owest-conduction electrons and the lowest heavy holes
can be considered oriented in the QW plane as the dipole
strength in the x and y directions are about an order of
magnitude greater than that in the z direction, at
moderate excitations. The whole structure is grown by
molecular-beam epitaxy on a GaAs substrate (n, ).

Both samples were grown with tapered layer
thicknesses. Thus the cavity resonant wavelength varied
along the length of the samples, while the exciton transi-
tion wavelength was kept constant throughout each sam-
ple. Then rotating the Dewar bottle, three Ar-laser
"pointer" beams were used to assure that the center of
rotation lay within the microcavity plane, not to translate
accidentally the measurement point with respect to the

v' ypump-laser beam. At each measurement point the cavit
structure reAectivity was measured using a white-light
source. By translating the sample little by little, a point
where the cavity resonant wavelength A, and the excitonp
ransition wavelength A,, coincided could be found easily.

While measuring the spontaneous emission, all samples
were optically pumped by a tunable Ti-sapphire laser,
and the spontaneous emission was passed through a
monochrometer and detected by a photomultiplier. The
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samples were cooled in liquid nitrogen (nl —-1.48) to
reduce the emission linewidth and the Auger recombina-
tion. Since the spontaneous emission increased linearly
with the pump intensity within the 1-pW to 1-mW pump
power range and with the pump beam spot size of 100
pm, we have a good indication that spontaneous emission
is the dominant recombination process and that the
stimulated emission is negligibly small. The measure-
ment setup is shown in Fig. 8.

The limited size of the Dewar-bottle window allowed
measurements only between +65'. Due to the low refrac-
tive index of the liquid nitrogen this corresponds to only
+22 in the GaAs quantum well. Thus only the strong
central lobe and the surrounding stop band could be seen.

In Fig. 9 the measured and calculated reAectivity of the
A,-cavity sample is plotted, showing a reasonable agree-
ment between the two curves. The theoretical curve as-
sumes a perfect sample and is drawn using only two
fitting parameters (period length and Alo 2Gao sAs refrac-
tive index). In Fig. 10 the measured and calculated spon-

taneous emission intensity in the normal direction is
shown. On resonance, the A, cavity (top curve, circles)
shows a substantial enhancement of the SE intensity,
while the 1,/2 cavity (bottom curve, crosses) features a re-
duced SE intensity just off resonance. Had the A, /2 cavi-
ty instead had only one thin quantum well, centered in
the cavity, the SE would have been inhibited just at the
resonant wavelength. In the figure, we have attempted to
draw the experimental points from the two samples using
the same normalization factor; however, due to the fact
that the samples have different QW layers the ordinates
for the two different samples may not coincide. The
theoretical curve assumes identical dipole moment
strengths.

The radiation pattern measurements also agreed quali-
tatively with theory. The sample without any mirrors
had nearly constant radiation intensities for s and p po-
larizations within the measurement window, as shown in
Figs. 11(a) and 11(b). (The angles in Fig. 11 are those in
the GaAs substrate. ) The iL cavity showed a pronounced
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central lobe with a 3-dB dropoff limit at +4' as shown in
Fig. 11(c) when the cavity resonant wavelength and the
emission wavelength are coincident. This agrees well
with theory [see Fig. 4(a) also]. When the emission wave-
length k, is shorter than the cavity resonant wavelength
A,o, a conical emission pattern is observed, as shown in
Fig. 11(d). The emission angle of 12' agrees well with the
theoretical resonance angle, g„=cos '(A, , /Ao) = 11'. On
the other hand, when A,, is longer than A,o, a simply at-
tenuated single peak centered at 0=0 is observed, as
shown in Fig. 11(e). This is because the cavity resonance
condition is not satisfied by any angle for A., & ko.

VI. CONCLUSIONS

It has been shown theoretically that both the spontane-
ous emission lifetime and the radiation pattern can be

modified by placing an excited atom or an exciton in the
center of a planar dielectric cavity. For the proposed
structures the spontaneous emission lifetime will be

longer than in bulk material, and the spontaneous emis-

sion will be concentrated to a rather narrow central lobe.
This structure is promising because it is simple to fabri-

cate by employing, e.g. , molecular-beam epitaxy.
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