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Renormalization-group theory for the modified porous-medium equation
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We analyze the long-time behavior of the modified porous-medium equation B,u =Dhu'+" in d di-

mensions, where n is arbitrary and D=1 for B,u )0 and D=1+e for B,u (0. This equation describes
inter alia the height of a groundwater mound during gravity-driven Bow in porous media (d =2, n =1)
and the propagation of strong thermal waves following an intense explosion (d =3, n =5). Using gen-

eral renormalization-group (RG) arguments, we show that a radially symmetric mound exists of the
form u(r, t) —t '" + 'f(rt ' +s', e), where B=1/(2+nd) and a and p are e-dependent anomalous di-

mensions, obeying the scaling law nBa+(1 nd—B)P=O We. calculate a and P to O(e), for general d and

n, using a perturbative RG scheme. In the case of groundwater spreading, our results to O(e') are in

good agreement with numerical calculations, with a relative error in the anomalous dimension a of
about 3' when e is 0.5.

PACS number(s): 47.55.Mh, 28.70.+y, 47.40.—x, 64.60.Ak

I. INTRODUCTION

In many physical problems, one is concerned with the
limit. that one of the dimensionless parameters in the
problem, IIp, tends to zero. The quantity of interest, II,
expressed in dimensionless form as a function,
f( Ilo, II„.. . , II„),of all of the dimensionless parameters
in the problem, IIp, H&, . . . , II„, is often assumed to be
well behaved as IIp~0:

ll-f(0, 11„11„.. . , 11„) as Ilo 0.
This being the case, Hp may be safely ignored from the
outset, and the problem simplified. However, as Baren-
blatt has emphasized [1], this is often not the case. In-
stead, with an appropriate choice of exponents
a, u„. . . , a„, the asymptotic behavior is of the form

II„
II Hpg . ~ as IIp 0

rr" II "
p p

(1.2)

where g will be referred to as a scaling function. The ex-
ponents are not predicted by dimensional analysis, but
must be determined directly from the problem at hand.
Such behavior, a consequence of the incomplete self
similarity in the governing dimensionless parameters, has
become known as intermediate asymptotics of the second
kind [1]. The use of the term "intermediate" is clearest
in nonequilibrium problems, where Hp may be taken to be
inversely proportional to time, t: here the connotation is
of a scaling regime prior to the final, and usually trivial,
time-independent state of the system. Barenblatt [1] has
provided many diverse examples of this phenomenon,
ranging from classical elasticity theory, to shock-wave
propagation and fluid flow in porous media. In addition,
the problem of velocity selection in dendritic growth ap-
pears to be in this category of problems, too [2]. Another
set of problems, which may be related to the above, are

a, u (x, t) =De, u '+", (1.3)

which describes a variety of physical phenomena, ranging
from groundwater flow under gravity to radiative heat
transfer following intense explosions [1,13]. The notation

denotes the Laplacian operator in d dimensions.
Equation (1.3) is intrinsically nonlinear, yet it is possible
to make progress in situations of sufficiently high symme-
try that the similarity solution due to Zel'dovich and
Kompaneets [14] may be used as a starting point for per-
turbation theory.

As in our earlier studies, the transport coefficient D is
assumed to be a discontinuous function of B,u:

1 for (t), u )0)
D= '

1+e for (t), u (0). (1.4)

those in which there is a statistical quantity that exhibits
intermediate asymptotics of the second kind. We&1-

known examples [3] include critical phenomena [4] and
spinodal decomposition [5].

Recently, it was shown [6—8] that the exponents
a, a&, . . . , a„are the anomalous dimensions of the renor-
malization group (RG), and may thus be computed, euen

in cases where there is no statistical aspect to the physical
problem. This RG technique has been applied to the
Barenblatt equation, governing the flow of an elastic fluid
through an elastoplastic porous medium [1,6—8],
convection-diffusion transport with irreversible sorption
[9], and two problems in linear continuum mechanics
[10]. In all of these problems, the calculation of the
anomalous dimensions was accomplished through pertur-
bation theory about a linear problem, using either the
Gell-Mann —I.ow method [6,7, 11] or the fixed-point for-
mulation of Wilson [3,8, 12].

The purpose of this paper is to extend the RG tech-
nique to a modification of the so-called porous-medium
equation in d dimensions,
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u(x, t)- (1.5)

where r —= ~x~,

How this form for D arises is discussed in detail by
Barenblatt [15]:in the case of the gravity-driven fiow of a
groundwater mound in a porous medium, the behavior of
D reflects the fact that there is a fundamental asymmetry
between flow of water into and out of a pore. When wa-
ter flows into a pore, it occupies a certain fraction of the
pore, whereas when water flows out, a thin wetting layer
is left behind. Thus, the dynamics in the part of the
mound where water is draining out of previously filled
pores is different from that in those parts where water is
filling previously empty pores.

In general, such discontinuous behavior of the trans-
port coefficient in linear or nonlinear diffusion equations
reflects the presence of a dissipative or loss mechanism,
which breaks the conservation law usually associated
with these equations. Nevertheless, u '+" is continuous
and even twice differentiable. Its first derivative is con-
tinuous because the flux must be continuous for physical
reasons. The second derivative is trivially continuous
everywhere, except possible at the point in space where D
is discontinuous; but this occurs when 6&u '+"=0.
Hence, the second derivative must be continuous every-
where, although the third spatial derivative of u '+" may
exhibit a discontinuity where A&u '+"=0. The existence
and uniqueness of the solutions that we seek has been
rigorously proved in the case d =1, n =0 (the so-called
Barenblatt equation) by Kamenomostskaya [16] and in
the case n =0, d ~ 1 by Kamin, Peletier, and Vazquez
[17]. The latter authors have also proved the existence,
uniqueness, and some other analytic properties of the
anomalous dimension in the case that they consider. To
our knowledge, no such proofs are available for the case
n )0: these would be useful, being essentially proofs of
renormalizability, a property that we have had to assume
in the present paper. We emphasize that such an as-
sumption is perfectly natural, and corresponds to the as-
sumption that a phenomenological description of the dy-
namics is possible [6,10].

The long-time behavior of the porous-medium equa-
tion, starting with a radially symmetrical initial condition
for u that decays sufficiently fast at infinity, is of the form

(1.9)

An infinitesimal perturbation, 5u, present at time t0 may
grow or shrink as t ~ 00; if the perturbation shrinks, then
the solution is linearly stable. Without loss of generality,
we may write the perturbation in the form

5u (x, t)- t [5AF(g)+ ri(g, t) ] . (1.10)

The first term in the square brackets simply represents a
change in the amplitude of the similarity solution. The
last term represents the true deviation from the similarity
form. Thus, the correct criterion for stability is that
flu, ~0 as t~ ~.

In the present case, Barenblatt [1] has performed the
linear stability analysis for the Barenblatt equation, with
the result that the similarity solution is linearly stable. It
is straightforward to verify that a similar analysis goes
through for the modified porous-medium equation with
arbitrary n and d. There is nothing specific to the renor-
malization group in this analysis, and so we do not
present this calculation here.

1 —nd8
n8

The actual values of the exponents and scaling func-
tions are determined in Sec. III by using the RG in con-
junction with perturbation theory in the parameter e.
For ease of presentation, the calculation is presented in
detail for the groundwater problem (n = 1, d =2). In Sec.
IV, we give the key results for the general calculation
with arbitrary n and d.

A remarkable property of the porous-medium equation
is that the limit n —+0 is smooth: even though the solu-
tions for n &0 possess well-defined propagating fronts,
these crossover into the diffusion equation tails as n ~0.
This property is preserved when e%0, and by setting
n —+0 in our general formula for the anomalous dirnen-
sion a, we are able to recover the anomalous dimension
for the Barenblatt equation (n =0).

Finally, we remark on the stability of the similarity
solutions that are the topic of this paper: the similarity
solution is not physically relevant if it is unstable. The
appropriate definition of stability is the following [18].
Let us suppose that for a given problem, the similarity
solution is of the form

1

2+nd (1.6) II. DIMENSIONAL ANALYSIS
AND THE RENORMALIZATION GROUP

1 r
me+ ~ e+pt t

(1.7)

where the so-called anomalous dimensions a and P are re-
lated by the scaling law

and f is some scaling function that may be determined.
In Sec. II, we use the RG to consider the long-time be-
havior of the modified porous-medium equation, where
e40. We find that the long-time behavior is renorrnal-
ized by the nonconserving terms in the dynamics, with
the result that

In this section, we investigate the modified porous-
medium equation [Eqs. (1.3) and (1.4)] using dimensional
analysis. We consider the initial value problem, with ini-
tial conditions of a bell-shaped distribution for u (r, O),
with width l' and volume of fluid

Q& ——f u(r, O)S&r 'dr,

where S& is the surface area of a unit sphere in d dimen-
sions. The solution u depends upon the governing pa-
rameters as follows: u =u(r, t, Q&, l, e). By choosing as
the two independent dimensional quantities u and r, we



6546 LIN-YUAN CHEN, NIGEL GOLDENFELD, AND Y. OONO

11=f(11„11„11,),
with

(2.2)

find that [u]=—U, [r]=L—, [t]=L U ", [Qi]= UL
[l]=L, and [e]=1. The solution to the initial value
problem may then be written in the form

where the differentiation is performed at fixed values of
Qi, l, r, t, and e. Performing the differentiation yields

ynOg +(1+nyO)ri —y(1 nd—O)f =0, (2.9)
a a

ag a71

where we have defined the constant
u (Qi"t)"

Q
IIi =—,II2 =— , II3——e .

(Q "t)' (Q "t)'
d lnZ
d ln

(2.10)

Q=Z 'Qi . (2.4)

The dimensionless constant or proportionality, Z, must
depend upon I so that Q is independent of l. However,
being dimensionless, Z must have the functional depen-
dence Z =Z(1 lp), where p is an arbitrary length. In ad-
dition, Z may depend upon the dimensionless parameter
e. The introduction of Z —an example of a renorrnaliza-
tion constant [20]—has required that an additional
length scale p enter the problem and the dimensional
analysis. Thus, we can rewrite Eq. (2.2) as

(2.5)

where we have defined

(2.6)

(2.7)

The arbitrary length p was not present in the original for-
mulation of the initial value problem, and so it is not pos-
sible that u can depend upon it. This is expressed by the
renormalization-group equation

du
p =0,

dp
(2.8)

(2.3)

For long times, the asymptotic behavior of the initial
value problem may be found from the limit II2~0. In
the case that e=O, it can be shown that this limit is regu-
lar; a similarity solution is obtained by simply setting
II2=0 in Eq. (2.2), and solving the ordinary differential
equation for f, obtained by substituting Eq. (2.2) into the
original problem [14].

In the case @+0, there is no similarity solution
of the form II =f(II i, 0, II3) [15]. The integral

f u (r, t)Sdr" 'dr is not a constant of the motion, and so

Qi is not observable at late times. To elaborate further
on this point, consider the system at some late time t with
volume of liuid Q. What was the initial condition that
gave rise to this state'7 There is no unique answer: for an
initial condition with a width l, there is a corresponding
initial volume of fiuid Qi that can give rise to the observ-
able late time state. In particular, we can consider the
limit l~O: even in this limit, the observed volume of
fluid Q at time t must be reproduced. The observed
quantity Q is related to the unobservable quantity Qi. by
dimensional analysis, they must be proportional to one
another. Thus [19]

as l ~0. The general solution is found, from the charac-
teristic equations

dg dq
y n 8$ ( I + n y 8)q

to be of the form

df
y( 1 nd 8)f—' (2.1 1)

(2.12)

with F a function to be determined and anomalous di-
mensions

and

Oy(1 nd 8)—
1+nyO

Oyn 8
1+nyO

(2.13)

(2.14)

The anomalous dimensions are not independent, but
satisfy the scaling law

1 ndO—
n, O

(2.15)

as guessed for the groundwater problem case (d =2,
n =1 [15]. Equation (2.12) is the form of the similarity
solution governing the behavior of the initial value prob-
lem at long times.

III. THE SPREADING OF GROUNDWATER

aI a a„,
at r ar ar

(3.1)

with D =~ for a, h (0 and D =~(1—e) for a, h )0, where
~ is a diffusion coefficient determined by the porous medi-
um itself'. The positive constant e is equal to the ratio of

Consider a horizontal stratum of porous rock contain-
ing a groundwater mound [15]. Under the inAuence of
gravity, the mound spreads out and Aows along an under-
lying impermeable bed. In discussing this problem, we
shall use three simple assumptions.

(i) The mound is axially symmetric.
(ii) The height of the mound, h (r, t), decreases with in-

creasing radius, with boundary conditions at infinity:
h (r, t)~0 as r~ ~.

(iii) The dynamics depends upon whether or not a
given pore of the rock was previously occupied.

The resulting equation for the mound height h may be
written as
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Ql r
h (r, O) = 8 — e V81 r-

I2
(3.2)

where e is the Heaviside step function, with normaliza-
tion

f 2n.r dr h(r, O) =2m.g, , (3.3)

satisfying the localization condition that h (r, O)~0 as
r~ ~. The initial condition was obtained by the device
of setting @=0, and evolving h forward in time from a 6
function initial condition until the front was at a radial
distance I from the origin. Note that the width of the ini-
tial distribution is the crucial regularizing parameter in
what follows.

To proceed, we posit a naive expansion of h:

the volume fraction of an empty pore, which is occupied
by the residual wetting layer of Quid, to the volume frac-
tion of the pore, which may be filled by Quid during satu-
ration. Using the available data [21], we estimate that e
is typically about 0.25 in situations of practical interest.

We use the initial condition

Using the solution for ho, we may write this as

Bh,
Bt

Qi 1 a ap
r Br Br

16gi ~p e[r —ro(t)],6

(3.10)

and

s=8(gist+1 )'i (3.11)

27
1,

s
—l~y . (3.12)

where ro(t)= 2(g—i~t+l )' is the point where B,ho=0
and p= 1 r /r—o. The zeroth-order solution ho vanishes
for r ) ra=&8(Q&at+1 )'~ . The initial condition is
h, (r, O):0—Si.nce r =ro(t) is a boundary where ho(r, t) is
not differentiable, in the above equation, there exists a 5
function at r =ro. However, it will turn out that for posi-
tive e, ho+eh1 first becomes zero at r =ro+er1, where r1
is negative. Thus, in solving for h1, the domain of r is al-
ways such that the 8 function has the value unit. The
equation for h, can be simplified by the substitutions

h (r, t)=ho(r, t)+eh, (r, t)+
The position of the propagating front of h is given by

(3.4) The variable s is bounded below by 5:—8I and is un-
bounded above. These substitutions lead to the equation

r, (t)=ra(t)+eri(t)+ (3.5)

and is defined by the smallest r satisfying h (r, t) =0. The
functions ho, h1, etc. are determined by matching powers
of e. As in our earlier work on the Barenblatt equation
[6,7], we anticipate that the naive expansion (3.4) will be
divergent.

The zeroth-order equation is

Bh1

BS

B h1 Bh1
(1 —y ) —2y —h,

The formal solution to Eq. (3.13) is given by

h, (y, s)= f ds' f dy'G(s, y;s', y')

4gi
ye(y) .

s

(3.13)

BIO ~ B Br ho
Bt r Br Br

(3.6)
4

x — y' e(y')
s

(3.14)

with solution

ho(r, t)= QI

16(gist+1 )'i
r2

(Q,~t+1")'~'

p
2

Xe 8—
(Q,~t+ 14)'" (3.7) =&(y —y')&(s —s') . (3.15)

with the initial condition h, (s=5,y)=0, where G is the
bounded Green function satisfyingBG, B'G BG
s — (1 —y ) —2y —G

Bs By
2 By

At large time t &)1 /Ql~, this solution tends toward the
self-similar solution

lim ho(r, t)
t —+ oo

r
t1'4 (3.8)

where f is a scaling function, which may be read off from
Eq. (3.7). Note that we can also achieve this limit by
keeping t fixed, and taking the limit l —+0, ensuring that
the condition t &)1 /QIv holds.

The first-order equation is

BI, ~B B ~B Br (2hohi) —— r ho 8
Bt r Br Br ' ' r Br Br ' Bt

The solution is

G(y, s;y', s')= g P„(y)P„(y')272 +1 1

n=0
' n(n+1)+1

s
X

s
e(s —s'), (3.16)

(3.17)

where P„(y) is the Legendre polynomial of degree n
Then, for s ))6, we find that

h, (y, s) = — ln ——Qi s 2gi " 2n +1
B„P„(y),s 6 s „,n(n+1)

(3.9) where
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8 ( 1)"+' "
k 1 2(2k+2)!!'

The bare-perturbation result is

2Q,
h (r, t)=

ro

p 2 Qtiit1—
27'ro (4

Qi—e ln
4w2

0

E'
A.2
ro

8„:—f dy yP„(y) .

Evaluating the integral gives B,= —,', B2k+, =0, and

(3.18)

(3.19)

01/2 C Qgth(&)— 1 ——ln +O(e)
2(~t)' 8 p

(3.25)

which is independent of l and remains finite in the limit
l ~0.

The second term in Eq. (3.21) is independent of Q& in
the limit t~ oo (or 1~0), and becomes

the anomalous dimension, to O(e). Similar constants will
appear in other a„(n &0) if the renormalization is pur-
sued to higher order in e: a proof of renormalizability or
even perturbative renormalizability would show that all
such constants vanish from the final result, to all orders
in e [6,8]. Hence,

(3.20) p
2

hi', '= — +O(e} . (3.26)

Qtr'
[1—ac+0(e )] .

16(Q11it+l )
(3.21)

Here, a is a finite function, which may be read off from
Eq. (3.20); it is not important for the purpose of deter-
mining the anomalous dimensions, but leads to finite
0 (e}corrections to the scaling function. It is these terms
to which we refer when we write O(e) corrections in the
following analysis.

Just as in quantum field theory, we treat the divergence
of the bare-perturbation result by regarding l as a regu-
larization parameter. The singularity can be removed by
introducing one renormalization constant Z =Z (1/lj„e),
which absorbs the divergence in the limit l —+0, order by
order in e. In this way, the renormalized h (r, t), which
we shall denote by h&, remains finite even in the limit
l —+0. We replace Q& by Z(l/p, e)g, and assume a Tay-
lor expansion for Z:

oo j'Z= ga„—e" (3.22)
n

with ao= 1. The coefficients a„(n ~ 1) are determined
order by order in e in such a way that all the divergences
in h are canceled out. Using

ln Z =in[1+a, e+O(e )]= , a+e0( )e,

the first term in Eq. (3.21) becomes

(3.23)

a,1+ e+ O(e2)2(«}'"

X 1 ——ln
e Qxt +O(e )

2

l4
(3.24)

The divergence in the limit I —+0 is removed by the
choice a, (l/p)=in(C, p/l), where C, is an arbitrary
constant that will not appear in the final expression for

As anticipated, h (r, t) exhibits a leading singularity,
In(Q&«/l ), in the limit t/l"~Do. Lastly, we rewrite
h (r, t) in the form

Qi e Q, irt
h (r, t)= 1 ——ln

2(Q11it+l )' 8 l

As anticipated in the preceding section, there is only one
independent anomalous dimension.

This renormalized perturbation series may now be
combined with the RG, as explained in detail in Refs. [6]
and [8], to obtain the final result for the long-time behav-
ior, to this order in e:

h(r, t)-
2(vt) in+~

p 2

16&et

r2

2(&t )
' "+ 16~t

+O(e)

( t ~ 0O ), (3.27)

with the anomalous dimension

a=e/8+O(e ) . (3.28)

The phenomenological parameter A is a constant of in-
tegration in the renormalization scheme [7,8] and formal-
ly has the value of A =lim& OQ1"

' '~ l'~ . Note that
the sequence of initial conditions obtained by taking the
limit I —+0 generates a generalized function, which is
more singular than a Dirac 5 function.

We have also extended the perturbation calculation to
second order in e. We find that the logarithms in the per-
turbation series do sum up in the way that the RG pre-
dicts, and we obtain the second order in e result for a:

a=0. 125e+0.096e +O(e ) . (3.29)

In Fig. 1, the RG calculation of a of Eq. (3.29) is com-
pared with the value of a obtained from a numerical solu-
tion of the nonlinear eigenvalue equation [15], which we
reproduced using a shooting method. The agreement is
good, with a relative error of less than 3% when e is as
large as 0.5 We also attempted to extract the coefficient
of e from the numerical calculation, by plotting a/e as a
function of e, for e & 10: the resultant straight line had
a slope of 0.07, which is somewhat smaller than the value
given by the RG calculation. We were unable to deter-
mine whether or not the discrepancy is meaningful, but it
should be noted that at small e, the numerical calculation
may be inaccurate.
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2.0—
~ Numerical values for the anomalous

dimension a.

RG prediction to O(e~)

t), u=D[(Vu) +nvbu] . (4.5)

Assuming a perturbation theory of the form
v =vp+E'v][+ ' ' we obtain

Q nial
/8

uo(r, t) =-
s

r 2

1 — e(s r)—, (4.6)

l.2

where
—

(Q ntpl/0+ ~ 1/8)20 (4.7)

0.8

(sB, —nL)u, =

The governing equation for v, is rather complicated, but
may be simplified through use of the variable y = r ls-.
The resulting equation is then

r

Q ko nd nd
3'

0.4
(4.8)

with the operator L given by

0.2 0.4 0.6 0.8 L—:y(1 —y)B + d
2

1 d+
2 n ~ 2

(4.9)

FIG. 1. The anomalous dimension a as a function of e. Data
points determined by numerically solving the nonlinear eigen-

value equation for a, given in Ref. [15],are denoted by ~. The
continuous curve is the RG calculation of Eq. (3.29).

The Green function for this operator may be expressed as
a sum over Jacobi polynomials, and the singular part of
v& extracted from the lowest-order term, when integrated
with the right-hand side of Eq.(4.8).

After renormalization, we finally obtain the result

IV. THE MODIFIED POROUS-MEDIUM
EQUATION: ARBITRARY n AND d

In this section, we report our results for the modified
porous-medium equation (1.3) with arbitrary n and d:

1/n

u (r, t)- d e+
— +O(e), (4.10)

nOr2

(Q "t)d"e+~ 2 n + 1 t

where A is a constant. The anomalous dimension
a=A, e+O(e ), where

Bu

at
D 8 d &

0 „+r ur" ' Br Br
(4.1)

with D =1 for B,u ~0, and D =1+@ for B,u ~0. We
construct the initial condition as in the preceding section:
this gives

4 I (d/2+1/n)
d(d +2) I (1/n)I (d/2)

XF(1—1/n, d /2;d /2+2;dn Idn +2) (4.11)

where go is given by

ng
2(n + 1)

1/n

uo(r, 0)= „go— e(gaol
—r), (4.2)

and F and I are the hypergeometric function and gamma
functions, respectively.

As a check on our results, we can examine special lim-
its of Eq. (4.11). For the case d =2 and n =1, we
recovered the correct result a=e/8+O(e ) for ground-
water spreading, and for the case d = 1 and n ~0, we ob-
tain a=e/&2m. e+O(e ) and the long-time asymptotic
form

X I t" '(1 —t )' "dt
p

(4.3)
u (x, t) -e " "+O(e)

( t )1/2+ (4.12)

In order to perform the perturbation theory, it is con-
venient to make the transformation to the
"Hamiltonian-Jacobi" form of Eq. (1.3), using the change
of variables [22]

as found earlier [6,7].
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