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The roles of steric repulsions and dispersional attractions in determining the behavior of solute mole-
cules in liquid crystals are investigated by computer simulations of simple model systems. These systems
involve a hydrogen molecule (H,) dissolved in a rigid lattice consisting of parallel, infinitely long
cylinders, which interact pairwise additively with the H atoms of the solute. The thermal motion of the
H, molecule (at 300 K) is simulated by Monte Carlo and molecular-dynamics methods, which are shown
to lead to identical results for all the studied properties, including the centrifugal distortion. The result-
ing orientational order parameters S are invariably positive at all densities and structures of the lattice,
irrespective of the details of the functional form of the interaction potential. The main role of the attrac-
tive forces is to pull the solute against the hard cores of the solvent molecules, thus enhancing the effects
of the repulsions (increasing S). The implication is that the negative experimental S values observed in
several liquid crystals cannot be attributed to the effects of repulsion and dispersion forces; the presence
of other interactions, such as electrostatic forces, appears to be essential. The repulsive forces lead to
slight orientation-dependent compression of H,, with the result that the nuclear dipolar and quadrupolar
couplings Dyy and Bj, are changed by —0.7% and — 1.1%, respectively (regardless of the lattice struc-
ture and the detailed form of the interaction potential). This points to the inference that the stretching-
mode contributions to the orientation-dependent molecular deformations in liquid crystals are generally
small, and gives support to the frequently made assumption that NMR spectral parameters of partially
oriented molecules can normally be analyzed in terms of a model that includes only the bending-mode
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deformations.

PACS number(s): 61.30.Gd, 34.90.+q, 34.20.Gj, 31.70.Dk

I. INTRODUCTION

The anisotropic intermolecular forces responsible for
the orientational ordering in liquid crystals have been the
subject of much interest in recent years. An important
area of research in this field is the study of small probe
molecules dissolved in mesophases. It circumvents the
difficulties resulting from the structural complexity (low
symmetry and flexibility) of the constituent molecules of
typical liquid crystals. The primary experimental tech-
nique in this approach is nuclear-magnetic-resonance
(NMR) spectroscopy, which has proved to yield quite de-
tailed information on the anisotropic solute-solvent in-
teractions [1]. Conventionally, this information has been
obtained in the form of the orientational order parame-
ters of the solute molecules [2]. Lately it has become pos-
sible to subject the NMR data to a more elaborate
analysis that describes the intermolecular forces in terms
of the torques acting on the individual bonds of the
solutes [3-5].

There have been many efforts to model the mechanism
of orientational ordering in liquid crystals. These models
attribute the ordering to the effects of various intermolec-
ular forces, and there is no consensus on what interaction
has the most important effect. As a general rule, the
models are based on interactions such as hard-core repul-
sions [6] or anisotropic dispersion forces [7], which tend
to favor parallel alignment of the molecules. It is in-
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teresting that in many cases such interactions are not
capable of explaining the forces acting on the solute mol-
ecules in liquid crystals. In particular, the torques acting
on the CH bonds of the solutes have displayed unexpect-
ed but very consistent behavior: the analyses of the
NMR data of a substantial number of molecules have re-
vealed that in a certain (very general) class of liquid crys-
tals the CH bonds tend invariably to orient perpendicular
to the alignment axis (director) of the solvent molecules
[5]. The relevance of this finding is reinforced by the ob-
servation that the behavior of molecular hydrogen (H,) is
similar to that of the CH bonds: both tend to orient per-
pendicular to the director in exactly the same liquid crys-
tals [8,9]. This strengthens the confidence in the credibil-
ity of the obtained values for the torques, as they have
been determined by two entirely different methods: the
orienting forces experienced by the hydrogen molecule
have been deduced directly from the orientational order
parameters, while the forces experienced by the CH
bonds have been derived from the small orientation-
dependent molecular deformations, making use of a
theoretical model [3-5]. The implication from the re-
sults is that there is a common interaction mechanism
behind the dominant parts of the torques acting on the
HH and CH bonds. In view of the consistency of the re-
sults, this mechanism does not appear to be due to any
specific chemical interaction, particularly as the studied
probes include such relatively inert molecules as hydro-
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gen and methane.

Two models have been advanced to account for the
unexpected behavior of the solute molecules in meso-
phases. The first model is based on the hypothesis that
the solutes experience a significant average electric-field
gradient produced by the surrounding liquid-crystal mol-
ecules [10]. The interaction of this field gradient with the
molecular quadrupole moment tensor results in a torque
that tends to orient the molecule either parallel or per-
pendicular to the director. In particular, the HH and CH
bonds should experience similar torques, as their quadru-
pole moments (along the bonds) appear to be positive
(their preferred orientation should be perpendicular to
the director in the liquid crystals where the field gradient
along the director is negative) [11]. The second model is
based on the assumption that the solutes experience the
average interspace between the liquid-crystal molecules
as a cylindrically symmetric cavity whose diameter is
comparable to the lateral dimensions of the solvent mole-
cules [4]. At the center of such a cavity the normal van
der Waals interaction of the atoms of the solute molecule
with the surroundings leads directly to torques that favor
either the parallel or perpendicular orientation (in these
cases the net interaction is repulsive or attractive, respec-
tively). It has been shown that this model can provide
qualitatively correct predictions about the forces experi-
enced by the molecular hydrogen and methane in
different liquid crystals [4].

The role of dispersional van der Waals attraction to-
gether with short-range repulsion in determining the be-
havior of the solutes in liquid crystals is the subject of the
present study. The fundamental question is as follows:
do the solute molecules sample such regions of the sol-
vent that the dispersion-plus-repulsion interaction alone
can account for the observed torques (as assumed in the
second model), or is the presence of other interactions,
such as electrostatic forces, essential (as assumed in the
first model)? A related question is as follows: do the in-
termolecular forces induce significant orientation-
dependent perturbations on the bond lengths? This is an
important issue, because in most cases such perturbations
are essentially ignored in determining the torques acting
on the bonds, i.e., the solvent-induced molecular distor-
tions are assumed to be dominated by bond-bending de-
formations. This assumption is necessary, because the in-
formation content of the NMR spectral data is usually
insufficient to allow the determination of the forces that
tend to change the lengths of the bonds. The result of the
analyses of a large body of NMR data lend considerable
support to the soundness of this approximation [5,12].
However, it is essential to obtain direct and independent
information on this matter, as it has an important
influence on the credibility of the method of analysis.

In order to answer these two questions, we have car-
ried out computer simulations on simple solute-solvent
systems modeling a hydrogen molecule at infinite dilution
in various liquid-crystal environments. In these simula-
tions, the liquid-crystal molecules are taken to be parallel,
infinitely long cylinders, which exert repulsive and attrac-
tive forces on the atoms of the solute molecule. These
model systems should exhibit the essential features of the
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behavior resulting from the repulsion and dispersion in-
teraction. In particular, hydrogen serves as an ideal
probe molecule, as its response to the intermolecular
forces is very straightforward. Its orientational order pa-
rameter allows a direct interpretation in terms of the
torque acting on the HH bond, and a large body of de-
tailed experimental information on these torques is avail-
able [8,9]. These data have shown that the behavior of
hydrogen reflects the torques acting on the CH bonds of a
general solute molecule in liquid crystals. In addition,
the orientation-dependent deformation of the hydrogen
molecule is a convenient object of investigation, as it re-
veals directly the force tending to change the length of
the HH bond.

II. THEORY

A. Molecular orientation and deformation

In a uniaxial environment the probability density of
finding an axially symmetric molecule at the orientation 6
(equal to the angle between the molecular symmetry axis
and the director) can be expanded as [13]

P(O)=-1[1+55P,(cosO)+ - ] . (1)
47

Here, P,( cos9)=%(3 cos’0—1) is the second-order
Legendre  polynomial and its average value
S =(P,(cosh)) is the second rank orientational order
parameter of the molecule. In the case of the hydrogen
molecule the orientational distribution P(0) is expected
to be rather close to isotropic, and thus the two terms
shown in Eq. (1) should describe it adequately.

The deformation of a diatomic molecule by the interac-
tion with the solvent can be described by the function
AF(6)=7(0)—r,, where 7(0) is the average value of the
bond length at the orientation € and r, is its equilibrium
value (in a free molecule). Here and below the overbar
denotes averaging over the internal motion of the mole-
cule at a particular orientation, while the angular brack-
ets denote the remaining averaging over the reorienta-
tional motion. The function A7(6) may be expressed as a
series expansion in terms of Legendre polynomials:

AF(0)=Ary+Ar,P,(cos@)+ - -+ . 2)

The orientation-independent term Ar, contains the nor-
mal anharmonic rovibrational contribution Arg, which is
present in a free molecule, and an additional solvent-
induced contribution Ard. The coefficient Ar, is the am-
plitude of the orientation-dependent modulation of the
bond length: if Ar, is positive, then the bond is elongated
from r, +Ary by an amount +Ar, at the parallel orienta-
tion with respect to the director (8=0), and compressed
by —Ar, /2 at the perpendicular orientation.

The coefficients Ary and Ar, can be determined from
the average values of A7(0) and AF(6)P,( cosf) over the
reorientational motion of the molecule: if the series (1)
and (2) are truncated after the P,( cos0) terms, then

(AF(8)) =Ar,+Ar,S 3)

and
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(AF(0)P,( cos8)) =Ar,S+Ar,(L1+185) . (4)

Alternatively, these coefficients can be resolved from the
average values of A7(60) determined in different domains
of the orientation 6. For example, if { ), and ( )_
denote the reorientational averaging in the domains
where P,( cosf)>0 and <0, respectively, then the values
of Ar, and Ar, can be extracted from the averages
(A7(0)), and (A7(0)) _ by the equations

(AF(0)) , =Arg+Ary( Py(cos0)) , 5)
and
(AF(0)) _=Ary+Ar,{P,(cosd)) _ , (6)

which are obtained from Eq. (2). Here the values of
(P,), and (P,)_ can be calculated by the truncated
series (1), resulting in the expressions

1+(3v3—2)8
P 7] = =
{(P,(cos@)) 30V3—1)45S (7)
and
_ —1+2§
(Pz(cos0)>_———3__ss . ®)

The values of Ar, and Ar, solved from Egs. (3) and (4)
should be close to those solved from Egs. (5) and (6), pro-
vided that the fourth- and higher-order terms in the
series (1) and (2) are small and the average values ob-
tained from the computer simulation are close to the true
expectation values.

B. Deformational contributions to NMR observables

NMR observables of a diatomic molecule correspond-
ing to axially symmetric and traceless second rank ten-
sors T (such as dipolar and quadrupolar coupling tensor)
can be written as

(T(6))=(T(6)P,(cos6)) , 9)

where 7_"”(6) and T(0) are the average values (over the in-
tramolecular motion) of the elements of T in the direc-
tions of the director and of the bond axis, respectively [1].
The contribution to (T(6)) due to solvent-induced
molecular deformation can be evaluated by approximat-
ing the bond-length dependence of T(6) by the leading
term of the Taylor series around the equilibrium
geometry:

TO)=T,+T,A7F(O)+ --- . (10)

Here, T, is the derivative of the principal value T(Ar)
with respect to Ar=r—r,, taken in equilibrium. Thus,
using Eq. (4), the observable can be written as

(T,(6))=T,S+T,{AF(0)P,(cosh)) + - - -
=T,S+T\AroS+T | Ary(++28)+ -+ . (11)

The term linear in Ar, contains the contribution 7'; ArgS,
which is due to the orientation-independent part of the
solvent-induced molecular deformation (Ar&). The term
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linear in Ar, is the principal contribution due to the an-
isotropy of the deformation.

The magnitudes of these deformational contributions
relative to the equilibrium contribution, T,S, are deter-
mined by the ratio T, /T,. In the case of the dipolar cou-
pling Dyy, the principal value is of the functional form
T(Ar)=C/r3, where C is a constant, and thus
T,/T,=—3/r,=—4.0469 A~! In the case of the qua-
drupolar coupling Bj, in the hydrogen molecule, a quad-
ratic interpolation of the three values of the electric-field
gradient calculated b?' Bishop and Cheung [14] results in
T,/T,=—6.604 A~ atr,=0.7413 A.

C. Model systems

In the present simulations, the hydrogen molecule was
modeled by a classical system of two mass points of
1.67 X 10?7 kg bound by the Morse potential
Vi (r)=D,(1—e "7y, (12)
where D,=0.761 aJ (=4.75 eV), r,=0.7413 A, and
a=1.945 A™! (=vk/2D,, where k =575.6 Nm™!' is
the molecular harmonic force constant) [15].

With the special object of calculating the behavior of
small solute molecules in liquid crystals, a simple model
system for a nematic solvent is a rigid lattice consisting of
parallel, axially symmetric molecules of infinite length.
The interaction energy between an atom in the solute
molecule and a segment in the solvent molecule may be
described by the Lennard-Jones (LJ) 6-12 potential func-
tion

12 6

g
R'

g
RI

v, (R')=4¢ , (13)

where R’ is the distance between the centers of the atom
and the segment, and € and o are empirical parameters
(so-called Lennard-Jones force constants) [16]. If the
centers of the segments in the liquid-crystal (LC) mole-
cule are evenly distributed on the molecular symmetry
axis with the linear number density p (segments per unit
length), then the total potential energy between the atom
in the solute molecule and a whole liquid-crystal mole-
cule is

VLC(R)=pf_ww Vi (VR*+z2)dz

11 5

g

:4’
€ R

R

n (14)

Here, €' =3meop, =%, and R is the distance of the

atom from the symmetry axis of the solvent molecule.

To obtain values for the parameters €, o, and p, the
constituent segments in the liquid-crystal molecules may
be taken to be benzene rings, with p=1 ring per 5 A.
The force constants for the interaction between a hydro-
gen atom and a benzene ring, estimated from the avail-
able data for molecular force constants by making use of
the empirical “combining laws” [16], are of the order of
€=9X10"22 J and o =4 A, respectively. Thus the pre-
ferred value for the factor €' in Eq. (14) is 8.5X 1072 J
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(=0.005 eV). Most of the simulations were carried out
by using this value, together with 0 =4 A. In order to
study the sensitivity of the results to the choice of the pa-
rameters, some simulations were performed with different
values for these parameters.

Two different crystal structures were used. First, to at-
tain a homogeneous matrix, the liquid-crystal molecules
were arranged on a simple two-dimensional square lattice
(the molecular long axes perpendicular to the lattice
plane, with the nearest-neighbor intermolecular distance
a). Second, to model a microscopically inhomogeneous
structure, the molecules were arrayed on an imperfect
hexagonal lattice having vacancies at the centers of the
hexagons (this corresponds to a perfect hexagonal struc-
ture where a basis containing two molecules is attached to
every lattice point; if the intermolecular distance is b,
then these lattice points are separated by »V'3). The
simulations were carried out using equal densities for the
two crystal structures. Thus, the nearest-neighbor inter-
molecular distances in the square and hexagonal lattices,
a and b, were coupled by equation

4q2=3V3p2 . (15)

The present model for the liquid-crystal molecules
(taken to be chains of benzene rings, with p=1 ring per 5
A) leads to the value of a=5.4 A (or b=4.8 A), if the
number density of the benzene rings in the lattice is
equated with that in liquid benzene, p==6.76 X 10?" mole-
cules per m®. This value of a is consistent with the equi-
librium separation of a benzene molecule from a liquid-
crystal molecule, R, =5.6 A, which minimizes the corre-
sponding intermolecular potential-energy  function
Vic(R) (14). Thus it may be concluded that the density
of a real liquid-crystal matrix is reproduced by the value
of the order of @ =5.5 A. The simulations were per-
formed with the values of a =5, 5.5, 6, 7, 8, 9, and 10 A
at a temperature of 7 =300 K.

D. Simulation methods

Both types of simulations, described in the following
sections, were carried out for a system of two separate
atoms, constituting the H, molecule with the Morse po-
tential (12). The molecule was free to move in three di-
mensions and free even to dissociate, which, however,
never occurred at 300 K with the potentials above. The
internal and external potentials experienced by the atoms
were identical in both types of simulations. In the com-
putations the external potential experienced by an atom
was a sum of contributions from nine (three by three)
periodically adjacent unit cells, one cell containing the
molecule and eight other cells next to the first one in the
xy plane. Due to the short range of the 11-5 potential
(14), no cutoff was applied. Computationally the simula-
tions were three-dimensional, although there were no
external forces acting on the hydrogen molecule in the z
direction.

1. Molecular dynamics

The molecular-dynamics simulation was accomplished
by a numerical solution of the classical Newtonian equa-
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tions for the motion of the hydrogen atoms. Here we
have adopted the predictor-corrector method of Beeman
combined from the procedures of Rahman and Verlet
[17]. Thus, starting from the initial values of the position
r;(0), velocity v;(0), and acceleration a;(0)=0 for the ith
atom, the position after the time interval At is evaluated
from the formula

2
r,-(t+At)=r,-(t)+Atv,~(t)+—Aé—[4a,-(t)—a,-(t—At)].

(16)
From Newton’s second law
=V, V;(r;(8))
a,(t)=———— , amn
m.

1

where the potential energy of the ith atom, V(r;), is the
sum of contributions from the Morse potential, ¥ (r)
(12), and from the potentials of the liquid-crystal mole-
cules, V1 c(Ry) (14). With the notations r =|r;—r;| for
the bond length of the hydrogen molecule and

s =(x; — X )*+(y; — Y, )?]'/? for the distance of the
ith atom from the symmetry axis of the kth solvent mole-
cule, we can write

M
V,‘(ri):VM(r)+ 2 VLC(Rik) N (18)

k=1
where r; =(x;,y;,2;), and M is the number of considered

liquid-crystal molecules at positions (X, Y, ). The veloci-
ty of the ith atom is evaluated from [17]

vi(t+Ar)= (t)+——[2a (t+Ar)+5a;(t)

—ai(t——At)] . (19)

The initial values of atomic positions were random (in a
limited range) and initial accelerations were set to zero,
but the initial velocities were taken from the Maxwell-
Boltzmann distribution, as described below.

In order to obtain the molecular properties from the
Maxwell-Boltzmann distribution, the molecule was al-
lowed to exchange kinetic energy with its environment
through a simulated heat bath. This was accomplished
by simulated random inelastic collisions of the atoms in
H,. With the given average collision time interval 7, the
actual time intervals between collisions were computed
from

7=—1,In[£(0,1)], (20)

where £(0,1) is a uniformly distributed random number
in the interval (0,1). In the simulated collision, to each of
the velocity components v, (g =x,y, and z) of both atoms
i a new random value was assigned from the Maxwell-
Boltzmann velocity distribution function

dN, 2

vq _ N q
=—= exp |——— | . (21)

dv, \/7rvmi P Ur%zi
Here, v, =1/2ky T /m; is the most probable speed of the
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atom i of mass m; at the temperature 7. For the hydro-
gen atom v,, =2230 ms ™~ ! at T =300 K.

2. Metropolis algorithm

A Monte Carlo integration over the configuration
space of a system can be done conveniently using the
Metropolis algorithm [18]. For a closed system (canoni-
cal ensemble) it gives the statistical average over the
Maxwell-Boltzmann distribution at a given temperature.
If the interaction potentials of the system are velocity in-
dependent, the equilibrium value of a specified quantity F
is obtained as an average from a large number of
conﬁgurations C as

(F)=— 2 F, (22)

1—1

where instead of a random selection, the configurations
are selected to sample the Maxwell-Boltzmann distribu-
tion of one-particle energies. This is accomplished by
moving randomly one particle after another in a limited
range in the position space of the system and accepting
the new configuration i/ +1 with energy E; |, if the ener-

gy change AE =E; ., —E, satisfies
ap=|"0 " @3)
= _ , 23
>0 and £(0,1)<e AE/kpT

where £(0,1) is uniformly distributed random number in
the range (0,1). If the new configuration is not accepted,
the old one is counted again with F; . ;=F;. The random
replacement of one configuration by another is limited to
a motion of an atom in a range (—Ag,Aq) in each coor-
dinate ¢ =x, y, and z using a uniform distribution
&(—Ag,Aq). The same random procedure as in the
molecular-dynamics simulation was used for the initial
atomic positions.

III. RESULTS AND DISCUSSION

A. Simulations

The two simulation methods, molecular dynamics and
Monte Carlo with the Metropolis algorithm, resulted in
essentially the same data for the molecular properties,
thus confirming the reliability of used numerical methods
and computer codes. A natural control for the
molecular-dynamics simulation is to monitor the energies
of the various degrees of freedom of the molecular
motion in order to verify the correct equipartition.
Therefore, we kept track of the kinetic energies of the
molecular translation and rotation, as well as of the ki-
netic and potential energies of the vibrational motion. As
expected, the average energies of all seven degrees of free-
dom were close to 1k T.

The time step At in the molecular-dynamics simula-
tions were chosen to be 0.1 fs, although even the value 1
fs seemed to give fairly accurate energies for the various
degrees of freedom. Runs of 0.5 ns of simulation time al-
ready gave relatively final values for the monitored aver-
ages compared to the runs of 3 ns with 30X 10° steps,
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which were carried out for all considered structures. The
collision time period (in the heat bath) was chosen to be
To=500 fs, which is of the same order of magnitude as
the period between the collisions of the hydrogen mole-
cule and the liquid-crystal molecules. The value of 7, was
checked down to 50 fs with no detectable effects in the re-
sults. With these parameters the average temperature of
the molecule usually deviated less than 5 K from the pre-
ferred 300 K and the deviations never exceeded 10 K.

The Metropolis Monte Carlo algorithm is more
efficient in the evaluation of equilibrium averages than
the molecular-dynamics method, because it does not
solve the full dynamics. Also, only one numerical param-
eter needs to be given, namely the limit for the random
relocations of atoms in space, Ag. The range from 0.01 to
1.0 A was examined and values less than 0.2 A were
found acceptable with the increasing accuracy and de-
creasing convergence. The value of 0.05 A was then
chosen as a good compromise. Running 15X 10° steps of
the Metropolis simulation with this parameter gave about
as good convergence as running 30X 10° steps of the
molecular-dynamics simulation.

The average internal potential energy of the molecule,
(I—’M>, was used as a direct control in both simulation
methods. As a matter of fact, owing to the effects of
anharmonicity and centrifugal distortion, (¥,;) of a
Morse oscillator should not be exactly equal to LkpT. A
theoretical calculation of the rovibrational average (cf.
the Appendix) of the potential energy of H, in a free
space at 300 K leads to a correction of +2.0% to +kpT
(i.e., apparently T'=306 K). In a solvent the repulsive
forces from the neighboring molecules tend to compress
the H, molecule, making the correction smaller. The re-
sults of the simulations were in excellent agreement with
these predictions. The average value of the temperatures
T evaluated by the equation ¥, )=1kyT was in both
methods 304 K, and the maximum deviations from this
value were 8 and 3 K in the molecular-dynamics and
Metropolis simulations, respectively.

B. Orientational order

Figure 1 shows the computed orientational order pa-
rameters S of the hydrogen molecule as functions of the
density parameter a of the liquid-crystal environment.
The repulsion and dispersion forces as described by the
Lennard-Jones potential function (13) are observed to
provide very efficient orientation mechanism. At the
density of a real liquid crystal (@ =5.5 A), the computed
S is 0.249 and 0.039 in the square and hexagonal lattice,
respectively. These values are much larger than any of
the available experimental order parameters of molecular
hydrogen: the S values of H, measured in 11 different
nematic liquid crystals at a temperature of about 300 K
vary from —0.011 to +0.008 [8,9]. In fact, to obtain a
comparison with experiment, the computed S values
should be scaled by the order parameter of the real
liquid-crystal molecules (typically about 0.6). Further-
more, the present method of simulation tends to overesti-
mate the S values also because it is based on classical
mechanics. For example, a quantum-mechanical averag-
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0.0 L

a (4)

FIG. 1. The relationships between the order parameter S of
the hydrogen molecule and the density parameter a of the crys-
tal lattice. The points are computed by Monte Carlo and
molecular-dynamics simulations (open and solid symbols, re-
spectively) in the square (OJ,M) and hexagonal (A, A) lattices.
The solid curves are least-squares fits to the points using func-
tions of the form S =exp(co+c a+c,a*+c;a’). The values of
the coefficients co, ¢,, c,, and c¢; are 49.618, —19.029 A,

22792 A7, and —0.09207 A™” (square lattice) and 31.389,
—14.022 A ,1.8620 A ", and —0.08289 A ~ (hexagonal lat-
tice).

ing over the rotational levels of H, in a simple mean field
of the functional form of P,( cos8) results in .S, which is
about 75% of the value resulting from a classical calcula-
tion (at 300 K) [8]. Thus the computed S values should
be multiplied by a correction factor of the order of 0.5,
but this is not sufficient for lowering them to the experi-
mental range.

An obvious reason for the less efficient orientational or-
dering in true liquid crystals is the fact that the molecules
in a real liquid are not arranged on a perfect lattice.
There is a distribution of cavities in the liquid, and the
solute molecules tend to occupy these cavities, rather
than more dense regions. Thus the intermolecular forces
acting on the solute molecules are less efficient, and the
order parameter is reduced. This is evidenced by the
striking drop in the computed S value when the liquid-
crystal molecules are rearranged, at a constant density,
from the perfect square lattice to an imperfect hexagonal
lattice. This indicates that the computed S values would
reach the experimental range, if still more imperfect lat-
tice structures were used in the simulation.

The tendency of the solute molecules to reside in cavi-
ties is also demonstrated by the computed average values
of the distance of the center of mass of H, from the
nearest liquid-crystal molecule, (Ry ). Indeed, at a
given density { Ry ) is always manifestly larger in the
hexagonal lattice than in the square lattice. In fact, the
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order parameter S seems to be determined by the value of
(RCM) alone, regardless of the details of the crystal
structure. This is displayed in Fig. 2, where the S values
are plotted as a function of (R ). All the points fall on
a single curve, irrespective of whether they are computed
using the square or hexagonal lattice. This relation sug-
gests that the experimental range of S could be reached at
the density of a real liquid crystal by using a lattice struc-
ture where the average nearest- -neighbor solute-solvent
separation (R ) is of the order of 4.6 A (considering
the correction factor 0.5).

It is noteworthy that the computed order parameters
are invariably positive at all densities of the two crystal
structures. This result does not seem to be sensitive to
the values of the Lennard-Jones force constants € and o,
nor to the details of the functional form of the site-site
potential V(R'’). The sensitivity of the results to the
choice of the potential was investigated by performing a
number of special Monte Carlo simulations at a =7 A in
the hexagonal lattice. In this system the standard Monte
Carlo run (with €=9X10"2 J and o =4 A) resulted in
S =0.024%0.003 (the statistical uncertainty is the stan-
dard deviation of the mean, estimated from the set of 15
independent S values computed in subchains of 10° steps
each). Essentially the same result (S =0.025+0.004) was
obtained when the depth of the potential well was dou-
bled (e=18X1072 J), but when the range of the poten-
tial was halved (6 =2 A), S decreased to the value of
0.013+0.003. Similar changes resulted when the steep-

0.2

0.1

0.0

3.5 4.0 4.5 5.0

(Rom) (A)

FIG. 2. The order parameter S as a function of the average
nearest-neighbor solute-solvent separation {Rcy ). The com-
puted data have the same symbols as in Fig. 1. The solid curve
is a least-squares fit to the points using the function
S =exp(co+cx+c,x2+c3x3), where x=(Rcy). The values
of the coefz'ﬁments Co» €15 €2, and c; are 141.16, —91.317 A l,
19.509 A” ", and —1.4198 A ", respectively.
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ness of the repulsive part of the potential was altered: the
S values corresponding to the Lennard-Jones 6-24 and 6-
8 (rather than 6-12) potential were 0.029+0.003 and
0.014£0.002, respectively. (Generally, for an index of
repulsion of 2n, the coefficient 7 in Eq. (14) is
7=8(2n —2)1/3[2" "Yn —1)!1]%) Comparable results
were obtained with an exponential-type repulsion of the
form U, exp(—aR /R,), where R, is the equilibrium sep-
aration of the hydrogen atom from the liquid-crystal mol-
ecule [then U,=20€¢'(c /R,)’¢%/a]: the S values corre-
sponding to the steepness parameters a =20 and 10 were
0.030£0.003 and 0.012+0.004, respectively [with
R,=(231/160)/%0 =4.2525 A= the equilibrium separa-
tion in the standard potential Vi-(R) (14)]. Finally,
when the attractive part of the potential was switched off
by omitting the second term on the right-hand side of Eq.
(14), the resulting S was 0.015+0.002.

These results may be summarized by saying that in the
considered system the hydrogen molecule receives its
alignment primarily in collisions with the hard cores of
the solvent molecules. The harder the cores are (i.e., the
steeper the repulsive part of the intermolecular potential
is), the larger the order parameter S is. The main role of
the attractive forces is to pull the solute against the cores
of the solvent molecules, thus enhancing the effects of the
repulsions (increasing S). Away from the cores the at-
tractive forces tend to decrease the S value. Actually, it
has been shown [4] that in the central regions of the cavi-
ties in liquid crystals the attractions may result in nega-
tive S, i.e., H, tends to orient perpendicular to the axis of
the cavities. In the present study this behavior was inves-
tigated in the hexagonal lattice at ¢ =6 A by determining
the value of the order parameter of H, close to the
centers of the hexagons. Specifically, in computing the
average value of P,( cosf) only those configurations were
counted where the nearest-neighbor solute-solvent sepa-
ration Ry was larger than b —r, /2, where b is the “ra-
dius” of the hexagon (equal to the length of its side) and
r, is the bond length of H,. As expected, negative S
values were obtained: Monte Carlo and molecular-
dynamics simulations resulted in § = —0.013+0.009 and
—0.015£0.009, respectively. It has been suggested [4]
that the negative signs of some of the experimental order
parameters of H, might also be manifestations of this be-
havior. However, the present results indicate that the
central regions of the cavities make only a minor contri-
bution to S, as H, spends most of its time very close to
the liquid-crystal molecules. Thus, the suggested ex-
planation does not appear to be feasible: in all probabili-
ty the dispersional van der Waals forces acting on the
atoms of the hydrogen molecule are not capable of ac-
counting for the negative experimental S values.

The cases of negative S seem to involve different kinds
of intermolecular forces. An obvious candidate is the
electrostatic interaction between the electric multipole
moments of the solute and solvent molecules. Indeed, it
has been shown [12] that the interaction between the
molecular quadrupole moments may make a considerable
contribution to S, provided that the cylindrical cavity oc-
cupied by the solute is rather short. This is compatible
with the suggestion of Patey et al. [10] that molecules
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dissolved in liquid crystals experience an appreciable
external electric-field gradient, which affects both their
quadrupolar couplings B and order parameters S. The
present results may be interpreted to lend support to the
existence of such a field gradient.

C. Molecular deformation

Unlike the order parameter S, the solvent-induced
molecular deformation can be described accurately by
classical mechanics. This is due to the fact that the aver-
age force exerted by the solvent along the bond is a slow-
ly varying function of the bond-stretching coordinate
Ar=r—r, and can be expressed as a rapidly converging
series F,(0)+F (6)Ar+ - --. Thus the total force along
the bond can be written as F(Ar,0)=—kAr—+F,(0)
+F,(0)Ar+ - - -, where —kAr is the leading (harmonic)
term in the expansion of the intramolecular force. This
series can be rewritten as F=—(k—F ) (Ar—Ar,)
+ -+, where Ar,=F,/(k—F,). This means that the
sole effect of the external force on F is to shift the equilib-
rium position of the harmonic vibration from r, to
r,+Ar;(0) and to change the harmonic force constant
from k to k—F(6). As the molecular reorientational
motion is slow in comparison with the vibrational
motion, the latter motion can be calculated separately in
different orientations as if Ar;(0) and F,(6) were con-
stants (adiabatic approximation). Hence the classical and
quantum-mechanical calculations lead to identical re-
sults, as far as the expectation value of the bond length of
the harmonic oscillator is concerned. Furthermore, the
anharmonic contributions to this expectation value (due
to the higher-order terms in the intramolecular potential)
are, to a good approximation, independent of the external
forces and do not influence the solvent-induced part of
the molecular deformation [4]. Thus the present classical
method of simulation should be quite adequate for a de-
tailed analysis of the orientation-dependent changes in
the bond length.

The dependence of the bond length on the molecular
orientation is straightforwardly measured by the
differences (AF(0)P,( cos6)) —{ AF(0))S and
(A7(0)) . —(AF(8)) _. According to Egs. (3)—(6), they
are directly proportional to the deformation amplitude
Ar,, which can therefore by readily determined from
them. It is remarkable that these differences appear to be
dependent exclusively on the order parameter S, regard-
less of the crystal structure. This is demonstrated in Fig.
3, which shows their values as functions of S. Indeed, in
both cases the overall behavior of all the points, whether
computed in the square or hexagonal lattice, displays a
universal one-to-one relationship to S. The implication is
that these and the other similarly invariant relationships
(Figs. 2—5) may be valid for a wide class of different lat-
tice structures, including that of a real liquid crystal.

Figure 4 shows the different averages of the bond-
stretching coordinate, (A7), (A7), and (AF)_, as
functions of S. As in Fig. 3, the points fall on crystal-
structure-independent (nearly linear) lines. According to
Egs. (3), (5), and (6), in a free space (i.e., S =0) all three of
these averages should be equal to Ar§ (as the solvent-
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(fm)

FIG. 3. The differences { AF(6)P,( cos8))—(AF(6))S and
(A7(0)) ., —(A7(8))_ as functions of the order parameter S.
The computed data have the same symbols as in Fig. 1, except
that the results of the special simulations with the modified po-
tentials (Q) have also been incorporated in the figure. The solid
lines are least-squares fits to the data (including the points at
S =0.25, which are not shown in the figure) using the polynomi-
als ¢, S +c¢,8%+c¢3S3 The values of the coefficients ¢, ¢,, and
c; are 121.3, 1277, and —3671 fm (for (AFP,)—(AF)S) and
467.1, 4614, and —13 143 fm (for (A7), —(AF)_).

induced contributions Arg and Ar, vanish). The theoreti-
cal value of the unperturbed rovibrational average Ar§ is
408.5 fm (see the Appendix). The results of the simula-
tions are in excellent agreement with these predictions:
the plots of the three averages do converge to a single
point, which coincides with the theoretical Arg.

Figure 4 indicates that the intermolecular forces from
the crystal lattice tend to compress the hydrogen mole-
cule. The special Monte Carlo simulations described in
the preceding section (at a =7 A in the hexagonal lattice)
show that this result is quite insensitive to the choice of
the site-site potential-energy function. The computed
values of (A7) were 392 fm (standard Lennard-Jones 6-
12 potential), 387 fm (e=18X 1072 J), 404 fm (0 =2 A),
384 fm (Lennard-Jones 6-24 potential), 398 fm (Lennard-
Jones 6-8 potential), 385 fm (repulsion of the form
Uy exp(—aR /R,) with a=20), 398 fm (the exponential
repulsion with a=10), and 398 fm (the repulsive part of
the standard Lennard-Jones 6-12 potential alone). In all
these cases the standard deviation of the mean is about 2
fm. Actually all these values, together with the corre-
sponding S values reported in the preceding section, fit
remarkably well with the points shown in Fig. 4. Thus
the relationship between (A7) and S appears to be very
generally valid, as far as the lattice structures and site-site
potential functions are concerned. As a matter of fact,
the results of the special Monte Carlo simulations indi-
cate that similar generality applies to all the invariant re-
lationships shown in Figs. 25, with one natural excep-
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FIG. 4. The different averages of the bond-stretching coordi-
nate, (A7), (A7), and (A7) _, as functions of the order pa-
rameter S. The computed data have the same symbols as in Fig.
3. The solid lines are least-squares fits to the data (including the
points at S =0.25, which are not shown in the figure) using the
polynomials ¢, +c¢,S+c¢,S2 The values of the coefficients ¢,
¢y, and c, are 409.8, —923, and 930 fm (for (A7 )), 408.5, —496,
and 370 fm (for (A7).), and 410.9, —1226, and 39 fm ( for
(AF) ).

tion. The anomalous case is the S —( Ry ) relationship
in the run where the range of the potential was halved
(c=2 A): not surprisingly, the resulting average
nearest-neighbor solute-solvent separation (Rcy ) was
exceptionally small, 3.21 A, while the order parameter
(S =0.013) fell in its normal range.

It is known that normally the bonds of small molecules
dissolved in condensed phases are slightly stretched with
respect to their gas phase lengths [19]. The stretching be-
comes observable in downward (red) solvent shifts of
their vibrational frequencies [19]. The fact that the
present simulations result in a compression of the H,
molecule is a direct consequence of the simple site-site
formulation of the intermolecular force model. In this
“zero-order” model the interaction sites (the hydrogen
atoms in H,) are considered as isolated entities, and thus
the parameters € and o are taken to be constants. In
reality the electronic structure associated with the sites
depends on the bond length . In particular, the electric
polarizability is generally an increasing function of », and
therefore also the parameter € is expected to increase
with r. Hence, the attractive (dispersion) part of the in-
teraction tends to elongate the bond by favoring larger €
values. Indeed, Pratt and Chandler [20] and Herman and
Berne [21] have shown that a reasonable r dependence of
€ is quite sufficient for producing a bond stretching that
surpasses the compression. It is important to note that
the elongation due to this mechanism is only weakly
dependent on the molecular orientation, because in liquid
crystals the anisotropic part of the dispersion interaction
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is small in comparison with the isotropic contribution
[22]. Thus, the orientation dependence of the molecular
deformation, which is the main subject of the present
study, should not be significantly influenced by the disre-
gard of the r dependence of €.

Finally, Fig. 5 displays the isotropic and anisotropic
deformation amplitudes, Arg and Ar,, as functions of S.
They were determined from two separate sets of data
[(A7) and (APP,(cosf)), as well as (A7), and
(A7) _] using Egs. (3) and (4) as well as (5) and (6), to-
gether with the equation Ary=Ar§+Ard, where
Ar§=408.5 fm. Figure 5 shows that these two pro-
cedures lead to virtually identical results; this confirms
the conjecture that the higher-order terms in the series (1)
and (2) are negligible. In addition, as in Figs. 2—-4, the re-
sulting relationships are invariant with respect to the lat-
tice structure and interaction potential. There is a simple
interrelation between the two deformation amplitudes:
within the statistical uncertainty Arg=—Ar,. Accord-
ing to Eq. (2), this means that the solvent-induced change
in the bond length is zero when the molecule is parallel
with the director (and negative at all the other orienta-
tions). This behavior is a straightforward consequence of
the present models for the nematic solvent and inter-
molecular interaction: as the parameters of the site-site
potential are taken to be constants, there are no external
forces left along the bond when it is parallel with the
(infinitely long) liquid-crystal molecules.

Figure 5 shows that the deformation amplitudes Arg
and Ar, are, to a good approximation, directly propor-
tional to the order parameter S. There are small sys-
tematic deviations from the direct proportionality, and
third-order polynomials Ar=c,S+c,S*+c;S* have to
be used in order to obtain good fits to all the computed
points up to S =0.25. However, in the experimentally
relevant range of S (up to S =0.01) the second- and
third-order terms are negligible. Thus, according to Eq.
(11), the leading term of the deformational contribution
to the NMR observable (7T,) can be written as
T,Ar,/5=Tc;S/5, where ¢, =604 fm (see the caption
of Fig. 5). This term is —0.49% of the equilibrium con-
tribution T,S if the observable is the dipolar coupling
Dy, and —0.80% of T,S if (T,) is the quadrupolar
coupling Bp,. As discussed above, quantum-mechanical
effects may be assumed to reduce the order parameter S
by about 25% while leaving the deformation amplitudes
Ard and Ar, unchanged (it should be noted that the force
acting on the bond at a particular orientation does not
depend on S). Thus the slope c¢; should be multiplied by
a correction factor of about %, which means that the de-
formational contributions T';c;S /5 are —0.65% of Dy
and —1.06% of Bp.

These numbers are quite small in comparison with the
magnitudes of the deformational corrections usually in-
volved in the analyses of experimental NMR data of vari-
ous molecules dissolved in liquid crystals. In particular,
in the one-bond dipolar couplings involving protons (such
as Dcy), the deformational corrections are typically
several percent [5]. This points to the inference that the
orientation-dependent molecular deformations are nor-
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FIG. 5. The dependencies of the deformation amplitudes Ard
and Ar, on the order parameter S. The points are calculated by
Egs. (3) and (4) (0) as well as (5) and (6) (#) from the results of
all the simulations (Monte Carlo and molecular-dynamics runs
in the square and hexagonal lattice, including the special simu-
lations with the modified potentials). The solid lines are least-
squares fits to the data (including the points at § =0.25, which
are not shown in the figure) using the polynomials
¢S +¢,8%+¢383. The values of the coefficients ¢y, ¢,, and c3
are —732, —3207, and 9716 fm (for Argd) and 604, 5198, and
— 14 464 fm (for Ar,).

mally dominated by the bending modes. Hydrogen is an
exceptional molecule in the sense that its deformation is
due to the stretching mode alone. Thus, as the deforma-
tion of H, is small, it is tempting to infer that the stretch-
ing contribution to the molecular deformation is general-
ly small. In fact, in analyzing NMR data it is common to
disregard altogether the forces tending to change the
lengths of the bonds, on the grounds that the bonds are
relatively stiff. The present results give definite evidence
for the soundness of this approximation.

The small deformational corrections to D and B of the
hydrogen molecule result in even smaller correction of
—0.4% to the ratio B/D. Burnell, de Lange, and
Snijders [8] have observed that in several liquid crystals
the absolute values of B /D are about 6% smaller than in
the gas phase. In view of the present results, it is evident
that such large solvent effects cannot be attributed to the
molecular deformation. This conclusion applies also to
the orientation-independent stretching due to the bond-
length dependence of the molecular polarizability. In or-
der that this latter mechanism could account for the devi-
ation of —6% in the ratio B /D, the resulting isotropic
deformation amplitude should be Arg =0.02 A, i.e., 3%
of r,. The real bond-length change is expected to be one
order of magnitude less, considering that the vibrational
frequency shifts of H, dissolved in simple liquids are typi-
cally of the order of —0.5% (which corresponds to the
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bond stretching of 0.2%) [23]. This gives further support
to the suggestion of Patey et al. [10] that solutes in liquid
crystals experience a significant extramolecular electric-
field gradient. The interaction of the nuclear quadrupole
moment with such a field gradient gives rise to an addi-
tional contribution to B, which may be responsible for
the solvent effect on B /D. Indeed, the same field gra-
dient that accounts for the value of B /D is also capable
of explaining the main features of the unusual orienta-
tional ordering of H,: it has been shown [9,10] that the
calculated order parameters S resulting from the interac-
tion of this gradient with the molecular quadrupole mo-
ment are in good overall agreement with the experimen-
tal S values.

IV. CONCLUSIONS

The two questions propounded in the introduction may
be answered as follows.

(1) Solute molecules in liquid crystals sample such re-
gions of the solvent that the net effect of the repulsion
and dispersion forces is to produce torques that tend to
orient the bonds parallel with the director. Thus, the
repulsion and dispersion forces alone cannot account for
the experimentally observed torques acting on the CH
and HH bonds of solutes. Other interactions, such as
electrostatic forces, must also play an essential role in
determining the behavior of solute molecules in liquid
crystals.

(2) The repulsive forces lead to slight orientation-
dependent compression of the bonds, resulting in relative-
ly small changes in NMR spectral parameters (in H, the
dipolar and quadrupolar couplings Dyy and B are
changed by —0.7% and —1.1%, respectively). The
molecular deformations arising from the bond-bending
modes lead usually to markedly larger corrections to
NMR parameters. The implication is that NMR spectral
parameters of molecules dissolved in liquid crystals can
normally be analyzed in terms of a model that includes
only the bending-mode deformations.
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APPENDIX

Since the motions of the hydrogen molecule are treated
by classical mechanics, the average value of its bond
length in a free space can be calculated by the classical
Boltzmann statistics. The motion of the two hydrogen
atoms about their center of mass is reduced to an
equivalent one-particle problem by using the spherical
polar coordinates of one hydrogen atom relative to the
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other, which is taken as the origin. Thus the average
value of the bond-stretching coordinate Ar =r —r, can be
computed by the equation

- 4 —Vp(1)/kgT
(Ar)=Ar0=—Z—fo drri(r—r,)e M TBT (A1)
where Z is the partition function

Z=dn [ drrre” M T (A2)
0

At the temperature 7' =300 K the result is Ar§ =408.5
fm, when the Morse potential V,,(r) with the parameters
D,, a, and r, specified with Eq. (12) is used.

It should be noted that Eq. (A1) leads to a true rovibra-
tional average, which incorporates the effects of vibra-
tional anharmonicity as well as the centrifugal distortion.
The latter originates from the Jacobian of the transfor-
mation from Cartesian to spherical coordinates, i.e., from
the weighting factor 2, which is present in the integrals
in (A1) and (A2). This factor can be rewritten as
r’=exp[ —Vc(r)/kpT), where V(r)=—2kzT Inr.
Thus 72 can be formally interpreted as a Boltzmann fac-
tor corresponding to a spherically symmetric potential
Vc(r). This means that Eq. (Al) can be taken to signify
averaging over the one-dimensional vibrational motion of
the molecule in a potential V,,(r)+ V(r), rather than
averaging over the three-dimensional rovibrational
motion in the Morse potential V(7). The force corre-
sponding to the potential V(r) is Fo(r)=—dV(r)/
dr=2kgT /r, which can be identified with the average
value of the centrifugal force acting on the bond of in-
stantaneous length r: kT is the average rotational ener-
gy of the diatomic molecule, tur*(w?), and therefore
Fe(r)=pr{w*), where u=m /2 is the reduced mass and
o is the angular velocity.

The truly one-dimensional averaging of Ar over the vi-
brational motion [omitting the weighting factor »2 in Egs.
(A1) and (A2)] leads to the result A¥=211.7 fm. This is
the vibrational contribution to Ar§, which is due to the
anharmonicity of the Morse potential. The rest of Ar§,
196.8 fm, is due to the centrifugal force. Indeed, it is in
good agreement with the value of 194 fm obtained by the
well-known approximate formula for the centrifugal dis-
tortion, { Ar ) =2ky T /r,k, which ignores the anharmon-
ic terms in the vibrational potential (k is the harmonic
force constant) [24].

In the Monte Carlo method, the averaging is carried
out over the three-dimensional motion of the hydrogen
molecule, and therefore the effects of the centrifugal dis-
tortion are automatically included. Thus, notwithstand-
ing the profoundly dynamic nature of the centrifugal
effects, the Monte Carlo method is capable of resulting in
exactly the same rotational-vibrational properties as the
full molecular-dynamics calculation.
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