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Low-frequency Raman-scattering study of the liquid-glass transition
in aqueous lithium chloride solutions
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Raman spectra of 15 and 30 mol% aqueous LiCl solutions were studied in the frequency range 3 —350
cm ', from room temperature to 78 K. At high temperatures, the spectra are very similar to the Raman
spectrum of pure water. As the temperature is lowered through the glass transition, the broad central
peak that is typical of liquids evolves continuously into a narrow central peak plus a broad band cen-
tered near 60 cm ', both with a depolarization ratio of -0.8. This evolution suggests a common origin
for these two features, which are typical of glasses. Comparison of our results with the disorder-
induced-scattering model of Martin and Brenig [Phys. Status Solidi B 64, 163 (1974)],which is often used
for glasses, produced poor agreement for both the intensity and depolarization ratio. In an alternative
approach, we combined Stephen's [Phys. Rev. 187, 279 (1969)] second-order Raman-scattering theory
for fluids with generalized hydrodynamics and mode-coupling concepts. This approach gave predictions
for the depolarization ratio in excellent agreement with our experimental results. It also produced a
qualitatively correct description of the low-frequency Raman spectral shape in both the glass and liquid
phases.

PACS number(s): 64.70.Pf, 78.30.—j

I. INTRODUCTION

The Raman spectra of amorphous solids (glass) exhibit
characteristic low-frequency structure not observed in
the spectra of the corresponding crystals. The glass spec-
tra usually exhibit a broad peak (often called the "boson
peak") [1] somewhere between -20 and 80 cm '; below
this peak the spectral intensity I( )codecreases with de-
creasing frequency, but again increases at very low fre-
quencies, below -5 cm

These glass Raman spectra have most frequently been
analyzed with a disordered-crystal model in which the
static frozen-in disorder breaks the usual crystal momen-
tum selection rules, permitting vibrational modes with
any wave vector q to contribute to the Raman-scattering
spectrum. Since this disorder-induced model leads to a
low-frequency spectrum I (co) ~ co which vanishes as
co~0, the residual intensity observed at very low fre-
quencies, sometimes designated as the "light-scattering
excess, " requires an additional mechanism such as the
two-state structural-defect-scattering mechanism [2—4],
first discussed by Winterling for vitreous silica [5,6].

The disorder-induced-scattering model has been
reasonably successful in describing the qualitative shape
of the spectrum for some amorphous materials over a
limited frequency range [1,7 —9]. Its predictions for the
scattered intensity and the depolarization ratio, however,
have generally shown poor agreement with experimental
results [4,7]. (We will return to this point in Sec. III.)

Liquids also exhibit pronounced broadband low-
frequency Raman scattering, and it has been observed (in
BzO3 [10] and ZnC12 [11],for example) that the spectrum
of the liquid evolves continuously into that of the glass as
the sample is cooled through the glass transition, again

suggesting that the low-frequency Raman spectra of
glasses and liquids may have a common origin [12].

The earliest proposed explanation for the low-
frequency Raman spectrum of liquids, published in 1928
by Raman and Krishnan [13],attributed the scattering to
hindered rotation of anisotropic molecules. This
"Rayleigh-wing" mechanism produces a Lorentzian cen-
tral peak whose width is the inverse of the orientational
relaxation time ~z . Since in typical Auids

~z —10 "—10 ' sec, the width of the Rayleigh wing is
—0. 5 —5 cm '. In 1968, Levine and Birnbaum [14]
showed that binary-collision-induced modification of the
molecular polarizability can produce a broad exponential
central peak. This intermolecular scattering mechanism
fits the experimental data in gases well, but is less success-
ful in Auids where a description limited to binary col-
lisions is usually inadequate [15].

Thibeau, Oskengorn, and Vodar [16] discussed a type
of collision-induced scattering in gases due to a specific
dipole —induced-dipole (DID) scattering mechanism. In
this mechanism the incident optical field induces an oscil-
lating dipole on one molecule, and the field of this dipole
polarizes a second molecule which then radiates the scat-
tered light. Stephen [17,18] analyzed the DID mecha-
nism in liquids in a formulation based on hydrodynamic
density fluctuations rather than kinetic theory, and ap-
plied it to liquid helium to explain the two-roton Raman
scattering observed by Greytak and Yan [19]. Stephen's
theory was also applied to liquid argon by McTague,
Fleury, and DuPre [15],who noted that Stephen's factor-
ization procedure for fourth-order density correlation
functions results in an expression for the optical spec-
trum determined by convolution of the spectra of pairs of
density fiuctuation modes S(q, co) as in second-order Ra-
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man scattering, and that the necessary S(q, co) data can
be obtained from neutron-scattering experiments. Also,
Stephen's theory leads to a predicted depolarization ratio

p of 0.75, independent of frequency and material parame-
ters.

Subsequently, much more work has been done on the
collision-induced-scattering problem, much of it by Mad-
den and co-workers [20—24], who have made extensive
use of molecular-dynamics calculations to test their mod-
els.

Madden and Board [23] and Madden and O' Sullivan
[24] noted that the fluctuating polarizability responsible
for collision-induced scattering arises from four different
mechanisms. The DID term and a second short-range
term produce fully depolarized scattering (p =0.75),
while the two other terms, which are important for ionic
materials, can produce polarized scattering. Consequent-
ly, in simple van der Waals materials, the light scattering
is dominated by the DID term and is fully depolarized
(p=0.75). In ionic melts, however, the Coulomb terms
are also important and can lead to depolarization ratios
substantially less than 0.75, e.g. , p=0. 15 for NaC1 [23].
This distinction, depolarization ratios p-0.75 for simple
atomic or molecular Auids but p (0.75 for ionic melts, is
in agreement with a substantial body of observation [25].

Madden [22] has also questioned the validity of the fac-
torization procedure used by Stephen [17,18]. Neverthe-
less, we will foHow Stephen's approach, which allows us
to easily connect the Raman spectra with the important
density Auctuation modes at wave vectors near the peak
of the static structure factor S(q).

Aqueous LiC1 solutions have been extensively studied
because they are good glass formers in the concentration
range of —11—30 mo1% [26], and also because of their
importance in electrochemistry and biochemistry. Fur-
thermore, since the unusual properties of water remain
incompletely understood, it is useful to study aqueous
solutions in which the solute concentration is an addi-
tional experimentally accessible parameter, and in which
temperatures much lower than the pure water lower limit
of ——30 'C are accessible.

In this paper we report a Raman-scattering study of
aqueous LiC1 solutions in both the glass and liquid
phases. We find that the spectra change continuously
with temperature, and also resemble the Raman spectra
of pure water. We also find that the depolarization ratio
p is -0.8 in both the liquid and glass, which agrees with
the value for pure water found by De Santis et al. [27].
We first compare our results for the glass phase with the
disorder-induced-scattering model, and find that the
agreement is generally quite poor, particularly for the
depolarization ratio. We then present an alternative
analysis based on the DID hydrodynamic theory of
Stephen [17,18], combined with an expression for the dy-
namic structure factor S(q, co) from the simplified mode-
coupling theory of the glass transition. This model pro-
vides a unified explanation for the Raman spectra of both
the glass and liquid phases, and yields far better agree-
ment with our experimental observations than the
disorder-induced-scattering model. The essential new
feature of this approach is the critical importance of

S(qo), the structure factor at the wave vector qo corre-
sponding to the first coordination shell, which increases
rapidly as T is lowered towards the glass transition. In
the glass phase, S(qo, co) develops a large static com-
ponent, which causes the dynamical part of S(qo, co) to
become effectively first-order Raman active.

The disorder-induced-scattering model and the
molecular-hydrodynamics model employ fundamentally
different approaches to describe the light-scattering pro-
cess. The disorder-induced theory assumes a single first-
order scattering event, and results in depolarized scatter-
ing only if the transverse acoustic modes are Raman ac-
tive. In the DID molecular-hydrodynamics theory, the
scattering process is second order, and although each di-
pole is assumed to be fully polarized, the resulting two-
step scattering is fully depolarized. This distinction pro-
duces the most dramatic difference between the two
theories, resulting in predicted depolarization ratios for
aqueous LiC1 differing by approximately 5.

Our experimental procedures and results are described
in Sec. II. In Sec. III we present a brief review of the
disorder-induced-scattering model and a comparison of
its predictions with our experimental results and with the
results of some other experiments. In Sec. IV we develop
the hydrodynamic model and also compare its predic-
tions with our results. A summary and conclusions are
given in Sec. V.

II. EXPERIMENT

Samples were prepared from Sigma reagent-grade LiCl
dissolved in deionized distilled water and filtered through
a 0.2-pm membrane filter. The solutions were then
transferred to 1-crn-diam glass tubes and Game sealed.
The samples were clear with only an occasional dust par-
ticle seen to cross the scattering column.

The sample was mounted on the cold finger of an Ox-
ford liquid-nitrogen cryostat, and the temperature was
controlled to +0.1 K by an Oxford ITC4 temperature
controller. 90' Raman spectra, excited by the 4880-A
line of a Coherent model 52 argon-ion laser with typical
power at the sample of 100 mW, were obtained with a
Spex 1401 tandem grating spectrometer equipped with
ISA holographic gratings and conventional photon
counting electronics.

Polarized (VV) Stokes Raman spectra of 15 and 30
mo1% solutions at temperatures between 294 and 100 K
are shown in Fig. 1. At room temperature, the spectra
exhibit a broad central mode, a shoulder at -60 cm
and a broad band at —180 cm '. As the temperature is
lowered towards the glass transition ( —140 K for the
15% solution or —165 K for the 30% solution), the cen-
tral mode narrows and the shoulder near 60 cm ' devel-
ops into a distinct band. The gradual change of the
broad central mode with its shoulder into a narrow cen-
tral mode plus a band centered near 60 cm ' suggests
that the central mode and the 60-cm ' band have a com-
mon origin. We will return to this point later.

The band near 60 cm ' is similar to features observed
in the Raman spectra of several other glasses, often desig-
nated as the "boson peak, " which is usually attributed to
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disorder-induced scattering that produces a spectrum
mirroring the density of vibrational states [1,7,9,28]. The
low-temperature narrow central mode, which evolves
continuously from the broad central mode that dom-

inates the spectrum in the liquid phase, corresponds to
the "light-scattering excess" observed in other glass sys-
tems, which has been attributed to tunneling defect states

shown in Fig. 1 are very similar, except that the 180-
cm ' and in the 15% sample is more intense. &e note

at there is another weak band at -260 cm t at be-
comes more apparent at lower temperatures.

these s
We ave also measured depolarized (VH) spectra of
ese samples from 294 to 78 K, and found that th

almost ident
un a ey are

identical to (though less intense than) the VV
spectra. We determined the depolarization t'za ion ratio
p co)=I&H(co)/Izz(co) in the range 3(co(300 cm ' at
several temperatures, and show the results for the 15%
sample in Fig. 2. (The results for the 30% sample were
very similar. ) The depolarization ratio is -0.8, indepen-
dent of temperature, from 2 to —130 ' d
tialltia y the same as that of pure water. The fact that the
central mode and the band at 60 ' h hcm ave the same
depolarization ratio again suggests that they have a com-
mon origin. The de olp arization ratio at all temperatures
exhibits a dip near 180 cm ', which is visible in Fig. 2.
This indicates that the origin of th 180-e -cm and is
di6'erent from that of the 60-cm ' ba d d h-cm an and the central
mode. Mazzacurati, Nardone, and Signorelli [12] studied
the de olarized lop

'
ow-frequency Raman spectrum of 10-M

aqueous KOH solution in the liquid and glass phases, and
also found that the broad central peak at hi h tern era-
tures evolvesves continuously with decreasing temperature,
with broad maxima at -60 and 180
low temperatures. They attributed these maxima to
disorder-induced scattering from the TA and LA phonon

thes e
branches, and identified the temperature depe d f

e spectrum with temperature-dependent self-energies of
the acoustic phonons. However the did
eit er the spectral intensity or the depolarization ratio,

mo es.
not be correctly predicted by disorder-induced-scattering

The
which has been re

ow-frequency Raman spectrum ofo pure water,

[27,30—34 is
w ic as been reported by several investigators

], 's very similar to that of aqueous LiC1 solu-
tions, including the central mode, the shoulder near 60
cm ', the band at 180 cm
260 cm ' as we

cm, and the weak feature near
well as p =0.75. Despite extensive study of

the Raman spectrum of water, the origin of these features
remains controversial. The central component has been
decomposed into two Lorentzians [30 35'

orentzian attributed to reorientational relaxation of wa-
ter mo ecules, and a broad Lorentzian attributed to a
hydrogen-bond breaking-reforming process. This decom-
position has been challenged recently, however, by
Rousset, Duval, and Boukenter [33]. The band at 60

unit by Walrafen [34,36], while others have assigned it to
disorder-induced localized transverse [33 37' or 1

ina [30] acoustic phonons. The band at 180 cm ' was

in the 30 mol
assigned to the O-O stretching mode [34'.e j. e note that

ion to
in e mo % Licl solutions, all water molec 1 b-

g o Licl hydration shells, so there is little chance for
the formation of 0-O-O bridges. If Walrafen's assign-
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ment were correct, we should expect a dramatic decrease
in the intensity of the 60-cm band in the concentrated
solutions, which is not observed.

The remarkable similarity between the spectra of aque-
ous LiC1 solutions and water strongly suggests a common
origin for the principal features in their spectra. In the
water spectra, it has been found that both the 60- and
180-cm ' bands become more pronounced with decreas-
ing temperature, although even at —27 C, the 60-cm
band was not fully resolved [30]. With our LiC1 solu-
tions, we could cool well down into the glass phase, and
observed that the 60-cm ' band eventually became fully
resolved. Since at low temperatures the 60-cm ' band is

very similar to the equivalent feature observed in the Ra-
man spectra of many other glasses, we conclude that the
60-cm ' band in water probably has the same origin as
the low-frequency Raman band found in glasses.

In order to compare our experimental results with the
predictions of the theoretical models to be discussed in
Secs. III and IV, we need to know both the spectral inten-
sity I(co) at one frequency (which we chose as 20 cm ')
and the integrated low-frequency Raman intensity, both
relative to the integrated intensity of the Brillouin line.
We first measured the ratio of the Raman intensity to the
Rayleigh peak in the Raman spectrum. The Rayleigh
peak, meaning the very-low-frequency scattering that was
not resolved by the Raman spectrometer, includes the
Brillouin peaks, quasielastic scattering due to concentra-
tion fluctuations and slow relaxation processes, and
(predominantly) elastic scattering from impurities. The
same samples were also studied with a tandem inter-
ferometer Brillouin spectrometer [38], in which the Bril-
louin components were fully resolved from the elastic and
quasielastic scattering. By combining the results of these
two experiments at 200 K, the integrated intensity of the
Raman spectrum from 3 to 250 cm ' was found to be
-0.1 of the integrated intensity of the Brillouin com-
ponents (and was relatively insensitive to temperature),
while the Raman spectral intensity at 20 cm, integrat-
ed over the 1-cm ' bandwidth of the spectrometer, was
estimated (relative to the integrated Brillouin component)
as 10, similar to the value found by Winterling [5] for
Si02.
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III. DISORDER-INDUCED SCATTERING MODEL

Light scattering in condensed matter is produced by
inhomogeneous fluctuations 5e(r, t) in the dielectric ten-
sor e(r, t) =eo+5e(r, t) For s.imple scattering geometries
(e.g. , 90' or 180' VV or VH scattering) the far-field scat-
tered spectral intensity I, (a), ) with polarization P and
wave vector k, produced by a single scattering event is
related to the intensity I()(coo) of the incident mono-
chromatic plane-polarized light beam with polarization
a, wave vector ko, and frequency tt)o by [39]
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where V is the scattering volume (defined by the optics),
Ro is the distance from V to the detector, K=ko —k, is
the scattering vector, and co=coo —

co& is the Raman shift
for Stokes scattering. To simplify the equations, we
will henceforth use the differential cross section per
unit volume (1/V)(d o /dcodQ) &=It(k„at, )Rzo/Io V
=R p(K, co).

The quantity ( ~5e'
t)~ )z„ in Eq. (1), defined as

( ~5&
~ ) J J d(t t )d (r r )ei (r r')e —i~(t —')—

Roman shift (cm ')

FIT&. 2. Depolarization ratio I&H(~)/I«(~) of the 15 mol%
LiCl solution at T=(a) 294, (b) 245, and (c) 150 K. The dashed
line in (c) is the prediction of the Martin-Brenig theory [Eq.
(12)j, increased by a factor of 5.7.

X (5e*ti(r, t)5e t3(r', t') )„, ,

is the K, co space-time Fourier component of the power
spectrum of 5e &. Note that Eq. (1) applies inside of the
sample and must be corrected for reAection and refrac-
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The first term in Eq. (3) describes one-phonon (first-order)
Raman scattering; the second term describes two-phonon
(second-order) scattering that produces the weak continu-
ous Raman background in crystals with intensity propor-
tional to the two-phonon joint density of states.

Substituting the first term in Eq. (3) into Eqs. (1) and
(2) gives

to, (n, /nt ) Be t3R.,(rC, ~)= ' ', , y ( ~Q„~')
16m. c B

~q

X5(K—q)5(co —co ) .

The mode with wave vector q=K on each branch con-
tributes a first-order Raman line at m=co with intensity
proportional to the square of the polarizability derivative
(Be &/BQqj ), which vanishes unless Qq~ and e ti belong to
the same irreducible representation of the crystal point
group. In deriving Eq. (4), the phonon lifetimes are
neglected, which produces the idealized zero-width result
5(co—co ). If the (jq) mode has an actual normalized
spectrum s (co ), then 5(co—co ) is replaced by
s (cot co@ ).

For the acoustic branches in the long-wavelength limit,
the normal coordinates are local displacements
u(r, t), and the dielectric fiuctuations 5e &(r, t) are re-
lated to the strains s; =

—,'(du, /dx +du /dx;) by
5e &=e engr sp &rss s, where the p &rs are Pockel's
(photoelastic) coefficients. The thermal average
( (qu ) ) =k~ T/2pv, where p is the mass density, v is the
sound velocity, and kz is Boltzmann's constant. The re-
sulting expressions for the scattering cross section, for 90
VV and VH scattering in an isotropic crystal, are given by
[40]

R„(K,co) =

R, (K,co)=

4 2kaT uiz
, 5(~—I~u, ),

321T p V(

k T ( —
)B P 1 1 P12

5( )
256m pu,

(5b)

respectively, where &=u(c 1p1/)'~ and u, = [(cii —c12)/
2p]'~ are the longitudinal and transverse sound veloci-
ties, respectively. Note that these results are based on a

tion at the surfaces. Also, for general scattering
geometries, ( ~5e &~ ) must be replaced by a sum of quan-
tities (5e'Pe, )

The lattice vibrations of an ideal crystal can be separat-
ed into 3K branches (j), where X is the number of atoms
in the unit cell. For each branch j, the normal mode with
wave vector q has the normal coordinate Q (r, t)
=Q oexp[i(q r co t)—]. The fiuctuation 5e p(r, t) due to
lattice vibrations can be expanded as

Be~p
5e Is(r, t)= g Q

j, q

continuum approximation, and are unlikely to apply at
wavelengths approaching interatomic distances.

A. Disorder-induced scattering

Since glasses lack the translational symmetry of an
ideal crystal, the momentum selection rule implied by
5(q —K) in Eq. (4) need not hold. The effects of static
disorder on the Raman spectrum were first considered in
1967 by Whalley and Bertie [37]. They discussed a spa-
tially varying Pockels coefficient (which they termed
"electrical disorder") p, ( r ) =p, +5p; ( r ), and showed
that the qth Fourier component of 5p; (r) would cause an
acoustic mode at —q to become Raman active, thereby
producing a disorder-induced Raman spectrum propor-
tional to the acoustic density of states. The resulting
scattering process thus involves a phonon at —q and a
static fluctuation at K+q.

In 1970, Shuker and Gammon [28] analyzed the effects
of mechanical disorder, which distorts the harmonic vi-
brational modes from their ideal spatially sinusoidal
form. For sufficiently small normal coordinate coherence
lengths, they showed that the spectrum I (co) is given by

I(co) ~ g C)(1 /co)[1+n (co)]g (co),
I

(6)

where gj(co) is the density of states of vibrational modes
on the jth branch. They also postulated that the cou-
pling constant for the jth branch, C, is independent of q.

This assumption of a q-independent coupling constant
has led to some confusion, since in the low-frequency lim-
it, where the acoustic modes are dominant and
n (co)+ 1 =k~ T/fico, Eq. (6) with a q-independent C.
would predict that [11,41] I(to) ~g, (co)/co, so that I(co)
would be independent of co. But although the constant
coupling approximation is reasonable for optic branches,
it is not applicable to the acoustic branches. As noted
above (and previously pointed out in this context by
Winterling [5]), the dielectric modulation 5e(r, t) due to
acoustic modes is proportional to the strain rather than
the displacement, so that the coupling constant C for
small q acoustic modes must be proportional to q . Since
q o- co for small q, CJ ~ co, so that Eq. (6) becomes
I (co) ~ g (co) rather than g (co)/co, in agreement with the
theoretical analysis of Martin and Brenig described
below.

In 1974, Martin and Brenig (MB) [42] combined the
ideas of electrical disorder and mechanical disorder in a
unified theory of light scattering from acoustic modes in
a disordered isotropic continuum. We will illustrate the
essential ingredients of their model by considering VV
scattering, including only longitudinal-acoustic modes
with q parallel to K. Without disorder, we would have
5e=(eo) gq p(dldx)(uoe ' ), where p =pi& and
e= e„. Martin and Brenig let p (r) =p +5p (r) for electri-
cal disorder, and u (r, t)=uoe'q( +"'"'}e ' ' for mechan-
ical disorder, where 5p (r) and 3 (r) are spatially fluctuat-
ing quantities produced by the structural disorder.
Therefore, the combined 6e is
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5e=(eo) g[p+5P(r)]—
dx

and

X I uoe'~"[1+iq. A(r)+. . . ] je

=(eo)'g[p +5p (r)]uoe
q

X (iq) 1+ q A(r)+. . .
d

dx (7)

where o. and 0.„are the correlation lengths, we have

((5e) )lc = g eoq (uo)5(Q —co )

q

—z /4aX Idze ' 1 '[p + ( (5p) )e

Substituting Eq. (7) in Eq. (2), with the Gaussian ansatz
used by MB for the spatial correlation of fluctuations

(5p (r)5p (r') ) = ((5P)') e

+((5H)')e '

where z—:r —r'.
Finally, combining Eqs. (8) and (1), we find

(8)

1
Zvv(re ~)=

16~

—(K — ) 0g ((quo)') [p'5(K —q)5(co —co, )+(4~cr')'"((5p)') e
' '5(co co —)

(K )2 2

+(41rcrq ) ((5H) )e "5(co—co )] . (9)

R vv(X, co ) =

X (gt+ 3gi)pt 2
+~ (10b)

where pl (Pll +2P12)/3& pt (Pll P12)~
A, =([(c)/c)x, )q A(r)] ) gi(co)=exp[ —(2~coccrlui) ],
g, (co)=(u&lv, ) exp[ —(2~coccr/u, ) ] (where co is in
cm '), and cr „=cr~ = cr is the structural correlation

The first term in Eq. (9), with ((quo) ) =k21T/2pv, re-
covers the usual first-order Brillouin-scattering result of
Eq. (5a). The second and third terms give the electrical-
and mechanical-disorder-induced scattering. If the corre-
lation lengths o and o.„are sufficiently short (Kcr «1),
then the spectrum of the disorder-induced scattering is
proportional to the density of acoustic states:
I (co) co"[n-(co)+ 1]/co, or, at low frequencies, I (co) =co

The full analysis of the MB model is complicated by
the fact that the disorder breaks the momentum selection
rule (q=K) for the direction of q as well as the magni-
tude, so that longitudinal- and transverse-acoustic modes
propagating in all directions must be included in the in-
tegration. The result of the full MB analysis, for 90' VV
and VH disorder-induced scattering, is [4,7]

4
coz&o 67 kg T

64~'pv, ' »
(5p,')

X (g +—', gi )p, +A,

(5P1')
+gIP,', +X (10a)

Pt

Q) kg T
R vH(K, co) =

64m pvi

length.
Equations (10) provide explicit predictions of the MB

theory for the spectral shape, depolarization ratio, and
intensity of the low-frequency Raman spectra of glasses
in terms of the parameters cr, A., ( (5P& ) /p1 ), and

B. Comparisons with experiment

1. Spectral shape

In the low-frequency limit co « v, /2mccr (o.r,
equivalently, qcr « 1), Eqs. (10) predict that both I, and
I, are proportional to co . Experimentally, the predic-
tion I~ o) ~0 is not observed, since there is usually a
"light-scattering excess" below —5 cm '. At higher fre-
quencies, Eqs. (10) predict that, because of the finite
correlation length o, I (co) falls below co as co approaches
u, /2rrccr. The parabolic spectral shape I(co) ~co has
been shown to fit the experimental spectra of some ma-
terials in a limited frequency range, e.g. , from -5 to -20
cm ' in As2S3 at 8 K [7]. The fit at and above the boson
peak can be improved considerably if the Gaussian form
assumed by MB for the correlation functions is replaced
by an exponential or Lorentzian function, as shown by
Malinovsky and Sokolov [1].

In Fig. 3, we show our experimental VV spectrum of
the 15% LiCl sample at 100 K, with a fit to Eq. (10a) in
the frequency range 10—55 cm '. In the fitting pro-
cedure, we used values of vi and v, obtained from our re-
cent Brillouin-scattering experiments [38]. The structur-
al correlation length found from the fit was o. -3 A,
which is comparable to the 0-Cl distance of —3.3 A,
and the 0-Li+ distance of -2 A [43].
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FIG. 3. Stokes Raman spectrum of 15 mo1% LiC1 solution
in the glass phase at T=100 K, with a fit to the Martin-Brenig
prediction of Eq. (10a).

2. Depolarization ratio

The Martin-Brenig result of Eqs. (10) predicts a depo-
larization ratio p(co) =I (co)/I (cu) of [7]

4 30 (5pl )'+7pf
p(cu) = —+ (1 1)

3 2+3g, /gi (5p, ) +Ap,

Martin and Brenig also suggested
(5p~ ) /p~ —= (5p, ) /p, , which reduces Eq. (11) to

4 30 PI
p(co) = —+

3 2+ 3gt /gl p

that

(12)

Note that the depolarized scattering is entirely due to the
transverse-acoustic modes. If p, =0, then from Eq. (10b),
I, (K,co)=0, and the depolarization ratio, from Eq. (11)
or (12), is p(co) =I /I =0.

To obtain numerical predictions for the low-frequency
value of p(co) from Eq. (12) requires values for (pi/p, )

and (U&/U, ) which can both be obtained from Brillouin-
scattering data. From Eqs. (5), the ratio of the integrated

with the values UI/U, =2.06 and p&/p, =4.70 found from
our Brillouin-scattering experiments [38]. Equation (12)
predicts that for co well below the peak at 55 cm
p(co~0)MB=0. 14, approximately six times smaller than
our experimental result of 0.8 (see Table I). Furthermore,
since in Eq. (12) g, and gi are functions of frequency, the
predicted depolarization ratio would be frequency depen-
dent, which also disagrees with our results.

In Fig. 2(c) we have superimposed a dashed line show-
ing the prediction of Eq. (12) increased by a factor of 5.7
to match the experimental depolarization ratio at low fre-
quencies. A similar disagreement was noted by Neman-
ich [7] for several chalcogenide glasses. The observed
depolarization ratios for these materials was -0.5 and
was essentially independent of frequency, while the
Martin-Brenig prediction at co~0 was -0.1 and de-
creases with increasing frequency.

We have performed Brillouin-scattering measurements
on several other materials besides the LiCl solutions and
used the results to further test the MB prediction of Eq.
(12). In Table I we show our experimental depolarization
ratios for 15% LiCl solution, quartz, salol, and 40 mol%%uo

Ca(NO3)z —60 mo1% KNO3 (CKN). LiC1, salol, and
CKN, all of which are fragile materials, gave experimen-
tal depolarization ratios of —

—,', while the MB predictions
at co~0 are 0.14, 0.27, and 0.17, consistently too small.
Only quartz, which is a network glass, gave reasonable
agreement at co~0, as previously reported by Winterling
[5]. However, Eq. (12) predicts a fairly strong frequency
dependence for all these materials including quartz,
which we did not observe.

TABLE I. Depolarization ratio p(co) from Raman scattering experiments and the MB prediction at
co—+0 from Brillouin scattering measurements of vI/v, and I«/IvH. The correlation length o. was
found from fits to Eq. (10). LiC1=15% aqueous LiCl solution. CKN=0. 4Ca(NO3)2 —0.6KNO3
( T, =333 K). CKN does not display a clearly defined Boson peak.

p(u)expt(3 - co ~ 100 cm ')
T (K) (Raman)

LiC1

0.80
150

Quartz

0.22
300

Salol

0.75
193

CKN

0.75
300

vi /v, (Brillouin)
Ivv/Iva (Brillouin)
T (K) (Brillouin)
Pt /Pr

2.06
35.9
78
4.70

1.58
9.58

300
2.06

2.33
20.7

193
4.08

2.14
32.4

300
4.64

p(~~0)MB
~ (A)

0.14
2.7

0.19
3.9

0.27
6.8

0.17
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3. Intensity

Theodorakopoulos and Jackie [16] estimated the
scattering intensity predicted by the Martin-Brenig mod-
el due to electrical disorder alone, neglecting mechanical
disorder (A, =O). They showed that for SiOz glass the pre-
dicted intensity is -3000 times smaller than the experi-
mental intensity at -20 cm ' measured by Winterling
[5]. They assumed that the disorder is determined by the
spatially fluctuating density 5p(x), which freezes at the
glass transition temperature T, so that for temperatures
below Tg, (5p) /p =kjiT~~r, where i~r is the isothermal
compressibility at Tg. They also asserted that
(5p)'/p'= (5p)'/p'.

We can similarly estimate the disorder-induced-
scattering intensity for LiCl solutions from Eq. (10a) with
(5p) /p =k&Tgxz- in which T =140 K and
vr(T )=1.0X10 ' dyn 'cm [38]. From Eqs. (5a) and
(10a) we estimate that at 140 K the ratio of the integrated
disorder-induced VV Raman-scattering intensity (in-
tegrated from 0 cm ' to the peak at v, /2mca ) to the in-
tegrated polarized Brillouin peak is —10, which is at
least 1000 times smaller than the experimental value.

Theodorakopoulous and Jackie [16] suggested two pos-
sible explanations for the disagreement with the intensity
prediction of the Martin-Brenig model: (i) mechanical
disorder may play a much larger role than electrical dis-
order, and (ii) frozen-in anisotropy fluctuations may be
more important than frozen-in density fluctuations.

MB showed that A, =-((5E) /E ), where E is the
Young's modulus. Since E =pv& =pent/q, the fluctua-
tion in E due to the frozen density fluctuations 6p would
be 5E = [p5(co& )+cot5p]/q so that

( (5p) )
p'

where y =Bin(co&)/Bin(p) is the Gruneisen constant for
longitudinal-acoustic modes, which is of order unity [44].
Therefore, the contribution of mechanical disorder to the
scattered intensity cannot be much more than approxi-
mately ten times larger than the contribution of electrical
disorder, leaving a residual disagreement of greater than
100. As for anisotropy fluctuations, LiC1 solutions con-
sist of rnolecules that are essentially optically isotropic.
Experimentally, scattering from LiC1 solutions due to
fluctuations in optical anisotropy has been found to be
approximately 100 times weaker than scattering due to
density fluctuations [45]. Therefore, we conclude that the
predictions of the MB model for both the depolarization
ratio and the scattered intensity are in serious disagree-
ment with our experimental results.

Finally, we note that the correlation lengths shown in
Table I, found from fitting the MB equations to the shape
of the Raman spectra, typically turn out to be on the or-
der of interatomic distances. Similar results have been
found previously in other experiments [1,7,9]. However,
as pointed out by Pick [46], the MB theory is a continu-
um approximation, and it is inconsistent to extend it to

wavelengths comparable to interatomic separations
where both the lattice dynamics and light scattering re-
quire a microscopic description.

Such a microscopic description [47] may provide an
improved version of the MB theory. However, in the
long-wavelength limit, where the MB continuum ap-
proach should be valid, the disagreement with experi-
ment for the depolarization ratio must have a di6'erent
origin.

IV. GENERALIZED HYDRODYNAMICS MODEL

Because the central predictions of the disordered-
crystal model discussed in Sec. III are in serious disagree-
ment with our experimental results, and since there is no
straightforward way to extend this model to the liquid
phase above T, we consider an alternative theory of the
low-frequency Raman spectrum based on hydrodynamics
rather than lattice dynamics. We note that while a gen-
eral theory of the lattice dynamics of glasses has not yet
been developed, the dynamics of liquids have been found
to be quite well described by molecular hydrodynamics
[48], which reduces to classical hydrodynamics at small q
and to kinetic theory at large q.

Recently, using the mode-coupling approximation to
include nonlinear interactions, molecular hydrodynamics
has been extended to describe the liquid-glass transition
[49—51]. This mode-coupling theory of the glass transi-
tion predicts a purely kinetic transition with no drastic
structural change, and also describes the evolution of the
dynamics through the glass transition.

The central concept in the mode-coupling theory of the
glass transition is that nonlinearity causes coupling be-
tween density fluctuation modes, especially those whose
wave vectors are within the main peak of the structure
factor S(q) with q=qo. With decreasing temperature
(or increasing density) this nonlinear interaction leads to
a slowing down of these density fluctuations, which even-
tually freeze at the glass transition temperature.

In a simple fluid, the fluctuations 5e in the (isotropic)
dielectric constant are related to the number density fluc-
tuations 5n by

a'~5e= 5n+ — (5n) +. . . .
Bn Bn

(13)

R "'(Z,~)= nS(K, co)(E, Eo),

(14)

where Eo and E, are unit vectors in the directions of the
incident and scattered electric fields (for 90' scatter-
ing, Eo E, =1 for VV, 0 for VH) and S(IC,co)
= (1/n ) ( (5n ) )x is the dynamic structure factor, the
space-time Fourier transform of the density-density
correlation function.

In Stephen s analysis [17,18], the atomic polarizability
a was used instead of (Be/Bn). These two quantities are
related by the Lorentz-Lorenz formula (e—1)/(e+2)

The first term in Eq. (13), when substituted into Eq. (1),
yields

4
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=(4~/3)an, from which (Be/Bn)=(4'/9)a(e+2) .
Stephen's result for the first-order scattering is

4
COg

a (E, Eo)nS(K, co) . (15)

independent depolarization ratio of 0.75 due to
longitudinal-acoustic modes alone, without requiring any
transverse modes.

B. Scattered intensity

R' '(K co)= a —'[1+—,'(E, .E()) ]X(1/2m)

[Note that with Stephen's definition of S(K,co) the factor
of n in Eq. (15) would be missing. ]

Stephen analyzed the scattering due to a second-order
DID process in which the electric field of the incident
light polarizes the atoms taking part in a first density
Auctuation with wave vector q. This polarization gives
rise to an electric field at a second density fluctuation
with wave vector K —q, which in turn produces the scat-
tered field. Stephen's result for this two-step second-
order Raman spectrum is

4

R ' "(K)=2m
COp

C
a (EO.E, ) nS(K), (18)

R (2)(K)— 1

(2~)

X dqg qnS q

a —', [1+—,'(E() E, )]

(19)

The integrated spectrum of the second-order polarized
Raman scattering of Eq. (16) can be compared to the in-
tegrated Brillouin spectrum of Eq. (14) without specifying
the frequency dependence of S(q, ~o). Integrating these
expressions over frequency, we find

4

X f f d q dao'g (q)nS(q, co')

XnS(K —q, co —co'), (16)

A. Depolarization ratio

Since for polarized ( VV) scattering Eo E, = 1, while for
90 depolarized (VH) scattering Eo E, =O, Eq. (16) pre-
dicts that the depolarization ratio for 90' scattering is a
frequency- and material-independent constant [18]

(17)

in excellent agreement with our Licl data as well as our
salol and CKN data. We also note that Eq. (17) is in
much better agreement with the experimental results for
chalcogenide glasses [7] than the disordered-crystal-
model prediction of Eq. (12), although the hydrodynamic
model is not expected to apply directly to network
glasses.

Note that in contrast to the disorder-induced-
scattering model discussed in Sec. III, the second-order
DID Raman-scattering process has a frequency-

where the factor g (q) =4vr[sin(qa)/(qa) —cos(qa)/
(qa) ] results from excluding from the integration a
sphere of radius a approximately equal to one-half the in-
terparticle spacing, to avoid inclusion of self-polarization.
In arriving at Eq. (16), a four-point density fiuctuation
correlation function was factored into a sum of products
of two-point correlation functions.

One strong piece of evidence for the relevance of this
approach to the low-frequency Raman spectrum of aque-
ous LiCl solutions (and probably to other fragile glass
formers as well) is the molecular-dynamics analysis of
Madden and Impey [21]. They calculated the Raman
spectrum of water due to the dipole —induced-dipole
mechanism and found broad bands centered near 60 and
180 cm ' as observed in the experiments.

We shall explore the predictions of Eq. (16), assuming
that it applies to both the liquid and the glass phases, in
the spirit of the mode-coupling theory of the glass transi-
tion.

where we have approximated K—q by —
q and co, by up,

and where S(q)=(1/2') jdcoS(q, co). The structure fac-
tor S(q) in liquids usually has a sharp peak at a value of
q =qp corresponding approximately to the average in-
teratomic distance, which dominates the integral in Eq.
(19). We can therefore approximate Eq. (19) by

1

(2'�)
COp

a —', [1+—,'(E() E, )]

X4~q()g (qo)n S (qo)bqo, (20)

where qp is the wave vector of the peak and hqp is its
width.

For VV scattering, the intensity ratio predicted by Eqs.
(18) and (20) is

( )(K) a 16 nS (qo)
I"'(K) (2~)'

(21)

To evaluate Eq. (21), we used the Percus-Yevick ap-
proximation for a hard-sphere gas [52] to find qo, S(qo),
b, qo, and S(K-0). For hard spheres of diameter a. at a
density corresponding to T-=150 K, we find [38]
qo —7/(7, kqo=—I/(7, S(qo)=—3.5, and S(K-0)—=0.014.
With these values, Eq. (21) reduces to 12.5g2(qo ).

The value of g (qo ) is very sensitive to the choice of the
radius a of the excluded volume. If we use the packing
fraction at the glass transition, 4, =0.516 to estimate the
mean interparticle separation at 1.128cr, then qpa=3. 95,
g (qo ) =0.167, and

I")(K)
I"'(K) vv

which is -20 times larger than the experimental value of
0.1. However, by increasing qpa to 4.3, the result would
be 0.2, quite close to our experimental result. In view of
the sensitive dependence of I' ' on the value of the un-
known parameter a, this aspect of the analysis provides
only qualified agreement and cannot be accurately tested.
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C. The spectrum

The spectrum R' '(I(., co) given by Eq. (16) is deter-
mined by the dynamic structure factor S (q, co), the
Fourier transform of the intermediate scattering function
F(q, t) I.n generalized (or molecular) hydrodynamics,
S (q, co) is the real part of S (q)R (q, oi), where

Ao(q)
R (q, oi)=i oi—

ro+iM(q, ro)
(22)

where Qo(q)=(quo) IS(q), Uo=kziTlm is a molecular
velocity, and M(q, oi) is a generalized friction function.
[In Eq. (22), the efFects of temperature fiuctuations, which
produce additional structure at very low frequencies,
have been neglected. ] Writing F(q, t)=P(q, t)S(q), Eq.
(22) is equivalent to the equation of motion for the nor-
malized correlation function P(q, t):

p(q, r)+ yp(q, t)+ Qozp(q, r)

+ M q~ qt —~ ~=0. 23
0

In Eq. (23), the nonrelaxing part of M(q, r) has been
separated as y, and P and P are the first and second time
derivatives of P(q, t). The longitudinal memory function
M(q, t) in Eq. (23) is usually represented phenomenologi-
cally as a single relaxation function (Maxwell viscoelasti-
city) or as a two relaxation time function [36,53].

In the mode-coupling theory, the excess damping in-
troduced by the integral in Eq. (23) is associated with
nonlinear interactions between modes, and the memory
function is [51]

M(q, r) = g [ V'"(q, q, )P(q„r)

+ V' '(q, q„qz)P(qi, r)P(qz, r)+ ] . (24)

In the simplest version of the mode-coupling theory
[49,50], only the third-order nonlinear interaction term
V' ' is retained, and only modes with a single q are in-
cluded, so that Eq. (23), for q =qo, becomes

P(qo, t)+ yP(qo, t)+ Bog(qo, t)

+ f V("(qo)y'(qo r)y(qo r r)dr=0. —(25)

Equation (25), which was first proposed by Leutheusser
[50], is designated as the I'z model by Gotze [51]. It is a
simplified version of the mode-coupling theory which
lacks some important aspects of more sophisticated mod-
els [51].

In order to explore the relevance of Eq. (25) to the tem-
perature evolution of the Raman spectra in the liquid and
glass phases, we show, in Fig. 4(a), three of our 30% LiC1
Raman spectra, at 270, 220, and 78 K, above, near, and
well below the liquid-glass transition at 165 K. In Fig.
4(b), we show y"(co)=I(oi)/[n (oi)+1] [where n (oi) is
the Bose factor] for these same three spectra. Note that
while only the 78-K spectrum exhibits a well-defined
peak near 55 cm ', this peak is clearly present in all
three y"(co) plots. To further motivate the association of

CA

C

CO

JD
L
C3

3

0
0 30 60 90 180

Frequency Shift (cm 1)

FIG. 4. (a) Raman spectra of 30% LiCl solution ( T~ = 165 K)
at (top to bottom) T=270, 220, and 78 K. (b) g"(co)
=I (co)/[n (co)+ 1] for the three spectra of (a).

R' '(K co)= e 8 2
4

2

(2~)
—g (qo)4mqohqo

X f de'nS(qo, oi')S( —qo, co —co') . (26)

The convolution S(qo, co)S(qo, oi) in Eq. (26) was ob-
tained from the computed P(qo, t) data illustrated in Fig.
5 by squaring P(qo, t) and then Fourier transforming the
result. Before performing the transformation, the con-
stant background f =P (qo, oo ) for A, & 1, which pro-
duces an elastic peak A5(co), was subtracted. The re-

these Raman spectra with S (qo, oi), we note that a recent
inelastic neutron-scattering study of the liquid-glass tran-
sition in the protein myoglobin [54] revealed that S(q, co)
at q=1.5 A ' exhibits an evolution with temperature
very similar to our LiCl Raman spectra.

In order to predict theoretical Raman spectra from Eq.
(25), we first solved Eq. (25) numerically with
y=Qo=160 cm ' and V' '(qo)=4k, Qo. The glass transi-
tion then corresponds to A,, = 1.0 [50].

In Fig. 5, we show plots of P(qo, t) found from these
numerical solutions with A, between 0.1 and 2.0. This
figure, which closely resembles that of Leutheusser [50],
shows that as k increases towards X, =1, the decay of
P(qo, t) becomes slower, while for X) A,, in the glass
phase, P(qo, t) decays towards a nonzero infinite-time
value P(qo, ~ ) =f, the nonergodic fraction.

Equation (16) for R' '(K, oi), with the approximation
that only modes with q =q0 need be retained in the in-
tegral, becomes

4



LOW-FREQUENCY RAMAN-SCATTERING STUDY OF THE. . . 6675

F 00 by Winterling [5], and that this excess scattering also de-
creases with decreasing temperature in the glass phase, as
shown in Fig. 6.

0-60 V. SUMMARY AND CONCLUSIONS

0 F 00

10 10 10 10 10

FIG. 5. P(qo, t) vs Got from Eq. (25) with y =00= 160 cm
and V' '(qo)=4XQO. k ranges from 0.1 to 2.0 (the transition is
at k, =1.0).

l s i s I s t s 1

Frequency Shift ( c~ )

120

FIG. 6. Theoretical Raman spectra predicted by Eq. (26).
The convolution S(qo, m)S(qo, co) was found by Fourier trans-
formation of P (q„,t) found from Eq. (25) with values of A. be-
tween 0.8 and 2.0.

suits, which are proportional to Eq. (26), are shown in
Fig. 6 for k between 0.8 and 2.0.

These theoretical spectra, though only qualitative, ex-
hibit the main features of the experimental spectra of Fig.
1 in the frequency range of 3—100 cm '. At high tem-
perature there is a broad central peak with a weak shoul-
der. With decreasing temperature (i.e., increasing A, ) the
central peak narrows, while the shoulder develops into a
broad peak near 50 cm ' with a long tail on the high-
frequency side, becoming under damped in the glass
phase.

We also note that the theoretical spectra predicted by
Eqs. (25) and (26) do not go to zero as co~0, in agree-
ment with the excess scattering phenomenon first noted

The low-frequency Raman spectra, depolarization ra-
tios, and ratios of the integrated Raman intensities to in-
tegrated Brillouin intensities were investigated in 15 and
30 mol% aqueous LiC1 solutions in both the liquid and
glass phases. The similarity between these spectra and
the Raman spectrum of pure water suggests a common
origin for the principal features of both. Furthermore,
since the low-temperature spectra we obtained are very
similar to the usual Raman spectra of glasses, we con-
clude that the bands near 55 cm ' in water and in glasses
also have a common origin. Similarly, the fact that the
central peak and the 55-cm ' band observed in the glass
phase have the same depolarization ratio also suggests
that these features have a common origin.

We compared our results with the disorder-induced-
scattering model as formulated by Martin and Brenig,
and found that a reasonable fit to the spectral shape in
the glass can be achieved if the central peak is excluded.
However, the observed Raman intensity at -20 crn ' is
at least 100 times higher than the theory predicts. Furth-
ermore, our experimentally observed depolarization ratio
of -0.8 is much larger than the predicted value of
-0.14.

In our comparison with a hydrodynamic model based
on Stephen's theory, we found excellent agreement for
the depolarization ratio, and qualified agreement for the
Raman intensity, which depends critically on the exclud-
ed volume chosen. By combining Stephen's model with
generalized hydrodynamics and mode-coupling concepts,
we were also able to demonstrate qualitative agreement
with the spectral shape in both the liquid and glass
phases, including the continuous transformation of the
broad central peak found in the liquid into a broad band
near 55 crn ' in the glass. The additional low-frequency
structure is presumably associated with the beta-
relaxation process, which is present in both the liquid and
glass phases. In the glass phase, beta relaxation may be
equivalent to the relaxing defect mechanism.

The most definitive difference between the two theoret-
ical models described is their very different predictions
for the depolarization ratio. In Stephen's hydrodynamic
DID theory, the scattering is a second-order process re-
sulting in a universal depolarization ratio of 0.75 (for 90
scattering), independent of frequency and of material
properties. The Martin-Brenig theory, in contrast, is a
first-order scattering theory, and the depolarization ratio
depends critically on the relative strengths of transverse
and longitudinal Brillouin scattering. Since we have mea-
sured these strengths independently for our samples, we
could show that for aqueous LiC1 the predicted depolari-
zation ratio is -0.14, far smaller than our measured
value of -0.8. We believe that this prediction provides
strong evidence in favor of the hydrodynamic theory.

Finally, we note that the dynamics of glasses are very
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complicated, with both spatially extended and localized
modes present, and that a complete theory of light
scattering in glasses is not yet available. 'What we have
shown is that the hydrodynamic theory is capable of ex-
plaining the low-frequency spectrum in both the liquid
and glass phases, at least qualitatively, and therefore of
explaining the continuous evolution of the spectrum with
decreasing temperature.
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