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Immiscible two-fluid displacement was studied experimentally and numerically in inhomogeneous
porous models. Square-lattice models were designed using bond percolation. A fraction f of the bonds
was randomly given a high permeability, set equal to 1. The rest (1—f) have a low permeability
(k=0.004). The patterns formed by the displacement of glycerol by air injected at the center of the mod-
el network were studied and compared with the results of diffusion-limited-aggregation (DLA) simula-
tions on model bond networks that correspond precisely to the experimental models. We studied models
with fractions of good bonds close to the threshold value for bond percolation f,=0.50. Experimental
results are well represented by simulations and can be characterized by the same effective fractal dimen-
sion D,~1.5. We find that the model geometry strongly influences formation of the displacement pat-
tern, and that the results are independent of f. Unlike usual DLA aggregates, which grow mainly at the
tips, the geometry of our models causes growth in the interior, yielding a gradual increase of the effective

fractal dimension as the aggregate grows.

PACS number(s): 47.55.Mh, 47.55.Kf, 68.70.+w, 05.40.+j

I. INTRODUCTION

A wide variety of ordered and disorderly patterns are
generated during fluid flow processes. An important
class of examples is the formation of displacement fronts
when one fluid displaces another in a porous medium.
Developing a quantitative understanding of the evolution
of these fluid-fluid interfaces is of considerable interest
and can have important practical implications for oil
recovery, hydrology, and materials processing. These
displacement fronts often have a complex random struc-
ture that can be described quite well in terms of fractal
geometry [1]. Within this class alone a broad range of
displacement patterns can be formed depending on the
displacement rate, fluid rheologies, miscibility, interfacial
tension, the structure and wetting properties of the
porous medium, as well as other factors such as gravity
[2,3]. While substantial progress has been made towards
the objective of describing these displacement patterns,
we are still far from a general understanding, and new
phenomena are still being discovered and recognized.
For fluid-fluid displacement in a porous medium,
geometric and chemical heterogeneities on a wide range
of length scales play an important role that is not well un-
derstood. Under some conditions fractal displacement
fronts are formed that can be described (at least in part)
in terms of simple models such as invasion percolation
[4-6] (slow displacement of a wetting fluid by a nonwet-
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ting fluid) or diffusion-limited aggregation [7] (fast dis-
placement of a high-viscosity fluid by a low-viscosity
fluid) [8-11].

While our ultimate goal is to develop a comprehensive
theoretical understanding of fluid-fluid displacement phe-
nomena, this goal may not be obtainable in the foresee-
able future. An important intermediate step is to find
ways of describing these processes in terms of simple
computer models such as invasion percolation, Eden
growth [12], and diffusion-limited aggregation (DLA).
This approach has proven to be quite successful during
the past decade or so. Here we describe a detailed com-
parison between the results of fluid-fluid displacement ex-
periments carried out using pseudo-two-dimensional
porous media with controlled disorder, and the results of
computer simulations carried out using a modified DLA
algorithm [13] on the same models. We believe that such
comparisons are important to determine to what degree
current models represent the behavior of real systems and
to stimulate the development of improved models.

Viscous flow of a fluid in a porous medium is described
by Darcy’s law that (neglecting gravity effects) states that
the fluid flux is proportional to the pressure gradient in
the viscous fluid being displaced. For incompressible
fluids the divergence of the velocity vanishes and Darcy’s
equation leads to the Laplace equation V2P =0 for the
pressure field in the fluid, if the permeability is constant.

Displacement of one fluid by another is a more com-
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plex process and the description traditionally used in
reservoir simulations uses a set of generalized Darcy’s
equations that assume steady, decoupled simultaneous
flow of the two fluids [14]. This assumption is not correct
for the present experiments since we consider a moving
displacement front.

Complex fingerlike instabilities (viscous fingers, VF) in
the displacement front arise at high displacement pres-
sures. Oxaal et al. [15] studied VF on a percolation mod-
el that contained a fraction f=jf,=0.50 of identical
open bonds between pores on a square lattice. At this
critical concentration, the flow was constrained to the
backbone of the fractal spanning cluster and the resulting
fingers had a fractal dimension 1.3.

Recently, Meakin et al. [13] considered a modified
DLA algorithm. They studied the scaling properties of
DLA aggregates on square-lattice models where all bonds
were randomly assigned one of two permeabilities. Based
on numerical results they suggested a crossover scaling
form that was a function of the ratio « of the bond per-
meabilities and of the fraction f of high-permeability
bonds in the model.

Oxaal [16] compared in detail experiments and such
modified DLA simulations on a “two-permeability” mod-
el with f=~0.50 and «=0.004. The experimental dis-
placement patterns in these two-permeability models
were strikingly different from experiments on regular
square-lattice models, and from experiments on the per-
colation model. The pore-space geometry influenced for-
mation of the displacement pattern strongly, and the
essential features of the experimental observations were
reproduced in the simulations.

In this paper we explore the effect of changing the frac-
tion f of good bonds close to the critical value for bond
percolation f,=0.50. In part, this is done to test the
scaling theory of Meakin et al. [13], which predicted a
clear crossover from the behavior observed [15] at f =f,
and k=0 to that on a regular lattice. As f is changed in
ordinary percolation, the cluster structure changes rapid-
ly. We expected that the structure of the patterns formed
during displacement would depend on f. We used four
values f =0.45, 0.48, 0.50, and 0.52 and fixed the ratio
between the permeability of weak and good bonds at
k=0.004. All experiments and most simulations lie in a
regime that has not been studied before.

Our results show that the transport properties of the
models do not depend (apart from a change in global per-
meability) on the fraction of good bonds f, at the permea-
bility ratio « studied. The weak bonds contributed
significantly to fluid transport, even when they were not
essential to obtain a connected path from source to sink.
At f=0.52 the paths invaded by air included weak
bonds although alternative routes through good bonds
existed, and at all our values of f branches were invaded
that would be “dead ends” without the presence of weak
bonds.

The type of network we describe in this paper should
also be relevant for macroscopic flow in inhomogeneous
media such as regions of high-permeability rock embed-
ded in low-permeability rock, or fractured (low-
permeability) rock.
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II. EXPERIMENT

A. Model geometry

We made square-lattice models of size L X L with uni-
form cylindrical pores on each node. We used L =145,
and assigned random numbers uniformly distributed be-
tween 1 and 100 to the bonds. The same 292 X292 matrix
of random numbers was used for all models. We used the
numbers to construct four models that had different frac-
tions f of good bonds. We chose a clipping level, all
bonds with numbers below this level got high permeabili-
ty, and bonds with numbers at and above this clipping
level got low permeability. We used four clipping levels;
52, 50, 48, and 45. For the set of random numbers we
used, the fractions f we obtained were 0.5179, 0.4969,
0.4771, and 0.4492, but we will use the rounded (nominal)
values for f to identify the models. This way of con-
structing the models ensured that all good bonds present
in the model f =0.45 were present in models with higher
values of f.

In analogy with ordinary bond percolation we define
clusters to be groups of pores connected by good bonds.
One good bond connecting two pores (sites) will be called
a cluster of size two, and s pores connected by good
bonds will be called a cluster of size s. To characterize a
given model we define a correlation length £; that is an
average distance between two pores connected through
good bonds. In taking this average we sum over all clus-
ters in the model including those with pores at the
boundary. Usually clusters that include boundary sites

FIG. 1.

Clusters of pores connected by good bonds are
shown in different shades of gray. The local correlation length
is of the same size as a “typical” cluster. (a) The model with
fraction f~0.45 of good bonds, (b) the f=0.48 model, (c) the
f=0.50 model, and (d) the f=~0.52 model.
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TABLE I. Geometrical characteristics of the four models. The correlation lengths are in units of the
lattice constant @ =1.9 mm. The percolation threshold for bond percolation on the square lattice is

f.=0.5.
Bond concentration Correlation length Measured
k=1 good bonds permeability ratio

Model f & K

52 0.5179 52.3 4x1073

50 0.4969 25.4 4x107°

48 0.4771 21.92 4x107°

45 0.4492 10.38 3x10°°?

are discarded, since they are truncated by the boundary
and their shape is not representative. We chose to in-
clude them when f = f, since we focused on the structure
formed by clusters of pores that we expected to dominate
the fluid transport from the center to the boundary. In
the model with f =~0.52, the spanning cluster was not in-
cluded in the average, and &, is the typical size of finite
clusters, or of the holes in the spanning cluster. Figure 1
shows clusters of pores connected by good bonds for the
four experimental models in this paper. Table I gives &
for the four models.

B. Experimental procedures

Experimental procedures were described in detail in an
earlier paper by Oxaal [16]. Here we give a brief outline.

Physical models were made by a photolithographic
technique using a computer generated mask whereby we
obtained a recessed pattern of pores connected by bonds.
We made models as described above with four values of
f. A “lid” was clamped over the pattern so that fluid
flow was only possible on the etched network. The net-
work was filled with dyed glycerol that later was dis-
placed by centrally injected air at constant pressure.
While air intruded, a growing structure of air-filled pores
and bonds was photographed from above at regular inter-
vals. When the intruding air reached the boundary of the
model the experiment was stopped. After digitizing the
negatives we identified the coordinates of drained pores
in the aggregate, could find the scaling relations as de-
scribed in Sec. III A, and compared experimental with
simulated aggregates in detail.

The capillary number defined by Ca=pu,U /o is a con-
trolling parameter in the experiment. Here p, is the
viscosity of the displaced fluid, U is the average front ve-
locity, and o the surface tension. The capillary number
expresses the balance between viscous forces and capil-
lary forces. We determined the capillary number Ca as
described by Oxaal [16]. The maximum capillary number
used in the experiments was Ca=~0.12 (f ~0.50) and the
minimum value was Ca=0.05 (f ~0.52). In our experi-
ments log;o(u,/1,)=—4.3, where u, is the viscosity of
the injected fluid, and Ca=0.03, falling within the
viscous fingering domain, according to Lenormand,
Touboul, and Zarcone [11]. In this domain viscous forces
dominate and DLA is expected to be an appropriate
model.

C. Simulations

In the DLA model of Witten and Sander [7] particles
are added, one at a time, to a growing aggregate. We use
a modified DLA algorithm introduced by Meakin et al.
[13] that takes the two bond permeabilities into account.
It was further modified so that we could ““feed” the coor-
dinates of weak and good bonds used in experiments to
the program. The algorithm is described in detail in the
work of Meakin et al. [13], and a compact description is
given by Oxaal [16].

The algorithm requires large amounts of computer
time compared to standard DLA simulations, but it is
fast and simple compared to solving flow equations on a
network.

III. RESULTS

In the first two subsections we present experimental re-
sults in conjunction with simulations where weak and
good bonds were placed at exactly the same coordinates
as in the experimental models, and with the values of f
and « as in the experiments. We call such simulations
“simulations on the experimental model.” In the next
subsection we describe an experiment and a set of simula-
tions where the permeability ratio k was changed com-
pared to the previous systems, and in the last subsection
we present results of simulations on other model realiza-
tions, but where « and f have the same value as in the ex-
perimental systems.

A. Experiments and “simulations on the experimental model”

Figure 2 shows a photograph of an experiment at a
given instant ¢. By analyzing the digitized picture we
found both the total mass M(¢) and the radius of gyra-
tion R,(2). By repeating this procedure for a sequence of
photographs of a given experiment, we obtained M,(R,)
as a function of R,(#). We did this for experiments on
four models with fractions f ~0.45, 0.48, 0.50, and 0.52
of good bonds. Black dots in Fig. 3 show the result of
analyzing such sequences of pictures for each f.

We found that the displaced mass increased algebrai-
cally with the radius of gyration:

Mo~R)* . (1)

The exponent D, is called the radius of gyration dimen-
sion [17]. It is a noninteger number less than the spatial
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FIG. 2. The model with f~0.48. Fluid flow is only permit-
ted on the recessed network of pores and connecting bonds that
appear black when filled with dyed glycerol. Air injected
through the central site has displaced glycerol, and these sites
and bonds appear white.
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dimension d =2 (see the caption of Fig. 3, and Table II).
The function My(R,) compares different stages of the
growth in an experiment or a simulation. We estimate
the error in all the dimensions found in this section to be
+0.1. The main source of the error comes from different
possible ranges of the points that are included in the
linear log-log fits.

The total mass M, and the radius of gyration R,
represent only a single global property of a specific finite
aggregate. A more detailed characterization of the ag-
gregate is given by the function M (R), which means the
cumulative mass of the aggregate within circles of succes-
sively increasing radii R centered at the site of injection.
Plotting M (R) versus R we obtained a power-law depen-
dence, with a noninteger exponent D, called the cluster
dimension [17]. This function is easy to measure and
gives a robust measure of the scaling property of a given
structure.

Each curve in the plots of Fig. 3 was generated from a
digitized photograph taken during the displacement ex-
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FIG. 3. Experiment. In each figure, each curve shows the dependence of log;,M (R) on logoR at a particular stage in the displace-
ment. M (R) is the cumulative mass within circles of increasing radius R. Straight lines fitted to the last stage of each set of curves
have a slope D.. A black dot corresponding to each curve shows the logarithm of total aggregate mass M, at that stage placed at the
logarithm of radius of gyration R, of that stage of the aggregate. Straight lines fitted to the black dots have a slope D,. Plots (a)—(d)
represent experiments with f=~0.45, 0.48, 0.50, and 0.52. The abscissa should be interpreted as log;,R, for the black dots, and as
logioR when considering the set of curves. The values of D, and D, are (a) D,=1.5 and D,=1.8, (b) D,=1.5 and D,=1.7, (¢

D.=1.5and D,=1.9 and (d) D, =1.6 and D, =1.6.
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TABLE II. The overlap between two aggregates is the number of pores that are common to both, divided by the number of pores
invaded by the least massive aggregate (see text). The average aggregate mass varies with the concentration of high-permeability
bonds f. The numbers given are the average of all possible pairs within a group (such as ten combinations of an experiment with ten
simulations on the same model). The uncertainties in the overlap are all +0.05 and reflect the scatter in the overlap values.

Cluster Radius of gyration Overlap Overlap Overlap Overlap

dimension D, dimension D, experiment- simulation- experiment- different

Model logM /logR logM, /logR, simulation simulation experiment models
45 1.5 1.8 0.50 0.48 0.18
48 1.5 1.6 0.48 0.50 0.16
50 1.5 1.9 0.57 0.52 0.75 0.16
52 1.6 1.6 0.56 0.52 0.76 0.16
mean 1.5 0.53 0.51 0.17

periment. The lowest curve in each plot represents an
early stage of the displacement. Each of the other curves
represents a later instant in the same displacement exper-

iment.

The aggregate reaches its total mass M, at the max-
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FIG. 4. Experiment and simulation. Circles are experimental data showing the normalized mass [M(R)/M,](R/R,)""* as a
function of the normalized radius R /R, for the last stage of experiments at f=0.45, 0.48, 0.50, and 0.52. The shaded gray region
represents ten independent simulations on experimental models. They are averaged, and we only show the rms deviation of the simu-

lations around the average



44 VISCOUS FINGERING IN SQUARE-LATTICE MODELS WITH . ..

Here x =R /R, is the rescaled circle radius; the scaling
function F(x) describes the finite size cutoff. We scale
the circle radius with R, rather than with the maximum
cluster radius, since R, is less sensitive to fluctuations in
the aggregate shape.

For structures scaling with an exponent D, ll)" (x) is

constant in the range x << 1 and decreases as x ° for x
>>1, so that M —M, as R >>R,. Open circles in Fig. 4
show F(x) for the last experimental stage before break-
through. The experimental data are shown together with
the rms deviations around the average of ten independent
simulations on each of the four experimental models.
The simulation results are averaged by coarse graining
the data. The abscissa is subdivided into suitable seg-
ments, and the average radius and average mass within
each segment are found. The standard deviation within
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each segment is found, and the shaded gray band in Fig.
4 corresponds to one standard deviation from either side
of the average of the simulations. The plots emphasize
the deviations from scaling at small radii.

In Figs. 3(a) and 3(c), at a given value of R the number
of pores M (R,t,) invaded at one time ¢, is less than at a
later time ¢,, M(R,t;)<M(R,t,). Thus new pores are
added to the structure at radii R (¢) <R,(¢), and not only
at values of R (¢) close to R, ,,(2). Qualitatively we can
state that the structures in Figs. 3(a) and 3(c) grow in the
interior as well as at the tips. In contrast, tip growth is a
well-established characteristic for DLA-like growth on a
homogeneous substrate [18].

We superimposed successive stages of the experiment
in Fig. 5, where pores added to each interval were as-
signed a different symbol, and found that the interior

f=0.45

(a)

f=0.50

(c)

1

(d)

FIG. 5. Three experimental stages superimposed. In each picture, filled squares represent pores drained during the first stage of
the experiment, crossed squares represent pores drained during the next stage, and open squares show those pores drained in the fol-
lowing interval. A plus and hatches on the frame show the site of injection. The interval between the stages is (a) t=3.52 s, (b)

t=3;30s,(c)t=1.65s,and (d) t =5.3s.
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growth was induced by the pore-space geometry. New
pores were added predominantly at the tips of the
three/four main arms of the aggregate. Some parts of the
arms curl back and some smaller arms start out late, and
add pores to the aggregate at radii R <R,(¢), producing
the “layering” of the curves in Figs. 3(a) and 3(c).

Pores are plotted with a diameter equal to the lattice
constant a. In the experiments the pore diameter is a /2.
In a few cases the enlarged plotting symbols create loops
in the pictures. No loops were created in the experi-
ments, we have only observed branching structures.

The simulations produced a list of coordinates of sites
(pores) belonging to the aggregate, in the order in which
they were added. This allowed us to plot the simulations
in the same way that experimental data were plotted in
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Fig. 3. As for the experimental data, these simulation
data also approach the M (R) curve for the largest clus-
ter. (These figures are not shown; they look like those in
Fig. 3.) The average exponent for ten independent simu-
lations is D, =~1.510.1 independent of the value of f.

When experiments showed internal growth, i.e., lay-
ered curves when plotting the cumulative mass M (R)
versus R for different growth stages, about seven of ten
simulations on the experimental model showed internal
growth. Conversely, when experiments did not exhibit
layering of the M (R) curves, simulations on the experi-
mental model failed to show layering in about seven or
eight of ten independent simulations. The simulations on
the experimental models thus represent the internal
growth correctly in a “statistical” sense.

f=0.50

(a)

f=0.50

(b)

f=0.50

(c)

FIG. 6. Cluster overlaps. In each frame, boxes show one aggregate, crosses the other, and crossed boxes pores common to both
aggregates. (a) Overlap of two independent experiments in the f =0.50 model, Syyerage =0.75. (b) Overlap of an experiment and simu-
lation on the experimental model, S,yeraqe =0.53. (c) Overlap on two independent simulations on the experimental model,
Saverage —0.51. (d) Overlap of two independent simulations on independent realization with xk=0.004 and f ~0.50, Saverage = 0. 16.
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B. Overlap of aggregates

A sensitive quantitative way to compare experiments
and simulations involves the amount of geometrical over-
lap between them at the same aggregate mass [15].

We measured overlap between two aggregates (mass
M, and M,) on the same model with the parameter
S =M eriap /M, where M =min(M,M,) and M, is
the mass of the pores with coordinates common to both
structures (see Table IT). When at least one of the aggre-
gates is simulated, M, =M,. Overlap between two exper-
iments is not found at a common aggregate mass, since
photos cannot be taken at predetermined (and equal) ag-
gregate masses.

Examples of overlaps of pairs of aggregates generated
in various ways are shown in Fig. 6. The examples corre-
spond to the four columns of Table II that show S.

In experiments, overlap between independent experi-
ments on the same model is high, $=~0.75, and well
above the overlap between experiments and “‘simulations
on the experimental model,” S =0.53. The average over-
lap between two simulations on a given model (S =0.51)
is the same as the average experiment-simulation overlap.
The overlap between simulations performed on indepen-
dent model realizations for given f and «=0.004 was
S =0.17. This value gives a feeling for the significance of
the overlap in the other cases presented in Fig. 6 and
Table II.

C. Simulations and an experiment in models
with other value(s) of x

All simulations discussed so far were performed at per-
meability ratios in the range «=0.003-0.004, calculated
using the measured bond widths on the physical models
on which the flow experiments were performed.

For f =0.45 we performed simulations at other values
of the permeability ratio x to test whether experiment
and simulations would match even better. We did four
independent simulations at each value of the permeability

3000 : . ,

2000

1000

FIG. 7. Experiment and simulations. Open circles show the
cluster mass M°**'(¢) at a given stage of the experiment at
f=0.45, vs the corresponding radius of gyration R,(¢). Start-
ing from the top right-hand side of the figure, lines show aver-
age simulated masses M, as function of R;i“‘ at permeability
ratios k=0.675, 1, 0.04, 0.004, 0.0001, 0.0004, and 0.00004. The
standard deviation of the simulations around each average is
represented by the shaded gray area.
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f=0.50

"% (0.004 )

-

FIG. 8. A displacement experiment in a new model with
f=0.50 and «=0.04. The average overlap with the experi-
ments at k=0.004 is S =0.73.

ratio k=1, 0.675, 0.04, 0.004, 0.0004, 0.0001, and
0.00004. The results are shown in Fig. 7 together with
the experiment at f~0.45. At a given R,, experimental
data start out with a mass that is lower than in any of the
simulated curves. However, the experimental data have a
larger increase of mass as R, grows. As seen in Fig. 7,
the experimental data are consistent with the simulations
for k in the range 0.004-0.0004, reflecting the low sensi-
tivity of the experimental results to variations in «.

Recently, we have performed an experiment in a new
model at f=0.50, with k=0.04 (a factor of 10 higher
than in the present series), but with the same coordinates
for good and weak bonds (see Fig. 8). This model also
has considerably less scatter in the bond widths than be-
fore, since we now can draw the masks at four times the
previous resolution. With the method used to measure
bond widths [16], we are not able to detect fluctuations in
bond widths.

Comparing this experiment with the other experiments
at f=~=0.50, the displacement pattern on the new model
strongly resembles patterns formed on the old model
(f =0.50 and k=0.004). The overlap between new and
old experiments is S =0.73. We also did experiments at
k=0.4, and they showed displacement patterns with pref-
erential growth along the network axes leading to a dis-
tinctly anisotropic pattern of ramified viscous fingers.
The pattern envelope has approximately fourfold symme-
try.

D. Simulation results on other models
with f and x values equal to experimental models

Figure 9 shows simulations on models at f~0.52 and
x=0.004 that are not identical to the experimental mod-
el. The top figure shows an average over nine models
with four independent simulations on each. The middle
and lower plots show two separate sets of four indepen-
dent simulations, each set on a different model. All plots
show the crossover function F (x) of Eq. (2), and although
the average (over many realizations) F(x) is constant for
x <1 as expected theoretically, we observed a model-
dependent shape when we separate simulations on indivi-
dual models.
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We have 58 independent simulations on ten model real-
izations of size 145X 145 sites at f ~0.50, k=0.004. For
f=0.45, 0.48, and 0.52 we have 46 simulations at
k=0.004. At each value of f, averaging over all simula-
tions, we find an exponent D,=1.6:£0.1 independent of
f-

Figure 9 is typical of what we observed at the four
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FIG. 9. Simulation. The normalized number of pores

[M(R)/M,](R/R,)™"® as a function of the normalized radius
R /R, for simulations at f=~0.52 and k=0.004. Lines show
average values, the shaded gray regions represent the rms devia-
tion of the simulation around the average. (a) Average of 36 in-
dependent simulations on nine different models. Each model is
a different realization of the case f~0.52. (b) Average and
standard deviation for four independent simulations on one
model. (c) Average and standard deviation for four independent
simulations on another model.
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values of f: The crossover function has a distinct shape
on individual models.

Simulations on two larger models of 401X401 sites
with k=0.004 at each value of f were also performed,
and as for the 145X 145 models we found that the model
geometry influences the shape of the crossover function
F(x) at length scales R <R,. For f =0.52 the difference
in shape is not very distinct. The two models we tested
showed differences at short length scales up to
logo(R /R, )=—0.8, a different behavior around cross-
over to finite size, and a different level of the constant
plateau. Again, we found an average D, ~1.6+0.1.

IV. DISCUSSION

In this section we discuss the main quantities mea-
sured, i.e., the overlap of pairs of aggregates and the scal-
ing of aggregates. We compare these quantities for ag-
gregates generated in different manners and discuss the
influence of changing the fraction of good bonds f.

A. Overlap

From the overlap data collected in Table II, we con-
clude that the underlying geometry of the pore space
strongly influences the growth of both the viscous fingers
and the simulations, and that the overlap does not de-
pend on the fraction f of good bonds, in the range of f
studied.

On a specific model, the overlap between an experi-
ment and a simulation or between two simulations is
significantly lower than the overlap between two experi-
ments. Thus the simulations are not as reproducible as
experiments, they are more “‘noisy.”

Despite the instability of the displacement process, the
experiments show a high degree of overlap. We believe
that an “ideal” viscous fingering experiment in these
model geometries would be almost deterministic: The
permeability fluctuations, fixed and preset by the exact
layout of weak and good bonds, dominate over other pos-
sible sources of fluctuations in an ideal experiment and
must exert the same influence in every repetition of the
experiment.

It might be possible to improve the agreement between
the experiments and simulations by including noise
reduction to control fluctuations in the simulations.

The real viscous fingering experiments take place on a
physical random network with errors in the bond shape
and bond widths. Even when the underlying pore-space
geometry is set to be the same, different runs of the exper-
iment involve wettability fluctuations, specks of dust, and
occasional trapped air bubbles. These errors are random-
ly distributed, add noise to the experiment, and possibly
account for the experiment-experiment overlap being in-
complete. The experiment in Fig. 8 on another etching
with weak and good bonds in the same positions but with
a higher k and less errors demonstrated that the implant-
ed network pattern of weak and good bonds dominates
the experimental aggregate formation, and that the errors
mentioned above play a minor role. This experiment also
showed that variation with « from 0.004 to 0.04 had a
small effect on the overall structure of the VF cluster.

Simulations were performed on idealized models,
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where all weak and good bonds had their assigned (exact)
permeabilities. DLA-like simulations are the result of an
interplay between two types of randomness: The random
walk that is a sample of the diffusion probability field,
and the frozen random structure of the network. The in-
terplay between the two random contributions is not fully
understood. Nevertheless, the overlap of independent
simulations on the same network is quite high, and we
conclude that the frozen randomness of the network
dominates aggregate formation in these simulations for
the values of « used, and that the lower reproducibility in
the simulations is caused by the added stochastic ele-
ments.

Meakin et al. [13] studied the overlap of simulations at
f. on specific models and found strong similarities, and
an increasing overlap as the permeability ratio x was re-
duced. We interpret their results as follows: When the
fluctuations in the medium are increased (by increasing
the contrast between weak and good bonds) the overlap
increases because the influence of the other stochastic ele-
ments in the algorithm becomes even less important com-
pared to the medium.

For k=0, Oxaal et al. [15] found an even larger over-
lap between experiment and simulation, S ~0.75. The
reason for the high overlap was that the growth was
severely constrained to occur on the backbone of the
spanning cluster.

B. Scaling and interior growth

1. Theoretical expectations

Meakin et al. [13] described the dependence of the ag-
gregate mass M on a characteristic length R by the scal-
ing form

M(R)~R>*G(R/ER/L,) . 3)

The exponent D, =1.3 is the fractal dimension associated
with DLA on an infinite cluster at the percolation thresh-
old [15,19], £~(f—f.)" " is the usual percolation con-
nectedness correlation length as a function of the fraction
f of good bonds, f, is the percolation threshold fraction
of good bonds on the square lattice, and v=4% is the
correlation length exponent [20]. L, is a length set by the

bond permeability ratio «,
L ~x %, 4)

and a is a crossover exponent. G(x,y) is a crossover
function that describes how the fractal behavior changes
from that of DLA on a percolation cluster at f, to
M~R" (with D;=1.7) of DLA on a homogeneous
model as the pore space changes from a percolative
geometry to a uniform one by an increase in k or f or
both. Meakin et al. [13] confirmed Eq. (3) by averaging
over many simulations, and found that a=0.25, implying
a rather slow variation with «.

Qualitatively, L, is the path length along good bonds
that represents the same viscous pressure drop in the
viscous fluid as one bad bond. L, must change from
infinity to one as k increases from zero to one.

Meakin et al. [13] discussed the form of G(x,y) in
some limiting cases: As k—0 the length scale L,— oo
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and for f =f, we have scaling of DLA on a percolation
cluster [19,15]. As the fraction f of good bonds changes
away from f,, the correlation length £ decreases and will
eventually become less than the model size L. On length
scales R < ¢ the aggregate mass will scale as if on a per-
colation cluster with an exponent D, =1.3, whereas at
length scales R >>£ the model will be homogeneous and
the aggregate mass should scale with D, =1.7.

Thus, provided that x<<1 and £ is in the range
a <§<R, <L <L,, a crossover in the scaling of M as a
function of size from D,=1.3 to D,=1.7 is expected.
As the permeability ratio « increases the associated
length L, decreases, i.e., the contribution from weak
bonds to transport properties of the model increases. As
k—1 the scaling behavior on the homogeneous model,

M~R"" with D,=1.7 is expected, independent of f.

2. Interpretation of results

Even though the present experiments are close to the
limit of what we may achieve in practice today, the range
of length scales available in these model systems is limit-
ed to 0.4 <log;oR =< 1.8, as discussed in Ref. [16]. To es-
tablish a power-law behavior, at least an order of magni-
tude in the argument is needed. An even larger range
may be required to determine crossover behavior. To dis-
tinguish the different scaling regimes and the crossover
between them, as expected from theory, we need a large
range of length scales, so that the various characteristic
lengths are well separated. We would like to have
a <§<R, <L, <L, where each length scale is separated
from its neighbors by one order of magnitude or more.
With the available range of length scales, we cannot dis-
tinguish crossover behavior. However, since we have a
record of how the structure develops, we can extrapolate
the effective exponents of the experimental and simulated
aggregates from the asymptotic approach of M (R)
curves for early stages to the M (R) curve for the last
stage, as shown for experiments in Fig. 3. The data in
Figs. 3 and 4 show that aggregates scale with an effective
cluster dimension [Eq. (2)] D, =1.52%0.1 that lies between
the theoretical limits D, =1.7 and D, =1.3. The value of
D, does not depend on the imposed variation in f.

For simulations, the value of the effective cluster di-
mension found in this way is further confirmed by aver-
ages taken over many models with f and « values similar
to the experimental values, and by simulations on
401X401 models. Here we obtained D,=1.6+0.1, in
good agreement with the value found on the experimental
models. The effective cluster dimension D, characterizes
the geometric properties of the aggregates. Reanalyzing
the simulation results of Meakin et al. [13] (L =401,
©=0.002 and f =0.50) for aggregate sizes comparable to
those of the present experiments and simulations, we also
find D,=1.6.

3. D, and interior growth

Our results show that the radius of gyration exponent
D, should be used with some care, since aggregates that
show internal growth give large values of D,. In Sec.
III A we defined interior growth as mass added to the ag-
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gregate at radii R <R,(¢) at times later than time ¢z. Ob-
viously, M increases irrespective of where the new mass is
added, but R, can have a very slow growth when mass is
added in the interior of the aggregate, and D, can be-
come larger than the D, for the full-grown cluster. The
interior growth seems to be a natural part of the cross-
over behavior from an effective fractal dimension of D, at
small radii to D at large radii.

Figures 3(a) and 3(c) show this effect. Each point
M (R,) corresponds to an M (R) curve, since the total
cluster mass is plotted at the radius of gyration R,. The
slope of the M(R,) curve fitted to these data points is
steeper than the curve M (R) for the last stage. We have
encountered simulations with strong internal growth that
gave a value of D, larger than 2, which is not a meaning-
ful result when viewing D, as a geometric dimension.

It can be argued that D, can describe dynamic aspects
of the aggregate growth. The M (R) curves of early
stages have low slopes, and only subsequent interior
growth allows clusters to obtain the final effective
scaling exponent D,=1.5. The crossover from “low-
dimensional” growth to more compact growth is not ex-
pressed by D, or D, of the fully grown clusters, as antici-
pated by Meakin et al. [13]. On the contrary, both these
exponents have higher values at small radii than the
values found over the whole range of radii. The
difference A=D,—D,_ suggested in Ref. [16] measures
the change in the scaling properties of the aggregate dur-
ing growth.

In contrast to our findings, it has been established that
standard DLA simulations grow mainly in an active zone
outside R, [18]. Experimentally, interior growth is ob-
served on two models. Similarly interior growth may or
may not be observed in independent simulations on the
same model.

As stated in Sec. III A, we find that interior growth is
linked to details in the network geometry that sometimes
produce favorable paths that break the tendency for out-
wardly directed growth observed in homogeneous sys-
tems, and that permit slow-growing arms in the interior.
Simulations are noisy compared to experiments, i.e., due
to the random processes inherent in the simulations,
sometimes paths that induce interior growth are chosen
and sometimes not. Simulations more often have interior
growth on those experimental models that show interior
growth than on those that do not, indicating that the
fluctuations linked to the network geometry dominate
over the other unrestricted random choices that are made
in the simulations.

4. Crossover at R,

The crossover functions F (x) [Eq. (2)] plotted in Fig. 4
show that in the range R =R, experimental data fall al-
most entirely within one standard deviation around the
average of ten independent simulations on the respective
models.

We conclude that experiments are well represented by
simulations. The conclusion is strengthened by the obser-
vation that repeated and independent simulations on oth-
er network realizations with the same values of f and «
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show crossover functions with model-dependent shapes
having more pronounced differences than between experi-
ment and simulations on the experimental model. Clear-
ly the detailed structure of the networks influences aggre-
gate growth, also as expressed in details of the scaling at
length scales R =R,. Simulations on 401X401 models
confirm the behavior found for smaller models.

The work of Meakin et al. [13] mainly addressed aver-
age results obtained from many simulations on different
models at the chosen values of f and «. This approach
does not capture the model-dependent aspects of the
growth, such as model-dependent crossover functions and
model-dependent interior growth.

C. Effects of changing f

As f is varied, the aggregates look different for each
model. Each model produces viscous fingering patterns
that are characteristic of the model, and that are quite
reproducible. For example, the experiment at f~0.48
produced a large aggregate, with five or six main arms
that grew symmetrically. Had one arm dominated as in
the other models, growth could not have continued that
far before breakthrough. Visual differences show that the
relative weight of the different paths changes as weak
bonds are replaced by good bonds. The differences in ap-
pearance are not accompanied by differences in easily
measurable quantities such as scaling and overlap.

A crosslike aggregate seems to develop in the experi-
ment at f=0.52. This may indicate that aggregate
growth on this model “feels” that the model starts to
resemble the homogeneous square lattice. More experi-
ments on other model realizations at f=~0.52 and above
are needed to confirm this suggestion. If aggregates
grown on models at these values of f and k were to show
a systematic fourfold symmetry similar to Fig. 5(d), we
may then be observing the bounds for where the DLA al-
gorithm can be applied. In that case, this bound need not
be symmetric around f., and will also depend on «.

As f was changed, no variation in the effective dimen-
sions and the overlap was observed. Adding weak bonds
to the pure percolation case drastically reduces the domi-
nance of the percolation-cluster backbone in the trans-
port process. As k increases (L, decreases) this effect be-
comes more important.

The models we used had a permeability ratio k =0.004,
and we estimate the crossover length L, as follows: We
found an effective scaling exponent D, ~1.5,thus L, <L,
since if Lk << L we would see the characteristic scaling of
DLA independent of the lattice geometry in simulations,
and fourfold ‘“‘snowflakes” in the experiments. Our ex-
periments were also different from experiments on a per-
colation cluster [15]. We did not observe D,=1.3, and
we may conclude that L, is not much larger than L.

Referring back to Fig. 1, the model with f=0.45 is
best described as homogeneous. Here the correlation
length &, is small and permits averaging at the scale of
the model. In addition, the low-permeability bonds form
a homogeneous network with embedded clusters of good
bonds. We therefore expect an effective scaling exponent
D~1.7. At the other values of f we have



4 VISCOUS FINGERING IN SQUARE-LATTICE MODELS WITH . ..

L,~§~R,~L and scaling predictions seem futile.

We may visualize the aggregate as a collection of paths
that live on clusters of good bonds, and that are linked to
each other through weak bonds. In an experiment, a
given pattern of paths is drained. Two length scales, L,
and &, participate in setting up such paths. We may
think of L, as a path length along good bonds, whereas &,
is a distance between good bonds somehow connected.
We have kept L, constant as &;(f) was changed, and for
f=0.45 it is reasonable to assume that §; <L, and that
any connected path along good bonds on a cluster in that
model will be shorter than L,. Qualitatively this means
that within clusters only good bonds are used, the weak
bonds are reserved for entering a new cluster.

In the models with higher values f, & may increase
indefinitely, giving long and tenuous paths (that scale
with exponent 1.3) along good bonds within a cluster.
However, if the path along an equipotential surface in the
pressure field exceeds L,, a weak bond leading to radial
growth will be preferred. Thus L, is the dominating
length scale in our models and limits the excursions of
the paths for all §,(f)>L,, i.e., we see no variation with
f.

The arguments in the paragraphs above lead to the
conclusion that the model geometries are in the middle of
a crossover regime. Theory [13] makes us expect aggre-
gates that have an effective fractal dimension intermedi-
ate to the limiting values 1.3 and 1.7. Since we find
D_=1.6 in simulations on many models, the model size L
may be so large compared to L, that we have almost
homogeneous models. The fractal dimension we find is
close to the value found for viscous fingering in random
single-layered bead pack models, D, =1.62 [10]. Turning
this argument around, these numbers could indicate the
opposite: That random monolayer bead pack models are
not quite homogeneous, but have a structure consisting of
well connected regions embedded in a background of
lower permeability (or vice versa), and that the fractal di-
mension D, =1.62 of VF in these models reflects the
geometric structure in the model. The VF aggregates of
Maldy and co-workers [10,21] look more like those ob-
tained in our experiments and in the 401X401 simula-
tions by Meakin et al. [13], than like ordinary DLA (on
or off lattice). However, to resolve this question experi-
ments on larger two-permeability models, where the
crossover length L, is well separated from the system
size, are needed [22].

D. Outlook

Experimental data are hard to acquire compared to
generating data numerically. In future it may be possible
to acquire experimental data with charge coupled device
(CCD) cameras, which would eliminate the need to digi-
tize film (an extremely laborious process). Then better
statistics would become available by running experiments
on many model realizations at chosen values of k and f.
Presently CCD cameras that can acquire several pictures
per second are not available. This rate, with a resolution
of at least 2000 X 2000, is necessary for such experiments
at high Ca.

In the future the effect of adding noise reduction [23]
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in the modified DLA algorithm we have used here could
be studied. Considering the high overlap we obtain here,
and the strong influence of the network on simulation re-
sults, we expect that the addition of some noise reduction
will give a significant increase in overlap.

V. CONCLUSIONS

For a system where the pore space had a percolation-
cluster geometry [15], the displacement front was found
to be fractal, with dimension D =1.3. It was geometri-
cally confined as it had to remain on the percolation-
cluster backbone. In the present models the pore-space
percolation geometry was modified by adding low-
permeability bonds, and the displacement front geometry
was strongly changed compared with viscous fingering on
percolation-cluster geometry, and with viscous fingering
on homogeneous models.

We fixed the permeability ratio at k=0.004, and varied
the fraction f of good bonds in the models, in the range
0.45<f<0.52 close to the percolation threshold for
bond percolation. For the values of f tested, we found
that the effective fractal dimension of both experimental-
ly and numerically grown aggregates was D, ~1.5. We
did not find the geometric crossover from D =1.3 to 1.7
in the final aggregate as expected by Meakin et al. [13],
but have observed a dynamic crossover from low-
dimensional growth in early stages of the aggregates, to
D, =1.5in the final aggregates.

Experimental and simulated crossover functions F(x)
were model dependent, but showed similar overall
features when obtained on the same experimental models.
We believe this is a consequence of the similarities in
these networks. Crossover functions for simulations on
different network realizations showed variations that
were more pronounced than variations within a given
model.

We found high experiment-simulation overlap,
S =0.53, for aggregates grown on the same model.

We could not find any systematic variations in overall
scaling properties, crossover functions, or overlap that
may be caused by variations in the fraction of high-
permeability bonds.

The usually strong crossover with the correlation
length &(f) is suppressed by the presence of weak bonds.
The weak bonds introduce a crossover length L, ~§ <L
that removes any variation with £ by short circuiting any
path that makes tangential excursions of length greater
than L,. Although weak bonds efficiently compete with
good bonds, the models exhibit fractal VF displacement
patterns that are strongly geometry dominated.

Meakin et al. [13] found a crossover from D =1.67 at
f=0.6 to D=1.57 at f=0.55 for k=0.0004. Our re-
sults are consistent with their numerical findings, but can
neither validate nor disprove these results. The experi-
ments combined with simulations allow us to conclude
that experiments are well described by simulations at the
tested values of f and x. Simple modified DLA simula-
tions described the observed fronts well, and showed the
dependence on detailed pore geometry observed in the ex-
periments. The algorithm provides a better characteriza-
tion of the displacement process than merely giving a
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fractal dimension, or presenting a crossover description
based on averages over many runs.
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