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We study the time-dependent self-diffusion coefficient for a suspension of interacting, spherical
Brownian particles. Guided by an exact result for a dilute suspension of hard spheres, we conjecture
that the Fourier transform of the memory function may be represented as a meromorphic function of the
square root of the frequency. We show that a two-pole approximation provides a suitable framework for
the analysis of experimental data.
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I. INTRODUCTION

The mean-square displacement of an isolated Brownian
particle grows with time at a rate proportional to the
diffusion coefficient. In a suspension of interacting
Brownian particles, the time dependence of the mean-
square displacement is more complicated. At short and
long times the growth is again linear, but with different
rates, so that one must distinguish a short-time and a
long-time diffusion coefficient. For dilute suspensions
these coefficients may be evaluated to first order in the
volume fraction [1—5]. The time dependence of the
mean-square displacement may be characterized by a
memory function [6,7]. Although one may derive a for-
mal expression for this function on the basis of the gen-
eralized Smoluchowski equation [5—9], relatively little is
known about its actual behavior. In this paper we sug-
gest that the memory function of self-diffusion may be
well approximated by a relatively simple expression in-
volving only a small number of parameters, which may be
determined either theoretically or experimentally.

It has been suggested by various authors [10,11] that
the memory function depends exponentially on time.
Such a time dependence would allow its calculation on
the basis of initial time averages. The necessary averages
have been evaluated for suspensions with direct pair in-
teractions of the Debye-Hiickel type and without hydro-
dynamic interactions by Nagele et al. [12]. However, the
predicted time dependence of the mean-square displace-
ment does not agree with the data from Brownian-
dynamics simulations [13]. Similarly, Cichocki and Hin-
sen [14] found in a computer simulation of a dense hard-
sphere suspension that an exponential dependence could
not describe the data. Rather, they were led to a
stretched-exponential behavior.

The time dependence of the memory function proposed
here is suggested by an exact result for the case of a dilute
suspension of hard spheres without hydrodynamic in-
teractions [15—17]. Guided by this result, we conjecture
that the Fourier transform of the memory function may
be represented as a meromorphic function of the square

root of the frequency. We show that a simple two-pole
approximation leads to excellent agreement with the
Brownian-dynamics data of Gaylor et al. [13]. A com-
parison with analytical results for dilute suspensions and
an analysis of the simulation data of Cichocki and Hinsen
[14] will be presented elsewhere. We have found that the
two-pole approximation gives an excellent fit of the data.
At high volume fraction the two-pole approximation pro-
vides a better description than the stretched exponential.

II. SELF-DIFFUSION COEFFICIENT

aP
at

where Xl is the Smoluchowski operator defined by

(2.1)

2)P= D= a
ax—

BP B4
ax+ axP (2.2)

Here D(X) is the 3NX3N diff'usion matrix, which de-
pends on configuration due to hydrodynamic interac-
tions. Furthermore, @=1/k Tiiand the potential @(X)
in Eq. (2.2) incorporates both a wall potential and the
direct pair interactions. The Smoluchowski equation

We consider N identical spherical particles performing
Brownian motion in an incompressible Quid with shear
viscosity q. The whole system is enclosed in a volume 0,.
To study self-diffusion we consider the Brownian motion
of a selected particle labeled 1. The particles interact via
a direct pair potential and via hydrodynamic interac-
tions, which are mediated by the Stokes fIow response of
the solvent Auid to the motion of the suspended macro-
particles. If R; denotes the position of the center of the
ith sphere, then the configuration of the entire suspension
may be described by the 3X-dimensional vector
X=(R„.. . , R~ ). The dynamical evolution of the
configuration X is assumed to be described by a time-
dependent probability distribution P(Xtt), which obeys
the generalized Smoluchowski equation [8]. In abbreviat-
ed form this reads
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(2.1) describes how the distribution function P(X, t) tends
to the equilibrium distribution Ui=LRi=g a

BR. (2.12)

P, (X)=exp[ —/34(X)]/Z(/3) (2.3)

in the course of time. The partition function Z(P) nor-
malizes the distribution to unity.

The self-diffusion coefficient may be defined from the
time-dependent scattering function at wave vector q W(t) =

—,
' ( [R,(t)—R,(0) ] ) . (2.13)

Thus, apart from the minus sign, the memory function
may be identified with a velocity time-correlation func-
tion [10]. The latter may be related to the mean-square
displacement of the selected particle, defined by

Fs(q, t) = lim ( expiq [R,(t)—R, (0) ] ),N~ oo
(2.4) By cumulant expansion of the scattering function defined

in Eq. (2.4) one finds that

where we take the thermodynamic limit N —+ ~, Q~ 00

at constant n =N/Q. The angle brackets indicate an
average over the equilibrium distribution (2.3), and the
time dependence of the position R& is governed by the ad-
joint Smoluchowski operator X such that
R,(t)=(exit)R, (0), with R,(0)=Ri. The operator X
is given by

—1W(i) ='lim InFs(q, t) .
&~0 q

(2.14)

=Ds(t)=Ds+ f Ms(O, t')dt',
dt o

(2.15)

It is straightforward to show from Eq. (2.8) that the rate
of change of the mean-square displacement is given by

a ae
BX BX BX

(2.5) where Dz is the short-time diffusion coefficient

Ds~=Ds(0 CQ) (2.16)

Gs(q, co) = 1

ico+q Ds(q—, co)
(2.7)

By the projection operator technique [6,7] one can derive
an equation of motion for the scattering function of the
form

dFs(q~ r)
qDs(q, oo )Fs(q,—t)

q'f M—s(q, t t')Fs(q, t')dt'—,
0

(2.8)

In the thermodynamic limit, the scattering function is in-
dependent of the wall potential. The one-sided Fourier
transform of the scattering function is given by

Gs(q, co)= f e' 'Fs(q, t)dt . (2.6)
0

We define the wave-vector- and frequency-dependent
self-diffusion coefficient Ds(q, co) from the identity

Equation (2.15) is used to define the time-dependent
difFusion coefficient Ds(t) The . long-time diffusion
coefficient D& is given by

Ds =Ds+ f Ms(O, t)dt=Ds+ ,'(Ui X 'U—',) . (2.17)
0

The main purpose of this paper is to study the time-
dependent diffusion coefficient Ds(t).

III. MEMORY FUNCTION TIME SCALE

It follows from Eq. (2.17) and the fact that X is a nega-
tive definite operator that the time-dependent diffusion
coefficient Dz(t), defined in Eq. (2.15), shows a decrease
from its short-time value D& to the long-time value D~.
In this section we define the time scale for the rate of
variation.

It is somewhat more convenient to consider the
difference

where the instantaneous term is given by ps(t)=Ds(t) Ds . — (3.1)

Ds(q, ~)=, (e
' 'Xe' (2.9) This is the relaxation function corresponding to the

memory function

Ds(q, co) =D~(q, ~ )+M+(q, co), (2.10)

where Mz(q, co) is the Fourier transform of the memory
function, defined as in Eq. (2.6).

We shall consider only the long-wavelength limit. In
this limit the memory function is given by [5,16]

and Ms(q, t) is the memory function. In Eq. (2.9) and in

the following, the thermodynamic limit is implied. By
Fourier transform of Eq. (2.8) one finds that the general-
ized self-diffusion coefficient may be expressed as

p&(t) = —f M, (O, r')dr'

It may be expressed as

p~(t) =Ds Ds ,'(Ui [R,(t) ——R, (0—)]—).

(3.2)

(3.3)

ps(~) =f e'"'ps(t)dt
0

is given by

(3.4)

From Eqs. (2.15) and (3.1) we find that the Fourier trans-
form

M (0, t) = —
—,
' ( U', e 'U', ), (2.11)

where Ui(X) is the velocity of the selected particle on the
Smoluchowski time scale [18]:

1Ps(a))= . [D~ Ds l&s(O, co)] . — —
LEO

This quantity has the dimension area.

(3.5)
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The time scale characterizing the variation of the
memory function, and hence that of the diffusion
coefficient Ds(t), may be defined by

rM= f tMs(O, t)dt f Ms(O, t)dt . (3.6)
0 0

The denominator is just D& —D&, and an integration by
parts with use of Eq. (3.2) shows that the numerator may
be expressed as —ps(0). Thus we have

(4.3)

where the scalar product is defined by

(A, lU', )= fP,q(X)gi(X)U', (X)dX, (4.4)

and (A,
l

is the corresponding left eigenvector. Substitut-
ing in Eq. (3.10) we find

rM Ps(0)/(Ds Ds —
) . (3 '7) and we have used the property

From the definitions (2.17) and (3.1) it follows that the
numerator may be expressed as

ps(0)= lim [W(t) Dst] —. (3.8)

Therefore, the time scale ~~ may be found experimental-
ly from the short- and long-time self-diffusion coe%cients,
and from the asymptotic behavior of the mean-square
displacement, as given by Eq. (2.14) in terms of the
scattering function [14].

The definition of the time scale ~~ presupposes that
ps(co) has a finite zero-frequency limit. If the limit exists,
then the low-frequency behavior of the memory function
is given by

M, (0, t) = —
—,
' y l(zlU', ) l'e -" . (4.6)

We consider instead the relaxation function ps(t), defined
in Eq. (3.1), which is given by

(4.5)

It follows from general properties of the Smoluchowski
operator that all eigenvalues A, are real and positive, ex-
cept for the eigenvalue 0, which corresponds to the equi-
librium distribution. Hence 19's(O, co) may be represented
as a sum of simple poles on the negative imaginary co axis
with positive residues. Correspondingly, the memory
function itself is given by a sum of decaying exponentials
with negative weights:

Ms(O, to) =(Ds Ds)[1+—icor~+o(oi)] .

By expansion of the correlation function expression

(3.9)
ps(t) =

—,
' gA, 'l(A, lUi) l

e (4.7)

M (0, )=—'(U', (' +X.) 'U', )

in powers of co we find

(3.10) In the thermodynamic limit we expect a continuous spec-
trum and therefore we replace the sum by an integral.
We cast the result in the form

Ps(0) =
—,
' ( U', X 'U', ), (3.11) S s(t) =(Ds Ds b's(«&M»— (4.8)

which shows that Ps(0) is always positive. From Eqs.
(2.17) and (3.7) it follows that the time scale rM may be
expressed as

with

ys(r) = f ps(u )e "'du. (4.9)

(3.12)

In model calculations on dilute systems we have found
that both moments may be evaluated and take finite
values. Henceforth we assume that the low-frequency be-
havior of the memory function is of the form (3.9).

IV. ANALYTIC BEHAVIOR

In this section we discuss the analytic behavior of the
Fourier transform 19's(O, co) of the memory function in
more detail. A number of properties may be derived ex-
actly from its definition.

The expression (3.10) for 19's(O, co) may be regarded as
a diagonal matrix element of the resolvent operator relat-
ed to the Smoluchowski equation. Formally, the spectral
decomposition of the resolvent operator reads

(ico+x) '= g lA, ) (A, l,
LCO I,

(4.1)

where lA, ) =g&(X) is the right eigenvector of X with ei-
genvalue —A, :

(4.2)

e) ]f —ps(u)du =1.
0 Q

(4.11)

The expressions (4.8) and (4.9) may be related to the in-
verse Fourier transform

ps(t)= f Ps(~)e ' 'd~. (4.12)

Here we introduce the new variable

1+l
U co

2
(4.13)

where i/co is defined with branch cut along the negative
imaginary co axis. The integral in Eq. (4.12) becomes

2ps(t)= —f ives( iU )e ' 'du—, (4.14)

The function ys(r) was introduced by Cichocki and Hin-
sen [14]. The spectral distribution ps(u) is positive, di-
mensionless, and normalized to unity:

f ps(u)du =1 . (4.10)

Moreover, we find from Eq. (3.7)
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1 oo 2
p&(r) =—j Fz(v)e ' 'du, (4.15)

where Fs(u) is defined by

F( )='p ( — ). (4.16)

The real U axis is a natural boundary for this function,
corresponding to the negative imaginary co axis. %'e
decompose the limiting value along the real U axis into
real and imaginary parts:

Fs(v ) =Fs(v)+i' (u) . (4.17)

where the contour C in the complex U plane runs along
the diagonal from —(1+i)~ to 0 and along the other di-
agonal from 0 to (1 —i)~. From the analytic properties
of ps(co) discussed above, it follows that the integrand in
Eq. (4.14) is analytic in the lower half of the complex v

plane. Hence for t &0 we can shift the contour to run
along the real v axis and obtain

One easily checks the symmetry properties (4.18). From
Eq. (4.19) one finds the spectral density

1 &2u
ps(a) =-

1+9 (5.5)

Fs(v) =i +
V+ V V U

(5.6)

with

3~ =( I+i)QDp, u+ =(+1+i) 1

+2rp
(5.7)

This is a very broad spectrum, decaying slowly for large
u. In Fig. 1 we plot ps(u) versus log, pu.

The explicit expression for the time-dependent
difFusion coefficient Ds(t) may be found from Eqs. (3.1),
(4.15), and (5.4). Decomposing the right-hand side of Eq.
(5.4) into partial fractions we find

It follows from Eq. (4.3) that these have the symmetry
properties

The time-dependent diffusion coefFicient is given by

Dz(t)=D&+2+iv(v+v t )+3 iv(u Vt ), (5.8)
F~(v) =Fs( —v), Fs (v) = Fs (

—u—) . (4.18)

Introducing the variable u = U ~~, we can therefore
rewrite Eq. (4.15) in the form (4.8) with the identification

where the function w (z) is related to the error function of
complex argument [19]. From the known properties of
this function one finds the short-time behavior

F,'(u) (5 9)1ps(v'r~) =
rrrM(Ds Ds )— and the long-time behavior

D~(t)=D, [1 2/+&2/—re(rp/r)' '+0(r ')]This identity allows the calculation of the spectral density
ps ( u ) from the Fourier transform Ps ( co ).

as taboo . (5.10)

(4.19)
D~(r)=Dp[1 4/1/2rlrrr—p+O(r)] as i~0+,

V. HARD SPHERES
WITHOUT HYDRODYNAMIC INTERACTIONS

As an example of the formalism developed in the
preceding sections, we consider a dilute system of hard
spheres of radius a, difFusion coefficient Do, and without
hydrodynamic interactions. For this system, the memory
function may be calculated exactly [15—17] to first order
in the volume fraction P= ', dna —To thi. s order one finds

[»]

Both expressions may also be obtained from the behavior
of the spectral density (5.5) at large and small u. In Fig. 2
we plot ys(r) =ps(r)/2$Dp as a function of t/rp.

1.2

1.0-

I + iv 1/2rp
Ms (0, co ) = —2Dpg

1+iu )/2rp u'r, —(5.1)

Ds=Dp, Ds=Dp(1 —2P) . (5.2)

where ~o=a /Do. The short- and long-time diffusion
coefficients are given by

ps(~)

0.8-

0.4-

:Il:
J
g 1:
f t:

C
f: t;
l: L'

I

From Eq. (3.5) one finds

Ps(~)= 2@a

1+iv +2rp U rp
(5.3)

0.2-

0.0
-5

2iga u

I +iu +2rp urp— (5.4)

According to Eq. (3.7), the memory function time scale is
simply rM =rp. The function Fs(u), defined in Eq. (4.16),
is given by

lOgI0 ~

FIG. 1. Plot of the spectral density pz(u } for o.=0.4 (dotted
curve), o.=0.8 (dashed curve), and o.=&2 (solid curve}. The
value o.=&2 corresponds to a dilute system of hard spheres
without hydrodynamic interactions.
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1.0 nary v axis with real residue, or occur in conjugate pairs

0.9 '

r

0.8 ':
I:1:I:

0,7

VS(t/~M) „
0.5

g. + g. A + A

From Eq. (3.1) we find the sum rule

Ds —D,'=pa, .
J

(6.3)

(6.4)

0.4

0.3

It follows from Eqs. (3.7) and (4.16) that the memory
function time scale ~~ is 6nite provided

0.2
A.l

O (6.5)

0.1

0.0
0

r

I I

4 5 6

The time scale is then given by

t/7M

FIG. 2. Plot of the relaxation function yz(t/~~) for o.=0.4
(dotted curve}, o.=0.8 (dashed curve), and o. =&2 (solid curve).
The value o. =&2 corresponds to a dilute system of hard
spheres without hydrodynamic interactions. The values o.=0.4
and 0.8 are typical for dense systems.

VI. CONJECTURE

A.
Fs(v) =i+

j JU U

(6.1)

where all poles I u j lie in the upper half of the complex u

plane I+(u). It follows immediately from Eq. (4.15) that
the corresponding relaxation function is given by

ps(t) =g A/w (uj &t ) . (6.2)
J

It is clear that each pole U sets a time scale and that the
residue A. determines the corresponding amplitude. In
this regard the expansion (6.2) is similar to an expansion
in normal modes. However, the w functions vary over a
much wider range. From the symmetry properties (4.18)
it follows that the poles U either lie on the positive irnagi-

It is a reasonable guess that the dynamics of a hard-
sphere system at higher density, or of systems with more
complicated interactions, is not too different from that of
a dilute hard-sphere suspension, analyzed in the preced-
ing section. Thus we conjecture that the function Fs(v),
defined in Eq. (4.16), may be analytically continued into
the upper half of the complex U plane, where it is mero-
morphic. We have veri6ed this conjecture for simple
model systems. Together with additional assumptions on
the location of the singularities, the conjecture allows an
accurate description of the time dependence of the
memory function in terms of a small number of parame-
ters. In Sec. VIII we demonstrate this by way of example
for some of the data of Gaylor et al. [13]. In a separate
publication we shall validate our conjecture by a compar-
ison with the simulation data of Cichocki and Hinsen
[14].

We assume for simplicity that the singularities are sirn-

ple poles. In analogy to Eq. (5.6) we conjecture that the
function Fs(u) may be expressed as

gA v gA, .
J J

For large t the w function behaves as

(6.6)

w(u t )= — —+ — +O(t ~
) . (6.7)

v t 2(v t )

From Eqs. (6.2) and (6.5) we therefore find the long-time
behavior

Jfl (t)= — y ' t +O(t '
)

2&7r u'j
(6.8)

Thus, for large t, the behavior of pz(t) is dominated by
the poles near the origin. This suggests that the sum in
Eq. (6.2) may be well approximated by only a small num-
ber of poles. We de6ne the amplitudes of the long-time
behavior CI by

ps(t)=(Ds D)C

(HAMI—

t) +O(t ) . (6.9)

The long-time coefficient CL may be obtained from
theory or experiment. As we shall show in Sec. VIII, the
values of the diffusion coefficients D& and Dz, the relaxa-
tion time ~~, and the coefficient CI of the long-time tail
suffice to determine the numbers necessary for a two-pole
approximation of the time-dependent diffusion coefficient
Ds(t).

VII. CONTINUED FRACTION

p, (u)
Ij,s(co) =(Ds Ds )rM . du—.

0 Q LCD'~
(7.1)

We denote z = —i co~~ and transform to the variables

If there are more than two poles in the sum (6.1), then
there are additional constraints on the possible values of
the residues and poles. These follow from the relation
(4.16) between Fs(u) and ps(co), and the nature of the
correlation function expression (4.7) for ps(co). These
realtions imply that Fs (v) must be positive along the real
U axis. The constraints are best expressed in terms of the
continued-fraction representation of the function Ps(co).

From Eqs. (3.4) and (3.8) we find
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ZQ w-
Zp+ ll

Zp

Zp Z
(7.2)

where ZQ is a positive number, which may be chosen con-
veniently at a larger stage. The integral in Eq. (7.1) trans-
forms to

in terms of the variable v defined in Eq. (4.13). Thus the
assumed behavior of the continued fraction corresponds
to a meromorphic function Fs(v). The properties of the
coefficients [a ], [b ]i.mply constraints for the ampli-
tudes [ A ] and the location of the poles [ v ].

p, (u)
du =wG(w),

0 ll 1$7M

where G (w) is given by the Stieltjes integral

G(w)= f dy,
0 W

with the positive weight function

g(y)=y 'ps(zoy ' zo)—.

The normalization conditions (4.10) and (4.11) imply

(7.3)

(7.4)

(7.5)

VIII. TWO-POI. E APPROXIMATION

ap
G(w) =

w b, ——16a,f (w)
(8.1)

Substituting Eq. (7.9) and using the conditions (7.6) we
find that this may be written

In this section we consider the simplest case, where the
meromorphic function Fs(v ) has only two poles in I+ ( v ).
If the continued fraction (7.7) saturates at the second lev-
el, then the function G (w) becomes

G(O)= —I'g y dy=
0 ZQ

(7.6a) G(w)= (8.2)
(zo+1)aow zpao+8a, v'w(w —1)

G(1)=J dy= 1 .
0 1 —y

(7.6b) This corresponds to the Fourier transform

According to a general theorem, the function G(w) may
be expanded as the so-called J fraction [20]:

1
Ps(~) (Ds Ds )rM (8.3)

1 + ir Q i Fdic~ i coM

G(w) = ap a&

w —b —w —b1 2

(7.7)
with the denominator depending on the dimensionless pa-
rameter

f (w)=
w —

—,
' —f(w) '

which is immediately solved for f (w) with the result

f (w)= —,'w —
—,
' —

—,'&w(w —1) .

(7.8)

(7.9)

As a consequence, the weight function g(y) in Eq. (7.4)
has support over the whole interval (0,1). The transfor-
mation (7.2) maps this interval into the negative imagi-
nary cu axis, with w = 1 corresponding to co=0, and w =0
to co= i oo. The s—quare root in Eq. (7.9) may be ex-
pressed as

lU Z07 M
w(w —1)=

Zp+ U 7M
(7.10)

with positive coefficients [a. ], [bj ], which may be related
to the moments of the weight function g (y) by means of a
known algorithm. The properties of the coef5cients
[a ], [b }are describ. ed in the monograph by Wall [20].
The continued fraction converges at any point in the w

plane at a finite distance from the interval (0,1). The
number zo, introduced in Eq. (7.2), may be used to im-

prove the rate of convergence.
Our conjecture of the preceding section amounts to the

assumption that the coefficients [a~ ], [bj ] saturate to
constant values a„=—,', and b =

—,'. If we accept this

limiting behavior, then the continued fraction can be ex-
trapolated in a simple way. Suppose from level n we re-
place all coe%cients by their asymptotic values. Then for
the continued fraction starting at level n we have the
closed expression

8a)

ap Zp

(8.4)

From Eq. (4.16) we find for the function Fs(v) the two-
pole approximation

lU
Fs(v) = (Ds Ds )rM

1 + i cr+vrM v

The denominator has roots at U =u+ with

v+ = [io+(4 o)' ]l2+—rM .

(8.5)

(8.6)

+M
A+ =+(Dss Dsi)

4—o.
(8.7)

For 0 & a & 2 the roots v+ lie symmetrically on both sides
of the imaginary v axis and the amplitudes A+ are com-
plex conjugates. For o. )2 the roots u+ are purely imagi-
nary and the amplitudes 3+ are real. From Eq. (4.19) we
find for the spectral density

ps(u) =—
2 z

1 o.&u
(8.8)

ir 1+(o —2)u +u
In Fig. 1 we plot the spectral density for three values of
O.

The time-dependent diffusion coeKcient is given by Eq.
(5.8). It may be written in the form

Ds(t) =Ds+ (Ds Ds )F(t lr~;o, l ),— .(8.9)

The fact that o. is positive guarantees that these roots lie
in I+(v). The function Fs(v) may be written as in Eq.
(5.6) with amplitudes

1/2
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where F(tlrM;o, 1) is a standard function encountered
in the theory of the motion of a sphere in a viscous Quid
[21]. The explicit expression is

14-

12

F(tlrM, 'a, 1)=

For short times

[v+w(v+&t )
—u w(v &t )] .

U+ U

(8.10)

Ds&M

10

F ( t Ir~; o, l ) =.1—20
rM

1/2

+O(t) as t~0+,

(8.1 1)

and for long times
3/2

0
0

t/rM

10

(8.12)

Hence in the two-pole approximation the long-time
coefficient Cl, defined in Eq. (6.9), is given by

FIG. 3. Plot of the normalized mean-square displacement
8'( t) /Dz ~M as a function of t /~~ for Dz /D& =0.2 and o.=0.4.
The initial slope D&/D& =5 and the asymptote 4+t/~M are in-
dicated.

0
CL = (8.13)

Conversely, the dimensionless parameter o. may be deter-
mined from the long-time coefficient CI, obtained either
in theory or in experiment. For cr =0

F ( t lrM; 0, 1 ) =exp( t /rM ) . — (8.14)

The deviations from the exponential function are strong-
est for large values of o.. The case of a dilute system of
hard spheres, discussed in Sec. V, corresponds to the
value cr =i/2. In Fig. 2 we plot the function ys(tlr~),
defined in Eq. (4.8), for three values of cr.

Finally, we consider the mean-square displacement
8'(t), which is the quantity obtained directly from exper-
iment according to Eq. (2.14). From Eqs. (2.15) and (8.9)
we find in the two-pole approximation

In Fig. 3 we plot the function 8'(t)IDsrM for the values
D& /D& =0.2 and 0 =0.4. In the analysis of experimen-
tal data the time scale ~M may be found from the inter-
section of the asymptote with the ordinate axis. One may
find the parameter o. by Atting the intermediate and
long-time behavior.

In Fig. 4 we demonstrate that the two-pole approxima-
tion may be used successfully in a comparison with exper-
iment. We plot the ratio W(t)IDst, as obtained in
Brownian-dynamics simulations by Gaylor et al. [13],
and compare with our theoretical curve, as given by Eq.

1.0

0.9-
8 (t) Dst+(Ds Ds )rMF&(t/rM , cr, 1), '

where the function F, (tlrM;o, 1) is given by

(8.15)
0.8 t-

0.7

F, (tlrM;cr, 1)=1—
M U+ V U+

w(u+&t ) W(t) 0.6

D~~t
0.5

w(u &t ) 04

From Eq. (8.11) we find for short times
3/24o. tF, (tlrM;cr, 1 ) =

(8.16)
0.3

0.2

0.1

0.0 I

10 12
I

16 18

as t ~0+, (8.17)

and from Eq. (8.12) for long times
1/2

F, (t/rM;o, l ) = 1—.
rr

+O(t ') . (8.18)

FIG. 4. Plot of the ratio 8'(t)/Dzt as a function of t/~M as
obtained in Brownian-dynamics simulations [13]. We have used
the data shown in Fig. 12(c) of Ref. [12]. We compare with the
theoretical curve, as given by Eq. (8.15), for Dz/D+=0. 29,
~M =0.3 msec, and o.=0.86.
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(8.15). From the data we find the ratio Ds/Ds=0. 29
and the time scale ~M =0.3 msec. The theoretical curve
is plotted for these values and for parameter o. =0.86.
The agreement with the data is excellent. An earlier
theory of Nagele et al. [12], in which the memory func-
tion was approximated by a single exponential, was not
successful in the description of the time-dependent self-
diffusion coeScient.

IX. DISCUSSION

In this paper we have discussed the time-dependent
self-diffusion coefficient Ds(t), as defined in terms of the
mean-square displacement of a selected particle by Eq.
(2.1S). Guided by the exact expression for the Fourier
transform of the memory function for a dilute suspension
of hard spheres without hydrodynamic interactions, we
have conjectured similar behavior in more general cases.
Specifically, we have assumed that the Fourier transform
of the memory function for self-diffusion may be
represented as a meromorphic function of the square root
of the frequency and is well approximated by an expres-

sion with a small number of poles. We have shown that a
two-pole approximation leads to an accurate description
of Brownian-dynamics data. We suggest that experimen-
talists analyze their data in terms of the representation
proposed above.

From a theoretical point of view, our conjecture may
be verified by comparison with exact calculations on di-
lute systems. The details of such a comparison will be
presented elsewhere. It is of particular interest to study
the dependence of the memory function on the parame-
ters of the system, such as density and pair interaction.
Our conclusion is that the theory presented above pro-
vides a suitable framework for the analysis of the time
dependence of self-diffusion. We expect that the theory
may be also applied to other transport properties of in-
teracting Brownian particles.

ACKNOWLEDGMENTS

We thank the Heinrich-Hertz-Stiftung and the
Deutsche Forschungsgemeinschaft for financial support.

*Also at: Institute of Fundamental Technological
Research, Polish Academy of Sciences, Swietokrzyska 21,
00-049 Warsaw, Poland.

[1]G. K. Batchelor, J. Fluid Mech. 83, 97 (1976).
[2] G. K. Batchelor, J. Fluid Mech. 131, 155 (1983); 137,

467(E) (1983).
[3] B. Cichocki and B. U. Felderhof, J. Chem. Phys. 89, 1049

(1988).
[4] B. Cichocki and B. U. Felderhof, J. Chem. Phys. 89, 3705

(1988).
[5] B. Cichocki and B. U. Felderhof, Phys. Rev. A 42, 6024

(1990).
[6] B.J. Ackerson, J. Chem. Phys. 64, 242 (1976).
[7] B.J. Ackerson, J. Chem. Phys. 69, 684 (1978).
[8] P. N. Pusey and R. J. A. Tough, in Dynamic Light Scatter

ing and Velocimetry: Applications of Photon Correlation
Spectroscopy, edited by R. Pecora (Plenum, New York,
1982).

[9] S. Hanna, W. Hess, and R. Klein, Physica A 11, 181

(1982).
[10]P. N. Pusey, J. Phys. A 11, 119 (1978).
[11]J. L. Arauz-Lara and M. Medina-Noyola, J. Phys. A 19,

L117 (1986).
[12] G. Nagele, M. Medina-Noyola, R. Klein, and J. L.

Arauz-Lara, Physica A 149, 123 (1988).
[13]K. J. Gaylor, I. K. V. Snook, W. van Megen, and R. O.

Watts, J. Chem. Phys. Faraday Trans. 2 76, 1067 (1980).
[14] B. Cichocki and K. Hinsen, Physica A 166, 473 (1990).
[15] B. J. Ackerson and L. Fleishman, J. Chem. Phys. 76, 2675

(1982).
[16]B.U. Felderhof and R. B. Jones, Physica A 122, 89 (1983).
[17]B. Cichocki and R. B.Jones, Z. Phys. B 68, 513 (1987).
[18]B.U. Felderhof, Physica A 147, 203 (1987).
[19]Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1965).
[20] H. S. Wall, Analytic Theory of Continued Fractions (Van

Nostrand, Princeton, 1948).
[21] B.U. Felderhof, Physica A 17S, 114 (1991).


