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Growth of lamellar eutectic structures: The axisymmetric state
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We study steady symmetric lamellar eutectic growth in directional solidification by an extensive

analysis of the pertinent boundary integral equation. We find a discrete set of solutions that differ in
their average undercoolings. As the wavelength A, increases, the branches coalesce by pairs to form fold
singularities above which axisymmetric solutions cease to exist. Front shapes are computed in a wide

range of wavelengths, and a systematic comparison with an improved Jackson and Hunt theory [Trans.
Metall. Soc. AIME 236, 1129 (1966)] is made. The last one turns out to be accurate in general, for the
lowest branch, but does not provide any hint at other branches. In the experimentally relevant parame-
ter range, the front equation reduces to a similarity equation containing two dimensionless parameters
cr:—dol/A. and g—=1/lz, where do, l, l& are the capillary, diffusion, and thermal lengths. We explicitly
demonstrate the similarity properties of the pattern. The selected wavelength scales as
A, = idol f (I /lr ). At the minimum undercooling, A, varies with the growth velocity V as V, where P
is an increasing function of Vthat saturates to about

2
at large V. This feature is in agreement with ex-

periments [G. Lesoult, Ann. Chim. Fr. 5, 154 (1980)]. The general scaling of the wavelength allows the
exact prediction of a new scaling exponent that is independent of the nature of the selection criterion.
This prediction inspires another experimental test of the theory.

PACS number(s): 61.50.Cj, 05.70.Fh, 81.30.Fb, 68.70.+w

I. INTRODUCTION

Most solidification micr ostructures can be broadly
classified into two important growth morphologies: den-
dritic and eutectic microstructures. It is therefore not
surprising that particularly these morphologies give rise
to intensive investigations both experimentally and
theoretically. The issue that has seen considerable pro-
gress to date is the velocity selection dilemma of a free
dendrite [1].

Another issue is that of pattern formation in direction-
al solidification of thin-film alloys, which reveals fascinat-
ing spatially organized patterns. The basic features of the
system are shown in Fig. 1. The sample consists of a thin
strip of the working material, which is pushed, at a
predetermined velocity V, through a fixed temperature
gradient G established by stationary hot and cold con-
tacts A and B. The most common liquid-solid equilibri-
um phase diagram is the one displayed in Fig. 2. If the
concentration of the major phase is very small (a dilute
alloy), one often observes the growth of one solid phase
(the major one) at the expense of its melt. It is by now
well established that such a situation leads to the
Mullins-Sekerka [2] instability of the planar front above a
critical velocity; the interface turns into a parallel array
of cellular shapes, which bifurcate into dendrites at larger
speeds [3], not talking about other fascinating structures,
among them solitary modes [4]. The other situation, in
which we are interested here, is the one where the com-
position is close to the eutectic one [5] (Fig. 2).
growing solid often forms a parallel array of the two

coexisting phases a and P that grow side by side. This is
the lamellar eutectic growth [6,7].

The growth of lamellar. eutectics has been the subject
of several theoretical investigations. Perhaps the best
known work is that of Jackson and Hunt (JH) [8]. Their
basic idea is the replacement of the diffusion field in the
liquid phase by that of a planar front. They further as-
sume that the two lamellae a and P have equal average
undercoolings. Trivedi, Mason, and Kurz [9] extended
the work of JH by using a more detailed form of the
diffusive Green's function that is valid at large velocities.
The justification of the Bat interface assumption of JH
remained open, however. More recently, Brattkus, Caro-
li, Caroli, and Roulet [10] have discussed that issue. It
emerged from their analysis that the JH approximation is
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FIG. 1. Schematic setup of a directional solidification experi-
ment.
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justified only for large thermal gradients, that is when
IT/l «1, where I and lT are the difFusion and thermal
lengths, respectively (for their precise definition, see Sec.
II). They further showed that the assumption of equal
undercoolings of both phases is unnecessary but does not
alter the qualitative features found by JH.

Most of the experiments, however, operate at thermal
gradients such that lT/I =O(1). We should therefore deal
with a complete solution of the growth equations. The
main objective of this paper is to present an extensive
study of steady lamellar eutectics. This is done by nu-
merically integrating the boundary integral equation. We
have made a systematic calculation of stationary sym-
metric front profiles. Our code accounts for arbitrary
phase diagrams. This means, in particular, that the
volume fraction of each solid phase (a and P) is not fixed
a priori (as is the case if one assumes a vanishing solid
solubility) but adjusted self-consistently in the diffusion
field. Another feature is that the JH assumption of equal
undercoolings for the two phases a and P appears, in a
very natural way, as unnecessary when counting the
number of unknowns and that of equations. In other
words, the eutectic problem is closed and does not re-
quire any additional assumption.

The main lines of this work can be summarized as fol-
lows.

(i) We have made a comprehensive comparison of our
results with those obtained from a JH-type theory. First
we compute the shapes and the associated average under-
coolings for a wide range of wavelengths. The average
undercooling takes on a minimum but the average under-
coolings of the a and /3 phases are appreciably different.
As the wavelength A, increases above the one that pro-
vides the minimum undercooling, the interface exhibits
tip-splitting modes and starts to form "pockets" on fur-
ther increase of A, . However, before these can develop
fully (in the lowest solution branch) the axisymmetric
solution to the growth equations ceases to exist by run-
ning into a fold singularity. There are solutions beyond
the fold, but these are not axisymmetric. They are the

FIG. 2. Generic phase diagram of eutectics. T is the temper-
ature, c the concentration of one component. The regions L, a,
and P correspond to one-phase equilibrium states of the liquid,
the solid a, and the solid P phases, respectively. A+a and
I. +P are regions of two p-hase equilibrium between the liquid
and one solid phase; the actual concentrations of the two phases
are given by the liquidus and solidus lines (full lines) delimiting
these regions. c„c,and c& denote the equilibrium concentra-
tions of the liquid and the two solid phases at the triple or eu-
tectic point.

tilted states found recently [11],and we plan to devote a
separate publication to their discussion.

(ii) We compare the exact shapes of axisymmetric solu-
tions to those obtained from an improved JH theory,
which is constructed by inserting the JH diffusion field
into the Gibbs-Thomson equation and solving numerical-
ly the resulting nonlinear difFerential equation. Surpris-
ingly enough, an improved JH theory provides profiles
that are accurate within a few percent even in the stan-
dard experimental range where IT-—I. This theory, how-
ever, misses the aforementioned fold singularity; sym-
metric solutions extend to very large values of the wave-
length.

(iii) We demonstrate that the fully nonlinear problem
supports a discrete set of solutions. More precisely, for
fixed material and control parameters the integral equa-
tion possesses solutions with distinguishable shapes hav-
ing different average undercoolings. This feature as well
as the fold singularity have not, to our knowledge, been
discussed previously. It is likely that only the solution
with the smallest undercooling is stable. This discrete de-
generacy should not be confused with the continuous de-
generacy in the JH theory, which pertains to wavelength
selection. The present discrete degeneracy appears simi-
lar to that encountered in the problem of velocity selec-
tion of a free dendrite [1].

(iv) Taking advantage of the fact that in standard ex-
periments the Peclet number P =A, /1 is small (P =10 ),
we have recently [12] shown that the full boundary in-
tegral equation reduces to a nonlinear similarity equation
containing only two dimensionless parameters o. =—doI/
A, , y =—l /lT, where do is a capillary length. Here we give
an extensive derivation of that equation without any re-
striction (e.g. , iT=lT. . . ). We demonstrate the similarity
property of the pattern. In particular, we show that the
front profile is invariant, up to a scale factor given by the
wavelength, under a simultaneous stretching (shrinkage)
of A, and (6, V) by a and a, respectively, where a is a
positive number. We comment on the scaling of the
wavelength with the growth velocity V presented recently
[12], when the operating point is assumed to be the one
that corresponds to the minimum undercooling. The
general form of the scaling of the wavelength

A, =idol f (l/lT)

inspires additional experimental tests whatever the selec-
tion criterion. In particular, if 1/IT is kept fixed, one ex-

pects, according to Eq. (1.1), to find that A, V=const.
There exist a variety of experiments [13] where A. V was
observed, as found in our theory for the minimum under-
cooling [12], to significantly decrease with V at small
enough V when the thermal gradient, not l /lT, was main-
tained at a fixed value.

The scheme of this paper is as follows. In Sec. II, we
write down the growth equations, which are then
transformed into a boundary integral equation that
governs one-dimensional front deformations. The results
emerging from the JH theory are briefly recalled in Sec.
III. In Sec. IV, we present the numerical method to solve
the front equations. Section V contains the results. Sec-
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tion VI is devoted to the derivation of the similarity equa-
tions and to the main results that follow from similarity.
Section VII concludes and summarizes the paper. Some
mathematical details are given in three appendixes.

II. MODKI EQUATIGNS
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We consider a standard simplification of the physical
system, which is believed to capture its essential physical
features. In particular, the simplifying assumptions of
the model are the following. The thermal gradient G is
constant throughout the system. This means that
thermal diffusion is much faster than chemical diffusion,
that thermal conductivities in all phases are equal, and
that latent heat production can be neglected. In addition,
to reduce the diffusion problem even further, it is as-
sumed that there is no (chemical) diffusion in the solid
phase (one-sided model). This is a good approximation in
many cases. As usual (for an exception see Ref. [14)) we
assume the attachment kinetics at the solid-liquid inter-
face to be fast on the time scales of all transport prob-
lems. This assumption is legitimate for a microscopically
rough interface. Furthermore, we "linearize" the phase
diagram of the eutectic —see Fig. 2—in assuming con-
stant slopes of the liquidus and solidus lines on both sides
of the eutectic point, which results in temperature-
independent partition coefficients k and kp. Finally, we
restrict ourselves here to the case of isotropic surface ten-
sion. Figure 2 may serve to identify some of the quanti-
ties needed in the definition of the model equations that
are to follow.

Introducing a dim ensionless concentration field
u =(c —c, )/b, c, where c stands for the physical concen-
tration and Ac =cp —c is the miscibility gap, we can
write the equation of motion in the laboratory frame
(where the sample is pushed at constant velocity V along
the —z direction)

(2.1)

Here !=2D/V is the diffusion length (D is the diffusion
constant).

The diffusion equation (2.1) has to be supplemented by
boundary conditions. At infinity, the concentration is
kept at a constant value: u„=(c„—c, )/hc. Thermo-
dynamics provides us via the local equilibrium assump-
tion with the Gibbs-Thomson condition:

—g/IT —doe, a phase
4

g/Iz~+doPa P phase
(2.2)

In these equations, g is the z coordinate of the liquid-solid
interface; v is its curvature, taken positive where the solid
is convex. In principle, the model can be formulated in
arbitrary dimensions (in three dimensions, a is the sum of
the two principal curvatures). Since we are, however, in-
terested in lamellar structures, we restrict ourselves here
to two dimensions or a one-dimensional interface. IT
are the thermal lengths, given by IT=m;b, c/6, where m;
(i =a,p) is the absolute value of the slope of the liquidus
line describing coexistence of phase i and the liquid. do

—2.0 -' Solid

FIG. 3. Illustration of a lamellar eutectic in the comoving
coordinate system. The growth direction (in the laboratory
frame) is upward, parallel to the z axis. The interface is deter-
mined by z =g(x). Also shown are the pinning angles 8 and

are the capillary lengths, do=@;&T,/I. ;m;Ac; y,.r is the
liquid-solid-i interface tension and I.; is the latent heat
per unit volume [15].

Local equilibrium includes mechanical equilibrium at
the triple points, which leads to the conditions

Ising +ppI slndp= p p,
p~)cosB~ gp(cosi9p=0,

(2.3)

where 8 and 8p are the pinning angles —see Fig. 3.
Owing to mass conservation we obtain a boundary con-

dition for the normal derivatives of the concentration
field at the interface. This continuity equation reads

[(1—k )u +5]u„, a phase
Bu

[(1—k&)u +5—1]u„, P phase (2.4)

where 5=(c,—c )/hc is the reduced miscibility gap of
the a phase and 1 —5 that of the p phase.
u„=(2D/1+/)n, is the normal velocity of the interface;
the normal vector points from the solid into the liquid
[16].

Equations (2.1)—(2.4) are assumed to refer to a periodic
interface with wavelength A,. We may then ask in which
way we can arrive at a well-posed mathematical problem
using these equations. In general, solving the difFusion
equation involves prescribing the values of the difFusing
field on the domain of interest at the initial time as well
as conditions at its boundaries for all later times. This is
clearly not what we are interested in, because we wish to
assume that any initial transients have decayed. Throw-
ing away the time derivative of (2.1), we obtain an elliptic
problem whose solution requires just the field values on
the boundaries. This means that (2.1) plus (2.2) and (2.3)
have solutions for arbitrary boundary shapes, but of
course the normal derivatives will not satisfy (2.4), i.e.,
the solutions are not physical. The only meaningful ques-
tion that we can ask, once we have reduced the problem
to an elliptic one, is what boundary g can we choose such
that both (2.2) and (2.4) hold. Hence, the boundary in-
tegral formulation for Eqs. (2.1)—(2.4), which we will give
immediately, constitutes a functional equation for the in-
terface g(x). A derivation of this integral formulation
may be found in Ref. [17].
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The resulting integro-differential equation condenses
the diffusion equation (2.1) and its boundary conditions
into a single expression. In the present stationary case it
may be written [18]

f dl 'g(r, r'), = f dI"h (r, r')[u (r') —u „]~( an' ~ (

with

(2.5)

h (r,r')=, — n,'g—(r, r') ——5(r —r') .ag 2, , 1

an' l ' ' 2
(2.6)

g(r, r')= e '~ ~'~'K (~r r'~ —/)(,1

2' (2.7)

wherein Ko is the modified Bessel function of order zero
(Macdonald's function).

For use in Sec. VI below, we find it convenient to cast
(2.5) into dimensionless form by measuring lengths in
units of X, i.e., we make the replacements r~A,r,
8/Bn'~A, '8/Bn', dl '~idI". This leads to a natural
introduction of the Peclet number P =I,/l and trans-
forms (2.5) into

—=u „— f dx'e ~KO(Pp) u (r')+u P ~, pg 1 aQ

2 2' pn' an'

b, —hx
+ f dx'e ~Ki(Pp) u (r') .

277 OO P
(2.8)

The integral can be restricted to the solidification front
I,&, because u (r) —u „vanishes at infinity —for a more
detailed discussion see Ref. [18]. r = (x, g(x) ) and r' are
two-dimensional (2D) position vectors of interface points,
5(r —r') is a one-dimensional 5 function, and g(r, r') is
the Green's function associated with the stationary form
of Eq. (2.1):

III. THE JACKSON-HUNT THEORY

—Q„(z —g) iK„xu(xz)=u„+ g Be " e (3.1)

where

K=, Q= —+ —+K2mn 1 1 2
ll

' j./2

(3.2)

If the simplifying (unessential) assumption is made that
the partition coefficients of both phases are equal,
k =k&=k (%0), one immediately obtains the
coefficients B„by inserting (3.1) into the continuity equa-
tion (2.4) and evaluating both sides at /=(=const. This
procedure yields

A theory for axisymmetric lamellar growth in the
steady state was put forward by Jackson and Hunt [8].
The basic idea of their calculation is to replace, at a first
level of approximation, the diffusion field by that of a pla-
nar lamellar structure sitting at the average position of
the actual solidification front. Using this diffusion field in
(2.2), those equations transform into ordinary second-
order differential equations for the interface position
g(x), which can be solved in principle. This is the second
stage of approximation. The analysis is greatly simplified
by assuming the undercooling of both phases to be equal.
However, neither is this assumption well justified as has
been pointed out recently [10] nor is it necessary, as we
shall see below. %'hen referring to the term improved JH
theory in the following, we mean a JH-type theory, where
the JH diffusion field is inserted in the Gibbs-Thomson
equation and the resulting equations are solved numeri-
cally without resort to the equal undercooling assump-
tion. In the subsequent brief description of the JH
theory, we largely follow the notation of Ref. [19].
Lengths are measured in physical units.

First, we write the general solution of the stationary
diffusion equation for a spatially periodic system as

Here, we have introduced the abbreviations hg=g —g',
bx =x —x' for (dimensionless) coordinate differences.

is shorthand for dgldx' and p=(hx +b.g )'~ . K,
denotes the modified Bessel function of first order. In
deriving (2.8), we have employed the sum rule

Bo= —[(1—k)u +5+i)—1],1

where g is the volume fraction of the a phase, and
—i gK„A, /2

4e " sin(i)K„A /2)8„=
1A,K„(Q„—2/l)

(3.3)

(3.4)

dl"', —2Pn,'g (r, r')f ag, , 1

an' ' 2
(2.9)

which essentially is known from other sources [17,18],
but will be briefly derived in Appendix A for the conveni-
ence of the reader.

In order to avoid confusion, we admit right from the
start that we will use the same notation for coordinates,
throughout the paper, whether they are measured in
physical units (as in Sec. III) or reduced by either /r (Sec.
V) or A, (Sec. VI). In each section, the introductory re-
marks will clarify in which units lengths are given; furth-
ermore, in figures we write g/1, or x/A, , whenever the
coordinates are measured in units of X.

In the chosen coordinate system, an a lamella is located
in the x interval [O,gi, ]. All quantities depend on the yet
undetermined value of g. (For k=O, rj is fixed but Bo
remains indeterminate at this stage [19].) Assuming
A, « l, we obtain for the diffusion field

u (x,z) = u „+—[(1—k)u „+5+rj—1]e

sin(n mrj)

(nm)

Xcos 2nm. ——~ e
2

(3.5)
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Using

we obtain from (2.2)

(3.6)

The assumption t&at the average undercoolings in front
of both phases are equal is the same as setting
(g) =(g)&, because b, T= —Gg. This yields an equa-
tion which in principle determines the volume fraction q
(though it is never used in practice),

(3.7)

(=&&(x)&=q(g) +(1—q)&g)p. (3.8)

Hence (given the wavelength) the problem is completely
determined, and were it not for the complexity of the
nonlinear diff'erential equations (3.7), which prevents
their exact analytic solution, there would be no need for
an equal undercooling assumption. Numerically, these
equations are easily solved and they will be the basis for
our comparison of the complete theory with the JH one.

I.et us now brieAy review the analytic simplifications
introduced by JH. The averages of u (x, g) and a in the a
and P phases are (see, e.g. , Ref. [19])

(3.9)

(3.10)

(a &
= sine= 2 (3.11)

where

2
1 —gQ,

(3.12)

p ( ) y sin (n llrt)

(nm)'

Equations (3.11) and (3.12) are exact relations, a conse-
quence only of the definition of curvature and not depen-
dent on the JH theory. With (2.2) we find

(g) = —tT (u +5+g 1)+ P(rt)1 2A,

gl

(3.13)

2lT 00 Sln8~

nA
(3.14)

XX
. =e, u(x, g(x)), i =a, 13

bx T

where e = 1, e&= —l. These are two second-order
di6'erential equations, whose solutions depend on four in-
tegration constants plus the two parameters q and g, i e.
we have six unknowns. By virtue of (2.3) we have four
boundary conditions on the slopes g„at the triple points.
Furthermore, we obtain one equation from the require-
ment that the solutions in the a and P phases have to join
continuously at the triple points —this is only one condi-
tion (and not two) because of the symmetry of the pattern
with respect to the central axis of either phase. Finally,
we have a self-consistency relation as the sixth equation, '

the average of g(x) over one periodicity length must be
equal to g,

u „+5+g—1= k

(tr + tr~)q(1 —q)

2+ [—rtt gd ~~sin8&

—(1 rt—)trdosin8 ] „(3.16)

plus, on inserting this back into one of the equations
(3.14) or (3.15), produces the famous result for the under-
cooling

(3.17)

where

I
A, ;„=[do (1 7t)sin—8 +d~~rt sin8&] P (rt)

(p
' 1/2

( )
4G 7' T P(g)

g(1 —rt) tT+tTt t

X [do (1 g)sin8—+doing sin@&]'~

(3.18)

(3.19)

IV. XUMKRICAI. METHOD

Two remarks are in order. First, the wavelength at
minimum undercooling behaves as A, ~ V ' (because

t ~ V ', whereas the V dependence of g is negligible) and

the minimum undercooling scales as ( b, T );„~V'~ .
The hypothesis that the operating point of the growing

eutectic is determined by the minimum undercooling

leads, within the JH theory, to the result that the selected

wavelength and the average undercooling should scale as

V '~ and V'~, respectively. Second, the equal under-

cooling assumption is not the only possible way to analyt-

ically simplify the equations. Equally well one could re-

quire g=1 —u —5 (for kAO) or 80= —u„(for k=O),
which would yield the same scaling relations for the
separate phases. This different hypothesis would be
motivated by the fact that in experiments the Peclet num-

ber is small and that from global mass conservation we

have u „+5+g —1=0(P) (which is proved in Appendix

B). We will not pursue this possibility further; the only

purpose of this comment was to point out that there are
other, possibly more legitimate, ad hoc assumptioas than

the equality of the average undercoolings of the two

lamellae.

(3.15)

All numerical approaches to the solution of continuous
equations consist of two basic steps: discretization of the
continuous problem and solution of the ensuing set of
discrete equations. As to the present case, the art that is
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involved lies completely in the first step since for the
second we use a standard iterative nonlinear equation
solver, a NA.G routine that realizes a Newton-Raphson
method.

%e start by reducing the parameter space through in-
troduction of dimensionless units expressible via the ra-
tios A, /I (P), do/A, , Iz /1, . The time and length scales of

I

the physical system are set by the de'usion constant
(which is set equal to 1 in the numerics) and the thermal
length (more details will be given in the following sec-
tion}. Next we exploit the periodicity and axial symmetry
of the problem to cut the integration contour down to a
half-period. The integral equation (2.5) becomes, in nor-
malized units ( A, = 1),

1/2

f dl ' g [g(x,g;x'+m, g')+g(x, g; —x'+m, g')], u (x', g')
x'=0

1/2
= f dI" g [h (x,g;x'+m, g')+h (x, g; —x'+m, g')][u (x', g'}—u„] .

x'=0
(4.1)

For technical reasons, we have to restrict the summation
on m to a finite number of terms. Because g and h decay
exponentially on the length scale of the di6'usion length,
we take into account only those terms of the sum for
which ~x+x'+m~ does not exceed ten difFusion lengths
plus one wavelength. In addition, the integrand is set
equal to zero whenever ~r —r'~ exceeds ten diffusion
lengths.

Vfe discretize the liquid-solid interface by X points.
Because we wish to eventually solve for the interface po-
sition, it is worthwhile keeping the number of variables
needed for its description small by not using the 2X
Cartesian coordinates, but a set of hybrid variables, al-
lowing a description of the interface by X variables. Fig-
ure 4 shows how it works. The internal representation of
the interface within one half-period is by the coordinates
of the eutectic or triple point (x„g, ) plus the angles 8;
between the z axis and the norma1 vectors on the discreti-
zation intervals. %'e are thus switching from a Cartesian
representation of the interface curve to a representation
in terms of the arclength s and the angle 8(s). The arc
length itself need not be stored, if we choose a11 discreti-
zation intervals within one phase to have the same
length. Given the angles 8;, the arc-length increments
b,s, b,s& are determined by (see Fig. 4)

—1
I3

x, —x, =Esp g cos8, ,

respectively, X and X& being the number of discretiza-
tion points in each phase (the eutectic point is counted
twice) Up . to an arbitrary translation, xi and xz are
fixed by the wavelength (in reduced units, x

&

—xz =
—,
' ),

therefore the interface is completely determined by the
set of X +%&=Xvariables [x„g„8,, . . . , B'av

Obviously, we must calculate the curvature from the X
discretization points. For interior points of the sequences
1. . .X& and X&+ 1. . .X this is easy —we just take three
consecutive points and construct the unique circle
through them. For the curvatures at the trip1e point and
at the half-cell boundaries we have to use a more sophisti-
cated method. Remembering that a circle is also unique-
ly determined by two points and a tangent through one of
them, we can reduce the curvature evaluation in the end
points to the choice of a suitable extrapolation scheme for
the angle 8(s) (the 8; are centered in their respective in-
terface segments —see Fig. 4). As it turns out, a linear
extrapolation formula [8(s (x

&
) )=—', 8,——,'82] is insuf-

ficient for curvature extrapolation. Therefore, we based
the curvature calculation in end points on a three-point
or quadratic extrapolation scheme, which we then for
consistency also used in the evaluation of the angles itself:

(4.3)

&e ~W =~~a
% +Np —2

i=N
P

cos8, ,

(4.2)
and analogous formulas for 8(s (x, —0) ), 8(s (x, +0) ),
and 8(s (xz ) ). Four of the nonlinear equations we are
going to solve, will then be

8(s(x, ))=6(s (xi')) =0,
8(s (x, —0) )=6, 6(s (x, +0) )=8& .

(4.4)

1

(XN '4)

FICi. 4. Discretization elements of the interface. Only the
points of one half-period are stored internally. For the disereti-
zation procedure and the meaning of the variables see text.
Note that the angle belonging to the interval between points i
and i + 1 is 8, in the g phase and 8, , in the a phase.

u =u(r ), q. = 8Q

J
(4.5)

The integral equation itself is discretized into boundary
elements [20]. This means that the diffusion field as well
as its derivative are approximated by functions, not just
constant values, on the discretization intervals. Given
the discretization points r~ (J = 1. . .X), we write
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for their field values. We then interpolate

r=4, (g)r +@~(g)r +, ,

u (g)=N, (g)u +@2(g)u +, ,

e(k) =~'i(k)~, +@~(k)e,+»

where

@,(g)=(1—g)/2, @~(g)=(1+/)/2

(4.6)

(4.7)

(4.8)

(4.9)

s =r+& —r = Sxj
s, =is, i

ZJ

(4.10)

(4.11)

The discretized form of (2.5) then reads

(s takes on the three values b,s, hs&, and 0), we have

are linear functions, i.e., we take the simplest, namely
linear elements. The variable g also serves to parametrize
the integration interval. Defining

gG; q = gH~ (u —u„),
J J

where

(4.12)

G,"=g —f dg@,(g)[g( x;, g;; xj+@ 2(g) s, ~+m, g J+@ 2(g)s, J)
2m

+g (x;,g;; —x —4z(g)s ~
+m, gj +@2(g)s,~ ) ]

+' ' 'd e g- '-.-e -.-+ .-e2 —1

+g(x, , g,. ;
—x, +4,(g)s„,+m, g. —N, (g)s, . , )], (4.13)

H; = g —f d g C&&(g) [h (x;,g,.;x~+ @z(g)s~j +m, (J +@&(g)s,j )
—1

m

+h(x;, g, ;
—x —@ (g)s +m, g +@2(g)s, }]

+ f dg@z(g)[h(x;, g;;x.—@,(g)s, ~. , +m, g
—4&, (g)s, ~, )

—1

+h(x, , g, ; — x+@,(g) ,s, +m, g
—@,(g)s, , )] . (4.14)

For iAj and i' +1, G; and H,.~ are evaluated by the
four-point Gauss-Legendre integration rule. The other
cases need special treatment, because g(r, r') diverges
logarithmically for r~r' and h (r, r') contains a 5 func-
tion. The logarithmic divergence is handled by using a
Gauss integration rule for integrands exhibiting a loga-
rithmic singularity [21]. Alternatively one could regular-
ize the integral by subtracting out the singular part in
analytically integrable form. Our procedure is simpler
but can fail, if the 2D distance ir —r'i becomes small for
points that are far apart along the interface. This situa-
tion is very rare in eutectics where the interface does not
normally bend back on itself (but see Sec. V). The 5-
function si.ngularity plays a role only in the calculation of
the diagonal elements of the matrix H. These are there-
fore not evaluated directly but via the sum rule (see Ap-
pendix A), which in matrix notation reads

(4.15)

By this we gain the additional advantage of ensuring glo-
bal mass conservation.

We are now in a position to set up our system of non-
linear equations for the interface position variables. To
this end we impose the integral equation (4.12) every-

where except at the triple point and the end points of the
half-cell, which means we take Eqs. (4.12) for
i =2. . .N&

—1 and for i =N&+ 1. . .N —1. The remain-

ing four equations are a consequence of symmetry and

the mechanical equilibrium condition. They have already
been given above [Eq. (4.4)].

As initial input for the iterative equation solver we nor-
mally take two circular segments meeting at the correct
pinning angles. Of course, once a solving profile is found,
it is used as initial guess to find further solutions at slight-
ly different parameters.

V. NUMERICAL RESULTS

One of the quantities most often referred to in the dis-
cussion of lamellar eutectics is the average undercooling,
which we can now calculate precisely for any desired pa-
rameter combination. It is therefore reasonable to check
various statements made about the average undercooling
in the literature [8,10]. Figure 5 shows the average un-
dercooling ahead of a pair of lamellae as well as that of
each phase separately, in a range of A, values, the smallest
of which corresponds to roughly half, and the largest to
double, the minimum undercooling value A, ;„. In units,
where D= 1 and 1@

~~=1 [22], we have A, ;„=0.0111 and
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FIG. 5. Negative average interface position, i.e., reduced

average undercooling, as a function of the periodicity A,.
Squares correspond to a full cell, triangles to the a phase only,
circles to the P-phase undercooling. Dynamical parameters:
V=4.0, lT=l)=1.0. Material parameters: do =do =10
k =0.99, kp=1.04, u„=0.05, 5=0.3, 8 =0.9, Bp=0.7.
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FIG. 6. Average undercooling, as a function of k, as in Fig.
5. The dashed line is a least-squares Gt of a hyperbola
z =aA, +b/A, to the data points.

the other relevant length parameters are l=0.5 ( V=4.0)
and dc ~~ = 10 . It is not too surprising that the average
undercoolings of the two phases are not equal. The
difference, however, is only on the order of 10%%uo. At
large A, values, the undercooling of the a phase exceeds
that of the P phase because tip splitting becomes impor-
tant (see also Fig. 8, bottom). The position of the
minimum of the curve(s) coincides to within 2% with
that calculated from the JH theory. On the other hand, a
least-squares fit of a "Jackson-Hunt hyperbola" (b, T)
=aA, +b/A, , shown in Fig. 6, does not describe the data
well for A, & A, ;„. Moreover, it is not very useful for an
accurate determination of the minimum position A, ;„, as
can be distinguished by the unguided eye.

The purpose of Fig. 7 is to provide verification of an
analytic result obtained by Brattkus et al. [10], stating
that for large thermal gradients the average undercool-
ings of both phases differ by an amount comparable to
their magnitude. The plotted quantities are the same as
in Fig. 5; however, in a (relatively) much smaller A. range
about the minimum undercooling and for a thermal gra-

FIG. 7. Average undercooling, as a function of A, , of the en-

tire interface (squares), a lamellae (triangles), and P lamellae
(circles), respectively. lz =l)=0.025, do =de =4X 10 . Other
parameters as in Fig. 5.

dient that is larger by a factor of 40 than in the former
figure ( V is the same). We can indeed confirm the result
of Ref. [10]—the P-phase undercooling is roughly twice
as large as that of the n phase —and notice that this is
probably due to the overall smallness of the average inter-
face distance from zero, which makes any deviation a
large deviation. (What is plotted in Figs. 5 —7 is—(g) =(b,T) IG, so the absolute magnitude of the un-
dercooling is actually larger in the last figure than in the
two preceding ones. ) In addition, we find that for large
thermal gradient the position of the minimum undercool-
ing is very different in the two phases. In Fig. 7, we were
looking for the minimum of the total average undercool-
ing, so the minima of the a and P phase average under-
coolings are not even within the domain of A. values plot-
ted.

Let us now turn to a comparison of the interface
shapes. In Fig. 8, three solidification structures calculat-
ed by solution of the full model (solid lines) are compared
with those obtained from the improved JH theory
(dashed lines). These structures correspond to the ex-
treme points of Fig. 5: A, =0.005 and 0.022—and an in-
termediate point —A, =0.011 (which is close to I, ;„). Re-
sults similar to those to be discussed now have been
found for a large variety of A. values. The JH result in
general overestimates the magnitude of the undercooling,
but its predicted interface profile is remarkably close to
the exact one. This is true notwithstanding the statement
in Ref. [10] that a JH-type theory can be reliable at large
thermal gradients only, i.e., for lT/l «1. In Fig. 8,
lT/l=2. Only at the largest wavelength, where tip split-
ting becomes imminent, does the shape of the JH profile
deviate appreciably from the exact one —its excursions
about the average interface position are less pronounced,
the developing pocket is not as deep as in the true profile.

The reason why the improved JH theory provides ac-
curate results can be traced back to the smallness of the
Peclet number. This means that the distortion of the JH
diffusion field due to interface excursions about its mean
position is of the order of that number. However, as the
wavelength A, becomes significantly larger than A. ;„ the
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FIG. 9. Average undercooling as a function of A, for four
branches of axisymmetric solutions to the model equations
(squares, crosses, circles, and triangles) and one branch of tilted
solutions. The four branches form two pairs, whose members
coalesce into a fold singularity at A, =0.0158. Beyond this A,

value, no axisymmetric solutions could be found. V=10.0, oth-
er parameters as in Fig. 5. A similar branch structure was
found for V=27.5, do =2X10 ', dp~=5X10

FIG. 8. Interface profiles for the parameters of Fig. 5 and
three different k values. Solid line: exact solution of the model
equations; dashed line: improved JH theory.

interface stiffness due to the pinning angle becomes less
and less e%cient (since the pinning length is of the order
of idol /k in the A, unit). This means that the diffusive
effect acts more easily to cause a tip splitting of the inter-
face. As a consequence interface excursions become pro-
nounced and one expects the JH theory to fail above a
certain wavelength (see below).

We now leave the JH theory behind in order to
proceed to other aspects that have no analog in previous
theories of eutectic growth. In Fig. 9, we again present a
plot of average undercooling versus periodicity A, . But
this time the data points on a vertical line (A, =const) do
not describe different phases; they show the full-cell un-
dercooling, and all of them correspond to exactly the
same system parameters. The only difference is in the
creation of these solutions: the iteration was started from
different initial guesses. This shows that there is a
discrete set of solutions to the nonlinear solidification
problem, with different undercoolings and shapes (see
Figs. 10 and 11). We have thus demonstrated that even
when the wavelength has been selected by the physical
system, it still has the choice between different undercool-
ings for a given velocity. This is akin to the free dendrite
which can choose between different discrete velocities for
given undercooling —and chooses the largest one. Simi-
larly, one would expect here that the solution with the
smallest undercooling is the only stable one. We are now

dealing with the full stability problem and hope to report
about the results in the future.

The four branches come in two pairs, which join at
their large-A, end to form two fold singularities. This type
of singularity has also been observed in the bifurcation di-
agram of directional solidification of dilute alloys [23].
On account of the folds, axisymrnetric solutions cease to
exist beyond a critical value of A., which seems to be al-
rnost the same for both singularities. On the basis of our
present numerical accuracy, we cannot decide whether
this apparent equality is exact or only approximate. Fig-
ure 9 displays, in addition to the branches mentioned so
far, the beginning of a branch of tilted solutions, which
bifurcates from the lowest axisyrnrnetric branch. We
shall not discuss these solutions here; they are only
shown to give an indication that the A, value of the folds
is not the end of the story —only the end of axisyrnrnetric
growth.

The figure conveys the strong impression that there ex-
ists an infinity of solution branches, of which we present-
ly see just two repetitive units. The repetition of the bot-
tom structure by the top one is not perfect; they are only
similar. Nevertheless, it is an intriguing idea that this re-
petition of similar structures may continue ad infinitum.

It should be added that we have seen four solution
branches for other, very different, parameters than that
of the figure and that the structure as well as the equality
of the critical values A,, for the two folds seem to be gen-
eric features. We are tempted to speculate that this
equality is exact. Indeed, the upper branches correspond
to "excitedlike" states of the same A, family of the lowest
branch. The fold mechanism should then occur at the
same A,

Figure 10 shows the four profiles close to the minimum
undercooling of the lowest branch, and Fig. 11 gives the
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FICs. 10. Interface morphologies for the four solutions of Fig.
9 at A, =0.0075 (close to A. ;„ofthe lowest branch). The upper-
most interface corresponds to the branch depicted by squares in
Fig. 9, the lowest to the branch drawn as triangles.

interface structure at a A, value right below that of the
folds. The uppermost profile, corresponding to the small-
est undercooling, develops, as one would expect, from a
convex shape of both phases towards tip splitting of the
wider phase when A, is increased (the two capillary
lengths are equal here, therefore the wider phase tip splits
first). The second profile from the top, which is very
similar to the upper one at the large A, value both in
shape and position, develops a deep pocket in the 0; phase
when A, is decreased. The third profile (dotted line) and
the fourth one (dashed line) display tip splitting of the P
phase, too, at the large-k, value, where they look similar
to one another. On decreasing the wavelength, the pock-
ets in the P phase become more pronounced for both
profiles, while the third one develops a convex a phase (as
in branch 1) and the fourth an ever deepening pocket in
the n phase. It is clear that only solution No. 1 corre-
sponds to our (experimentally trained) notion of "proper"
behavior as a function of wavelength and hence the oth-
ers must be the unphysical ones. The main purpose of
devoting a few sentences to the upper branches was to
demonstrate that the existence of a discrete set of solu-
tions seems to be common to a wide variety of situations
(e.g. , velocity selection of free dendrites, selection of the

x/X

FIG. 11. Same as Fig. 10, but at A, =0.0155, not far from the
folds. The upper and lower pairs of profiles each belong to one
fold, and the two interfaces of each pair are close to one another
both in appearance and undercooling.

This section is devoted to a complete derivation of a
generalization of the nonlinear similarity equation of
which we have already given a brief account in Ref. [12].
The similarity equation is valid for small Peclet numbers,
which is the experimentally relevant case. We will dis-
cuss some of its far-reaching consequences.

As we saw before, the eutectic system is governed by
four relevant length parameters, namely the diffusion
length I, the capillary length do, the thermal length lT,
and the periodicity A, of the pattern. Actually there are
six lengths, because we have two capillary lengths do and

do as well as two thermal lengths lT and lT. However, on
taking ratios again to reduce the number of variables by
1, we notice that for a giuen material two of these ratios,
namely do /d~o and lT/lz~, are constant. They will not be
as easily varied in a particular series of experiments as
the other, dynamical quantities, for which we choose now
I' =A, /l, o. =ldo /A, , and y=l/lT.

For the discovery of any geometric similarity property
of the pattern it is obviously necessary to rewrite the
equations of motion in units of A, . I.et us do so first with
the Gibbs-Thomson equation. Equation (2.2) transforms
into

—
A,g/iT —doe/iL, u phase

t

Ag/lz~+d~~K/A, , P phase . (6.1)

width of Saffman-Taylor fingers, etc. ), including eutectic
growth —as we know now.

Note that, since the average curvature is fixed by the
pinning angles, the difference in average interface posi-
tion of the solutions forces their volume fractions to be
different if global mass conservation is to hold —see Ap-
pendix B (although the difference is too small to be well
distinguishable in the plot). We have verified that the
values of ( g ) &p and g for the four solutions indeed satis-
fy the condition following from global mass conservation,
with an accuracy of better than l%%uo.

We have not included data points of the three top
branches in Fig. 9 for A, (0.007, although we calculated
some. The reason is that below this value the pockets in
these solutions have closed so far that the interaction be-
tween the approaching parts of the indented phase(s) is
no longer handled accurately by our code (see Sec. IV).
The results that we have suggest that the upper branches
also run through a minimum, whose abscissa is not too
far from A, ;„ofthe lowest branch. In fact, for any solu-
tion that exists down to arbitrarily small A, values, the un-
dercooling must rise again, because it will be dominated
eventually by the curvature term, whose contribution to
the average undercooling is exactly the same for all solu-
tions at a given A, . [This is so, because the il dependence
in Eqs. (3.11) and (3.12) cancels for the average over a full
cell. ] It seems very likely that at least branch No. 2 (de-
picted by crosses) does exist for small A, , because unlike
branches No. 3 and No. 4 it does not have a partner with
which it could annihilate in a second fold. Whether this
will actually happen in the cases of branches No. 3 and
No. 4, is an open question, which we tend to answer in
the negative.

VI. SIMILARITY EQUATION



GROWTH OF LAMELLAR EUTECTIC STRUCTURES: THE. . . 6523

Notice that it is possible to factor out the Peclet number,

u = —Pe(x)(yg+gox)—=Pu(x), (6.2)

where e and 1( are piecewise-constant functions, defined
by

between +1 and —1.
Using Eq. (2.4), we obtain a similar expression for the

normal derivative

1 BQ =2[Pe(x)[1—k(x)](gg+go~) H—(x)], (6.5)
Pn, Bn

1, a phase
e(x) = . —1z./1&~, P phase

(6.3) where we have suppressed the x dependence of g, g, and
~ in the parentheses and have defined

1, a phase

l~~d~() /1Td0 P phase
i1t(x) = . (6.4)

k, cz phase
k(x)= 1k p

(6.6)

For definiteness, we choose the origin of the x axis to
align with a triple point to the left of an n-phase lamella,
i.e., we have an a phase in the interval (O,g) and a P
phase for x P(g, l). In our calculation presented earlier
[12], f(x) was equal to 1 identically, and e(x) switched

5, a phase

5 —1, P phase . (6.7)

Inserting (6.2) and (6.5) into the integral equation (2.8),
we arrive at

2
[yg(x)+P(x)o a(x)]=

P
1 J dx'e ~KO(Pp)[Pe(x')[I 2k(x')](yg+Qo&) 2H'(x—') j

b,g —«g ~

J dx'e &K, (Pp) Pe(x')(yg+gox) .
277 P

(6.8)

hg —«g„
dx

277 oo p
X e(x')[yg(x')+g(x')or(x')] =Imp (6.9)

Of course, it is not obvious a priori that we are allowed to
do this, because the integration extends to infinity and
hence Pp inside the integral becomes infinitely large no
matter how small P, as long as P is nonzero. Even worse,
at first sight it looks as if the integral I20 is divergent.
The most slowly decaying term of the integral contains
the factor «g„ /p, which for large x' goes as I/~x' —x ~,

a quantity whose integral diverges logarithmically. Note
that the term hg/p is perfectly integrable, since b,g is a
bounded function. Also the limit P~O poses no problem,
because

b,g —«g„.
p' ~ -0 2(l+g'„, )

(6.10)

So we are left with the first discussed term, which
might render the integral divergent and actually does so

We wish to investigate, with due care, how Eq. (6.8)
behaves in the limit P~O, corresponding to the experi-
mentally relevant situation of small Peclet number
(P 5 0.01).

Let us call the first integral in (6.8) Ii, the second,
which we will consider first, I2. On naively taking the
limit P~O in the integrand of I2, we obtain, using the
small argument expansion K, (Pp) = 1/Pp,

G(x') = e(x')[1 —2k(x—')](gg+foii),
Lz(x')=(e ~—1)[PG(x')+2H(x')] .

(6.11)

(6.12)

In order to perform the limit P~0 for I, , we split the
integral into three terms as follows:

I, = J dx'e ~[K (Pp) K(P~«~)]—
X [PG(x')+2H(x')]

+ f dx'Ko(Pi«i )L~(x')2'
+ J dx'Ko(Pl «1)[PG (x')+2H (x') ]

277
(6.13)

and call the three integrals I„,I», and I„,respectively.
The proof that I&, converges uniformly as a function of P

for arbitrary periodic functions g(x) [24]. However, it
can be shown that the integral is convergent, if g(x) is ax-
isym metric. The proof is given in Appendix C for
mathematically interested readers; suffice it here to say
that the convergence is of the same type as that of the in-
tegral of sin(x)/x.

Once we are sure that I20 is convergent, what remains
to be shown is that it is actually the limit for P ~0 of I2,
i.e., that the latter integral converges uniformly as P is
sent to zero. Again, we relegate the proof to the Appen-
dix.

In order to treat I&, we first introduce the abbrevia-
tions
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is then analogous to the one given for I2 in Appendix C.
We are therefore allowed to replace Eo by its small argu-
ment expansion Kp(pp) = 1n—pp in I„and obtain

1 ~ , b,x
lim I„=— dx'ln H(x') .
P~p P

(6.14)

G (X r) — y b e
—i2nnax (6.15)

The two remaining integrals can be considered togeth-
er. All three functions G(x'), H(x'), and Li, (x') are
periodic with period 1 and can be expanded in Fourier
series. We write the series in the form we need inside the
integral:

Cp
lim I),—
P~O

oo—1g

n%0

(6.22)

cp = (H(x) ) =5+rj —1,
r2nn(x —q/2) Slil(11 777])

n&

(6.23)

(6.24)

Finally, we have to evaluate the Fourier coefficients bp,
c„, and d p(P) and to discuss the divergent terms 0- 1/P.
In the first task, the simplest case is the coefficients c„,
because H(x) is a piecewise constant function. We have

H(X~) y i2nnhx

(p)e
—i2nnbx

(6.16)

(6.17)

The two other coefficients are obtained in the form of in-
tegrals:

bp= (G(x) )
= —(1—2k )f dx'[yg(x')+os(x')]

0

where all the Fourier coefficients depend parametrically
on x, but only the coefficients of Lr (x') are P dependent.
Furthermore, we know that the d„(P) go to zero, when P
is taken to zero. Since the three functions are piecewise
smooth, their Fourier series can be integrated term by
term and this property still holds for the series multiplied
by Kp. Changing the integration variable to y =x —x',
we have for I&,

f dyKp(p~y~) P g b„e2' QO

lT dp+(1—2k&) f dx' yg(x')+
&

or~(x')
I dp

and

d (P)=(L ( ))
= f dx'(e ~—1)[PG(x')+2H(x')],

0

which leads to

(6.25)

(6.26)

+2 g ce
dp(P)

lim = —f dx'hgH(x') .
P 0 2P p

(6.27)

Pb„ 2c~—1 +
[p2+(2 n)2]1/2 [p2+(2 )2]1/2

where we have used (Ref. [25], No. 6.671,14)

(6.18)

On collecting the terms for our final equation we find
[in Eqs. (6.8) and (6.22)] two quantities which diverge as
1/P. Their sum is (u +5+2)—1)/P and it is finite. We
show in Appendix 8 that as a result of mass conservation
on the global scale we have

dx Kp(gx)cos(ax) =
0 2(a +P )'/

In a similar manner, we obtain

d„(P)I,b= T
2[p2+ (2~n )2]1/2

We can now take the limit P ~0, which yields

dp(p)
lim I&b lim
P~O P~O

(6.19)

(6.20)

(6.21)

u +5+g —1 = —k f dx'[yg(x')+oi~(x')]P 0

IT dp
+k&f dx' yg(x')+

&
crir(x')

IP dp

(6.28)

i.e., this term and the k and k& terms stemming from
bp/2 cancel each other [26]. Therefore, the similarity
equation reads

[Xg(x)+Q(x)os(x)]= —
—,
' f dx' ( e)[xyg( )x+ t( ii)ox'( )x]

—f dx'hgH(x')
2 0 0

sin( n vr2) )+ g cos 2nm x —~
(n 1r)

+—f dx'ln H (x')
77 00 p

bg —Axe„
dX

&
EX g X + X OKX

2'77 oo p
(6.29)
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l.et us first stress that this result is nontrivial. While one
could expect that taking the limit P —+0 is feasible and
that the final result would not contain P anymore (unless
all terms became zero), it could have reduced to a trivial
identity. This is not the case.

An instructive special case of Eq. (6.29) is the planar
interface. Inserting b,g=O into the similarity equation,
the second, fourth, and fifth terms on the right-hand side
vanish, and we recover the JH formula (3.5) for z =g.
Equation (6.29) may constitute a basis for higher-order
expansions beyond the JH approximation. This is, how-
ever, not attempted here.

The equation states that at small nonzero Peclet num-
bers, where it may be used, for continuity reasons, as an
approximation to the full equation (6.8), the properties of
the solidification pattern depend on the two dynamical
parameters y and a only and not on P itself. In other
words, the Peclet number has scaled out of the original
equation. (Note that in applying the equation for
nonzero P, we reintroduce a weak P dependence via the
quantity q, which depends on P through global mass con-
servation. Of course it is legitimate to avoid this by re-
placing g with its zeroth-order term in an expansion in
powers of P, which is l —u —5. )

We gather from the similarity equation that if we
change any set of fundamental parameters I, lT, dp, and
A. , such that their combinations y and 0 remain unal-
tered, the pattern as measured in units of A, remains un-

changed. In physical units, the pattern may shrink or ex-
pand, according to the change in A, , but it remains similar
to the original.

An example for a change that keeps y and o. constant,
would be a multiplication of A, by a (positive) factor a and
of 1 as well as IT by a (at fixed do). In terms of experi-
mental quantities this means that V and G both have to
be multiplied by a

Another possibility, which is of interest for numerical
investigations, is to divide 1 and lz. by a () 1) and multi-
ply dp by 0.. Since the computational expenditure in-
creases with the effective interface size, which in turn
scales with I, while changes of dp and lT enter the local
dynamics only, it is clear that much CPU time can be
saved by looking at a system obtained by an appropriate
similarity transformation. In going from the original sys-
tem to the one scaled by o. one changes the Peclet num-
ber. This sets an upper limit to this type of
manipulation —the Peclet number must be kept much
smaller than 1. Nevertheless, we have compared some
runs at V=0.1, dp = 10 with others at V=4.0,
dp =4 X 10 and a 40 times larger thermal gradient, and
we find that in the second case the CPU time is decreased
by a factor of roughly 40, while the minimum undercool-
ing wavelength is reproduced within approximately 1%
accuracy. (The method is useful as long as the desired er-
ror bounds for the results are not smaller than the effects
of the residual P dependence, which must be present in
any exact solution, owing to global mass conservation. )

Let us discuss and numerically check some conse-
quences of the similarity equation. First of all, it is possi-
ble to check it directly. We have calculated the
solidification profile for a sequence of velocities V and
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FIG. 12. Vertical position of the eutectic point as a function
of velocity. The material parameters are the same as in Fig. 5.
The data represented by stars correspond to lr = l) = 1.0. V and
X were varied simultaneously such that A, V= const (and hence
cr=const, because do ~ were kept fixed). In this way, A. was
varied between 4.7X10 and 2.3X10 . 0 =0.037. To obtain
the data drawn as circles, V and A, were chosen as before, but
lr = Ir =1) was varied as well to keep 1/1r constant. The point
of intersection of both curves corresponds to lT= 1.0; for small-
er V, lT is larger (extending up to lT=3.8), for larger V, lz. de-
creases (down to lT=0.15). y=0.53. The A, range of the figure
corresponds to a change in the Peclet number from P=0.012 at
the smallest velocity to P=0.059 at the largest V.

A, =idol f (l/lT), (6.30)

changed A, such that o., commonly believed to be the
most relevant parameter, was constant. All the other pa-
rameters, in particular lT, were not changed. In a second
sequence of calculations, we took the same V and A,

values as before but changed IT accordingly to keep g
constant, too. In Fig. 12 we plot the z coordinate of the
triple point for some of these runs. The stars represent
the case (o, 1T ) =const; the circles the case (o,y) =const,
in a velocity range from 1 to 25. It is clearly seen that
only in the second case does g, remain constant in re-
duced units. A plot of (g) looks completely the same;
we have not included it here since on the scale of the
figure the points for g, and ( g ) would touch each other.
Probably even more impressive is a comparison of the
profiles themselves. In Fig. 13 we have, on the left-hand
side 25 profiles from runs with constant o. and lT at
different velocities. Believe it or not, on the right-hand
side there are also 25 profiles, now with y kept constant
instead of lT. We have reduced the line thickness in this
figure in order to make any differences between the simi-
lar profiles more conspicuous —an unsuccessful attempt.
The position of the profiles in the right-hand-side panel
corresponds to the point of intersection of the two
"curves" of Fig. 12.

Note that y is proportional to 6 / V, a parameter that
is at the disposal of experimentalists. Therefore, the
drastic difference predicted between the two situations of
Fig. 13 is not devoid of experimental testability.

Our second observation is that, no matter how the
wavelength selection mechanism operates, it must pro-
vide an additional relation between y and o., which im-
plies a scaling law of the form
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FIG. 13. Left: the profiles corresponding to the stars in Fig. 12 (plus some whose data points were left out in Fig. 12 to avoid
crowding). Right: the profiles corresponding to the circles in Fig. 12.

or, less transparent but in the correct parameters,

&1/rI =f (y) . (6.31)

—1.64—
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FICx. 14. Scaling function f il/1T)=A, V' as a function of
the velocity in double-logarithmic representation. Here, X is the
wavelength corresponding to the minimum undercooling point,
which is determined numerically as described in the text.

Up to now, it has been the conventional wisdom that
the selected wavelength in eutectic growth scales as
A. = V ', notwithstanding the fact that there are quite a
few experiments that show deviations from this law at
low velocities with exponents down to 0.3 instead of —,

'

[13]. An explanation of the conventional scaling law
seemed to be provided by the hypothesis that the operat-
ing point of the eutectic is determined by the minimum
undercooling, since A, ;„was assumed to scale as V
according to the JH theory. Combined with our similari-
ty equation, the statement would then be that f (y) is
constant.

This prediction can be checked by numerical calcula-
tion of f(y) for the minimum undercooling point. We
calculated enough profiles so that splining their average
undercoolings given as a function of A, and determining
the minimum of the spline interpolant provided a
sufficiently accurate value for A, ;„. This procedure was
repeated for several velocities to obtain points of the
curve f (l /lT ), which we conveniently present as a func-
tion of V ( l T was kept constant).

Figure 14 shows the result. The logarithm of kV' is

plotted against the logarithm of V. Any straight line
with slope a means a power law A, ~ V' ', i.e., a de-
scribes the deviation of the scaling exponent from —

—,'.
We can distinguish two regions with roughly constant
slope in the figure. In the low-velocity one, a=0.033,
while at higher velocities, a =0.008. The tendency clear-
ly agrees with the experimental results described in Ref.
[13], even though our low-velocity exponent —0.466 is
still very close to —

—,'. However, there are several param-
eters whose change may inhuence the value of the ex-
ponent and which we have not yet found time to vary
over a large range. For example, an alteration of the ra-
tios 1T/lz~ or do/do~ changes the functions e(x) and/or
lit(x ).

We have verified for different parameter sets that the
qualitative behavior of the scaling function is the same,
i.e., f (y) bends downward at small velocities, again with
very small deviations of the exponent from —

—,'. Howev-
er, we have not pursued this any further (in an attempt to
find parameters that produce a larger deviation), mostly
for cost reasons.

In any case, it can be stated that a high enough veloci-
ties the parameter y becomes irrelevant and the scaling is
determined by o alone. Expressed differently, f (l/IT)
becomes a constant for 1~0, i.e., f (y) is continuous and
nonzero at g=0.

Finally, we can check in a similar way the predictions
of JH concerning the scaling of the undercooling hT as a
function of velocity. In Fig. 15 we present b T/V' as a
function of V in a double-logarithmic plot. A straight
line would correspond to a law of the type b T ~ V +'
However, there is not really a straight line. At high ve-
locities the scaling seems to saturate to an exponent —,',
but at low velocities the curve is never straight, so there
is no constant exponent. Nevertheless, the deviation
from the expected scaling AT ~ V' is very small here,
too. If we "force*' a straight line through the three points
at the lowest velocities, we obtain b=0.014.

It should be recalled here that there is up to now no
proof that the selected wavelength corresponds exactly to
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FIG. 15. Scaling behavior of hT as a function of the velocity
for the minimum undercooling point.

VII. CONCLUDING REMARKS

We have studied lamellar eutectic growth by numerical
solution of the basic model equations for a reasonably
large set of different parameter combinations. Compar-
ing our calculated front shapes and quantitative data
with previous analytic theories, such as the JH theory [8]
and the work of Brattkus et al. [10], we can ascertain
that the critique of the former by the latter is justified.
Namely, the JH theory should be expected to work only
for large thermal gradients on account of the planar in-
terface approximation, but for large thermal gradients
the equal undercooling assumption is a poor approxima-
tion. On the other hand, an improved JH theory, not em-
ploying that assumption, does remarkably well as far as
front shapes and average positions are concerned, even
for medium thermal gradients, when the interface is not
close to planar. The accuracy of the improved JH theory
becomes poorer as tip splitting sets in, and the JH theory
does not "see" the fold —it produces "solutions'* with
strong tip splitting well beyond A, Also we have not

the minimum undercooling point. It would then be possi-
ble that the larger deviation, in experiments, of the dis-
cussed exponents from —

—,
' and —,

' is explicable by the fact
that the operating point is not the one which provides the
minimum undercooling.

Yet we can make another, much stronger, statement
about a power-law dependence of wavelength selection,
which immediately suggests a new experiment for its
verification. Relation (6.30) tells us that if we keep i/IT
(i.e., G/V) constant, we will have A, ~ V '~ exactly
This is absolutely independent of how the selection mech-
anism operates, because it is a consequence only of the
facts that wavelength selection must provide some rela-
tion of the type (6.30) and that the function f remains
constant, if its argument is constant. The range of validi-

ty of this new scaling relation is only limited by the re-
quirement that the Peclet number must be small. To ver-
ify it experimentally, we propose to take one of the com-
pounds of Ref. [13],for which at low velocities strong de-
viations of the exponent from —

—,
' have been seen (at con-

stant thermal gradient) and repeat the experiment,
measuring the wavelength as a function of velocity while

keeping the ratio of velocity and thermal gradient con
stant. This should result in a scaling law X V=const
down to the smallest velocities.

found any indication that there might be a discrete de-
generacy of solutions to the pertinent second-order (non-
linear) differential equations.

The discovery of a discrete set of solutions (belonging
to the same symmetry group) in the eutectic system is one
new aspect of our calculations. It has led to the
identification of a distinguished wavelength A., in addi-
tion to the minimum undercooling point (and the point of
bifurcation to tilted solutions). It will be a task of future
theoretical developments to clarify the role of this point
and its possible relations to wavelength selection (if any).
We have not yet found more than four axisymmetric
branches for any system, and while Fig. 9 suggests, as has
been discussed, the existence of additional solutions, it is
hard to guess, after inspection of Figs. 10 and 11, what
these solutions might look like. If one reduces d~o

su%ciently, the morphologies of branches No. 2 and No.
3 interchange, i.e., the solution coalescing into a fold with
branch No. 1 has a pocket in the P phase instead of the a
one. Interesting things may happen when the competi-
tion between the larger width of phase o. and the smaller
capillary length of phase P is such that the system cannot
decide what the morphology of the second branch should
be (the problem can be seen most clearly in a system with
g= —,', a symmetric phase diagram, and equal capillary
lengths). To our knowledge, morphologies corresponding
to higher branches in Fig. 11 can, at best, be met as tran-
sients in experiments. A velocity jump by about a factor
of 4 is likely to "push" the interface wavelength towards
the fold singularity (since A,, /A, =2 and 1, V =const) rath-
er than to excite the interface into higher branches.
Indeed, the response time of the mean front position (or
undercooling) due to a velocity jump seems to be small in
standard experiments in comparison to the time scale for
wavelength adjustment. One therefore expects, in gen-
eral, the whole structure to undergo a parity-breaking
transition as a result of a velocity jurnp.

Our second main result is the analytic reduction of the
full boundary integral equation to a similarity equation
that depends on one parameter less. In the limit of Uan-

ishing Peclet number the similarity equation is identical
with the boundary integral equation. For small Peclet
numbers, it constitutes a useful approximation. We have
demonstrated some of its direct consequences numerical-
ly. Among these were the geometric similarity of solu-
tions corresponding to different parameter sets, if only
the parameter combinations y and o were kept constant,
and the constancy of the scaled average undercooling as
well as the position of the triple point, under the same
circumstances.

Furthermore, we have extracted scaling relations from
the similarity equations which allow to explore numeri-
cally, how the selected wavelength should scale in the or-
dinary experimental situation (constant thermal gra-
dient), if it is determined by the minimum undercooling.
We found agreement with the experimental observation
[13] that the scaling is of the form A, = V ~, with P small-
er than —,

' at low velocities and approaching —,
' at high ve-

locities. From the general form of the scaling law, we
moreover predict that in a different experiment, where
the ratio of velocity and thermal gradient is kept fixed,
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the analogous scaling exponent should be exactly —,'. We
hope our prediction will be put to the test soon, by an ex-
periment of the suggested type.

%e close with an outlook on important work that
remains to be done: the linear stability analysis of the
symmetric states.

First we will consider the soft-phase instability. As the
full equations are invariant under a constant phase shift,
the Goldstone mode is a neutral mode of the linearized
dynamical equations. It is therefore natural to expect
long-wavelength phase fluctuations to be dangerous. Us-
ing the spirit of the method employed in directional
solidification of dilute alloys [27] it is possible to extract
from the full equations the part that is relevant to the
phase dynamics. This extraction requires some analytical
sophistication, but o8'ers the advantage of avoiding an
effort to locate the instability close to the center of the
first Brillouin-like zone by a forward stability analysis.

The second aspect of our outlook is related to e
search for oscillatory modes, for which there is expen
mental evidence. A full linear stability analysis will then
be necessary, without resorting to the (advantageous)
quasistationary approximation, since this would not be
legitimate for Hopf-type instabilities. This analysis
would permit us to specify precisely the appearance of
different kinds of instabilities. The "optical-like" modes,
commonly observed in various experiments, take place
with a spatial period that is about twice as large as the
basic one (for the steady state). Moreover, our analysis of
parity-breaking transitions, on which we will give a
separate discussion, tells us that parity-broken states re-
sult as a quasi-period-doubling bifurcation. %'e are
tempted to conjecture that an interplay between parity-
broken states and "optical" modes constitutes a prelude
to a chaotic regime.

I I

~ii2 ~

I-

r„
FIG. 16. Integral contour used in the derivation of the sum

rule.

1
h (r r') = exp

2~l

—(z —z')
l

X —n,'Ko r —r' n' r' —r
fr —r'/

——'5(r —r') .
2 (A2)

XK&((y +bz ) /I)

(A3)

Let us require that r [ =(x,z)] does not lie on I z, i.e.,
zAZ, so the 5-function term can be omitted in the in-
tegral on contour I z, whose contribution to the full in-

tegral (A 1) is then

f dI"h (r, r')
rz

=f dx'h (r, r')
r

e '~' dy K ((y +bz )'~ /l)
2+i

hz

(y 2+hz 2)1/2

APPENDIX A: THE SUM RULE

f d I"h (r, r') =0 .
r

(Al)

Written out explicitly in terms of the modified Bessel
functions, Eq. (2.6) reads

Our derivation of the sum rule starts from the observa-
tion that u =uo with an arbitrary constant uo solves the
diff'usion equation (2.1). This means that the integral
equation (2.5) is fulfilled with u replaced by uo and I,&

re-

placed by any closed contour. [In (2.5) the contour was

also closed originally but the closing pieces were at
infinity and could be dropped because u =u „and
Bu/Bn'=0 there [18].] In the present context the most
useful closure of the integration contour is obtained by
adding to I,&

a piece I z running from x ' = ~ to
x'= —~ at a value z'=Z) 0 and joining it to I,&

at the
infinitely far end points by pieces I

~~
&

and I ~~2,
which are

parallel to the z axis (see Fig. 16). We call the total con-
tour I, and after division by uo —u (taken %0) the in-

tegral equation becomes

In the first of these two equalities, we have used that
dI"= —dx' on I z and interchanged the integration
boundaries. In the second we have exploited that n' is
equal to the negative unit vector in z direction
( —'n,'= —1), introduced the abbreviations b,z =z' —z
=Z —z, and changed the variable of integration to
y =x' —x.

We call the first integral on the right-hand side of the
last equality I„ the second Ib. Both integrals can be
evaluated exactly with the help of (Ref. [25], No. 6.593,3)

r. =&2~1[az[K „,(Iaz[/I),

Ib =sgn(bz)v 2ml(bz(K&&2((bz)/l) . (A6)

But the half-integer-order Bessel functions are expressible

2@+1

f dx K (a x2+z2)
0 (x +z )'i

2"I (@+1).„,K„„,(aizi), (A4)

which we have written for real z and which holds for
a) 0, %(IM) ) —1. Choosing Iu, = —

—,', we immediately ob-

tain
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via elementary functions, and we have (see Ref. [26], No.
8.469,3)

independent integrals can be transformed into contour in-
tegrals (e, denotes the unit vector in z direction):

Ky i y2 (z) = i/77/2z e

Therefore, we obtain

I, =+I =m.l e I& I&t
b
—7T e

(A7)

(AS)

f dQ = f dQe, V'c= —f dI nc,Bc
no gz no ' ro

f dQVj, = —f dIn j, .
n, ' r,

where the sign of I& is equal to the sign of hz. Plugging
these results back into (A3), we finally arrive at

f dI"h(r, r')= '
1 if Z&z
0 ifZ&z. (A9}

Since the used form of the integral equation is valid for a
normal vector pointing into the domain encircled by I,
the integration contour should be closed above I,&, so we
have Z &z [28]. Because the integral on the complete
contour I is zero and there is no contribution by the con-
tours I

lli
and I

ll2
(which have finite length), due to the

exponential decay of K0 and K& for x'~+ ~, we end up
with

dI"h r, r' = —1 .r (A10)

Equation (2.9) is then immediately obtained by trans-
forming to reduced variables and integrating out the con-
tribution of the 5 function.

APPENDIX B: A CONSEQUENCE OF GLOBAL
MASS CONSERVATION

To investigate the consequences of mass conservation
in the bulk we start from the most general form of the
continuity equation which, in the frame moving with the
interface, reads

Bc Bc—V = —Vj, .
Bt Bz

(Bl)

j, is the mass current. In the liquid, where j,= —DVc,
this equation reduces to Eq. (2.1); at the liquid-solid
boundary, one can derive Eq. (2.4) from it.

We now integrate Eq. (Bl) over the domain Ao delimit-
ed by the contour I 0= I + I &+ I ~~i+ I + I

~~z
which is

depicted in Fig. 17 and whose bottom pieces I and I &
lie inside the solid. Since we consider stationary solu-
tions, Bc /Bt equals zero. The remaining time-

c ~ — x csa x& x + x csp x& x
0 7)A

=q{c,.)+( I —q) {c,~), (B3)

where c, and c,&
stand for the concentrations in the a

and P phases, respectively.
Returning to reduced lengths in units of I,, we can

write

c„—c, = f dx(c, —c )+f dx(c, tt
—cti)

—c, +r)c +(1—ri)ctl,

which on division by hc becomes

u„=f dx u, +f dx u, p
—i)5+(1—ri)(1 —5),

0

where we have defined u„=(c„—c;)/hc (i =a,P}. An
immediate consequence of this definition is u„
=k, u (x,g(x ) ), which leads to

(B&)

u„+5+g—1=k f "dx u(x, g(x))+ktl f dx u(x, g(x))
0

1
P f dx e(—x)k(x)

X [yg(x)+P(x)cr~(x}]; (B6)

the definitions of e(x), k(x), g, cr, and g(x) have been
given in Sec. VI. Equation (B6), which is identical to
Eq. (6.28), is the desired result, showing that
(u +5+ g

—1)/P does not diverge as 1/P but is of order
1.

The contributions to the second integral from I
~~,

and
I

~~2
cancel each other and, because of j,=0 in the solid as

well as at infinity, this integral vanishes altogether (there
is no net fiux out of the periodicity volume).

As to the first integral, we have dx =n, dI on I and
I &, dx= —n, dI on I, and n, =0 on the remaining
pieces of I 0. Hence, we immediately obtain (setting the
coordinate of the triple point between I and I & equal to
rik)

I

I
I

ll2 [ ~0 ~ ~Ill
I

I
I

I

I

I

II

FIG. 17. Integration contour used to relate c„ to the concen-
trations c, and c,& in the solid.

APPENDIX C: CONVERGENCE CONSIDERATIONS

To see the convergence of I20 we may use the following
theorem [29]: Given two integrable functions h(t) and

g (t), if h (t) is monotonic for t & a and lim, h (t) =0
and if furthermore f', du g(u) is bounded Vt &a then

f dt g (t)h (t) exists, i.e., is convergent.
Substituting y =x —x' for the integration variable in

I&0, we can set, in the most slowly decaying term of the
integral (whose convergence decides the convergence of
the whole integral), h (y) =y/p, which behaves as 1/y for
y ))x and hence becomes monotonic beyond some

sufficiently large value y =y0. We then have to prove
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that the remaining factor g0(y) =(1/2~)g u (x —y) has a
bounded integral on arbitrary finite intervals. u(x) has
been defined in Eq. (6.2). Now, g is a periodic function
that is even with respect to the symmetry axes of the a
and I3 phases due to the axisymmetry of the solutions
considered here. Furthermore, u is a function of g and its
first and second derivatives, with the first ones appearing
only in even powers; therefore, u is also even. However,

is odd, being the first derivative of an even function.
As a consequence, the total function go is odd with
respect to the symmetry axes of the phases. Hence, its in-
tegral over one period vanishes, and its integral on any
interval [y0,y & ] remains bounded for arbitrarily large y, .
This shows that f "dt g0(t)h (t) exists. Clearly, an

3'p

analogous argument can be used to show convergence at
the lower integration bound of Izo and hence, the conver-
gence of the integral is proved.

In order to actually perform the limit P~O we should
like to have, however, uniform convergence of the in-
tegral I2 on some P interval containing zero. To see this
in detail, we first decompose the integral in three parts:

I2 =I2, +I2b +I2c ~ (Cl)
—Ri

I2, = f + f dy e «E, (Pp)Pu(x —y),
27T . —oo R 2 p

(C2)
—Rl

I2b= f + f dy e «E, (Pp)Pu( x—y),
R~ p

(C3)

I2, —— f dy e «+ K, (Pp)Pu(x —y) .
~2 bg yky

2n . p p. '

(C4)

only requirement being that OH( —R&,R2)—otherwise
the integrals I2, and I2b would each diverge at y=0.
(Their sum is convergent. ) Cutting out the middle part of
integrals that originally extended from —~ to ~ will
also prove useful later when an integration by parts must
be performed to generate an additional power of 1/p.

The most convenient approach we have found is to use
the following integral representation for It, , :

K, (Pp)=+ f dtP 0 t +p
(C5)

and

gz(y) =( I /2~)e «g u (x —y),
—Rlf +f dy (y)f d

I2b f '+ f,
"

dy g~(y)y f "«
oo (t +p)

(C6)

In this form of the equations, most of the P dependence
has been shifted into the cosine terms. Setting
G2 (y) = f ~ ~ dt gt (t) for y ( R—, and G~(y)
= f ~ dt gp(t) for y )R2, we perform an integration by

parts on the second integral which yields

'+ f" dy 6,(y)

cosPt
dt

0 (t2+ 2)3/2

(No. 8.432,5 in Ref. [25]). Inserting this in (C2) and (C3)
we have, introducing

P~(y) =( I/2m. )e «Agu (x —y)

It is understood that hg and g are both functions of the
argument x —y, while p=(y +b,g )'/ . The numbers R,
and R 2 are arbitrary positive numbers at the moment, the

I

—3(y —yhg' )f dt
0 ( t 2+ 2)5/2

Now we can substitute t ~pt and arrive at

(C8)

I„+I2b= f + f dy P~(y) f
2

cosPpt y y~R3 ~ cosPpt 1
d (t'+l)3/' 3

p' ' d (t'+1)'/' p
(C9)

It is clear that the integrals of the cosine terms are
bounded by f 0 dt(t +1) / (=1) and f 0 dt(t
+ 1) /, respectively. Furthermore, Fp and G~ are
bounded functions, whose dependence on P is continu-
ous. Therefore, the expression in brackets, let us call it
It (y), is a bounded function of y for P in some interval
[O,P0] with lower and upper bounds m and M, which can
be chosen independent of P. Hence, we can, for any e) 0,
choose (a large enough) R2 such that

f dy It (y) ~ max( 1m l IMI )f dy «(Cl())
2 p 2 p

and this choice is independent of P. The same holds, of
course, for R, and the integral extending from —~ to
—R&. This proves the uniform convergence of I2, be-
cause the middle part I2„having finite (P independent)
integration bounds, is a continuous function of P. From
uniform convergence it follows that I2 is a continuous
function of P, too, and therefore, limp 0 I2(P) =I20.
This finishes our consideration of I2.

For the integral I& =I] +Iamb+I j„we have evaluated
the last two terms in Sec. VI by explicit integration of
Fourier series. The uniform convergence of I„can be
proved by use of the representation (No. 8.432,5 in Ref.
[25])
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Ko(xz) =f dt
(t2+ 2)1/2

with x =P and z =p, z =
~
b,x~, respectively. Then, we have

(Cl 1)

Ko(Pp) K—o(P~hxi)= f dt cosPt
0 (t2+ 2)1/2

1

(t'+ ax 2)'/2

f —+pg

QO +$2
dt cosPt (t'+ ')(t'+i5, ')'"+(t'+b, ')(t'+ ')'"

p o (t'+ I )(t'+Ex'/p')' '+(t'+Ax'Ip')1/t'+ I
(C12)

Inserting this into the definition of I„[seeEq. (6.13)j and again splitting the integration into three parts,
—Ri R2

e ~ ~ ~ ~ ~ + ~ ~ ~ + ~ ~ ~

00 00
—R) 2

we can use the fact that the above expression is bounded by a constant times 1/p in the two integrals on infinite inter-
vals to demonstrate the uniform convergence of I&„.
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