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Operator equation of motion in phase space: Application to time-dependent systems
possessing invariants
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We have derived an equation of motion for a Wigner operator in phase space, which is the
phase-space analog of the Heisenberg equation of motion for a quantum-mechanical operator. An
application of this operator equation to time-dependent systems possessing invariants is considered,
and the solution for the corresponding Wigner phase-space distribution function is obtained.

I. INTRODUCTION

The phase-space distribution function, originally intro-
duced by Wigner' and subsequently generalized by Moy-
al, Cohen, and others, provides a means to calculate
the quantum-mechanical expectation values using
classical-like phase-space (PS) integration, where position
and momentum are treated as ordinary variables rather
than as operators. In the PS picture, the quantum
corrections become transparent, and a smooth transition
from quantum to classical physics is encountered. It is
particularly suitable for obtaining quantum-mechanical
(QM) results in situations where a good initial approxi-
mation comes from the classical result and also for deriv-
ing classical limits of quantal processes. The strength of
the PS framework is also revealed by its ability to provide
a unified treatment of states and transitions by associat-
ing PS functions to quantum states as well as quantum
transitions. Also, both pure and mixed states can be dis-
cussed using the same framework.

The Wigner PS function is the Weyl transform of the
density operator and is a particular representation of the
density matrix. There also results another meaningful
picture of the Wigner function when it is interpreted as
the expectation value of the parity operator.

The calculation of the Wigner function from the wave
function in coordinate space as the starting point is met
with difficulties. Even for the hydrogen atom, one has to
take recourse to either expansion in terms of the Gauss-
ians or exploit the hydrogen-atom —oscillator connec-
tion. The equation governing the time evolution of the
PS function has therefore been employed directly in a
variety of problems, such as collisions, intramolecular
energy transfer, photodissociation, ' and other semiclas-
sical applications. " Recently, the PS distribution func-
tion has also been useful in discussing quantum
chaos, ' ' quantum Quid dynamics' and some aspects of
density-functional theory. ' The creation and annihila-
tion operators have also been defined in phase space' (see
Kim and Zachary' for a variety of applications of the
physics of phase space).

The PS formalisms have mostly been centered around
the distribution functions. However, operators known as
Wigner operators (which are essentially Bopp operators)
have also been defined ' in phase space. Although the
Wigner operators are not needed for evaluating the ex-
pectation values, they appear in the equations determin-
ing the PS distribution functions. While these equations
involving the PS function have been studied extensively,
the equations of motion for the Wigner operators them-
selves have not attracted sufficient attention. In the
present work, we aim at obtaining the equation of motion
for the Wigner operators in phase space, which will be
the PS analog of Heisenberg equation of motion for a
quantum-mechanical operator.

The equation for the time evolution of the PS function
is not a differential equation with simple order but in-
volves series expansion in the derivatives with respect to
position as well as momentum coordinates. It is there-
fore of utmost importance to have methods of solution
for these equations. We exploit the operator equations
derived here to obtain solutions for the PS distribution
for a certain class of time-dependent (TD) problems, viz. ,
those associated with TD invariants, ' which includes
problems involving a TD harmonic oscillator or a
charged particle moving in a TD magnetic field.

In what follows, a brief review of Wigner distribution
functions is presented in Sec. II. The operator equation
of motion is then derived in Sec. III. The olution for the
PS function through the operator equation is obtained in
Sec. IV for general TD systems possessing invariants and
the TD harmonic oscillator as a special case. Finally, we
offer a few concluding remarks in Sec. V.

II. WIGNER DISTRIBUTION FUNCTION
IN PHASE SPACE AND REI.ATED EQUATIONS

The Wigner distribution function f(q,p) is defined
through the partial Fourier transform of the off-diagonal
elements of the density matrix, viz. ,
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f(q,p ) = (2vrA') ' f dy exp
The Wigner equivalent of the commutator [A,B]

and the anticommutator [ A, B ]+ now follow directly:

x & q
—y /2

I p I q +y /2 &,

or an equivalent expression

([A, B] ), = 2—i A, [sin(A'A/2]B, ,

( [ A, B ]+ ), =2 A, [cos(A'A/2) ]8, .

(9a)

(9b)

f(q,p ) =(2m%') ' f dk exp
—iqk

The classical limits (A~O) of Eqs. (9) yield the desired re-
sult:

X & p —k /2
I p Ip +k /2 &, (2)

(ih') '([ A, B] ),~ [ A, B, ]pB,

( —,
' )( [ A, 8 ] +), ~ A, 8, ,

(10a)

(lob)
and clearly satisfies the following properties:

f dq f(q,p) = &p ls"p &,

fdpf(q p»)=&q plq&,

f dq f dp f(q,p)=1 .

(3)

These results, written for a single particle in one dimen-
sion, can easily be generalized to higher dimensions and
many-particle systems. Another more general scheme is
the Wigner-Moyal transform, which yields the PS func-
tion A, (q,p) corresponding to a QM operator A (q,p)

s given by

where [ ] ~B denotes the Poisson bracket.
One can thus obtain the Wigner equivalent PS function

corresponding to any QM operator using Eq. (4). The re-
verse process of obtaining a QM operator equivalent of a
classical PS function is via the Weyl transform. One can
also define operators in phase space, known as Wigner
operators. Thus, corresponding to a PS function A, (q,p),
the differential operator A (q,p) is defined as

A (q,p)= A, (Q,P),
where Q and P are the Bopp operators and are given '
by

A, (q,p)= f dy exp
'

&q
—y/2IA lq+y/2& . (4) Q =q —

2,.
a

Bp

Clearly, Eq. (1) is a special case of Eq. (4) for the density
operator, i.e., A =p and f(q,p)=(2mB) 'p, . The PS
function A, (q,p) is known as the Wigner equivalent of
operator A and the transformation given by Eq. (4) can
be recast in several other equivalent forms. ' From Eqs.
(1) and (4), it also follows that

Tr(pA )= f dq f dp A, (q,p)f(q, p),
which implies a classical-like procedure for the evalua-
tion of expectation values. One also has the generaliza-
tion of Eq. (5), viz. ,

Tr(AB)=(2M) ' f dq f dp A, (q,p}B,(q,p) . (6)

fgP=p+
2l

a
Bq

AA
A = A, (q,p)exp

2l

=exp (fi/2i )
a

~pA

a
Bqg

a
Bq

Bp
A, (q,p),

The PS operator A (q,p) can be rewritten as

(12)

(13a)

(13b)

The Wigner equivalent of the product of operators can
be expressed in terms of the Wigner equivalents of the in-
dividual operators. Thus, for F= AB, one has

F,(q,p ) = A, (q,p )exp B,(q,p )
AA

2l
T

where (8/Bp„) and (8/Bq„) operate on A„while (a/aq )

and (8/Bp ) are free and are to operate on the function
that follows A, . One can thus obtain the PS operator A

corresponding to any QM operator A or the Wigner
equivalent PS function A, (q,p) using Eqs. (11)—(13). The
reverse transformation of the PS operator A into the PS
function A, (q,p) is by operating on unity, viz.

=B,(q,p )exp
—AA

2l
A, (q,p), A (Q, P)1= A (Q ',P *)1=A, (q,p), (14)

A= a
Bp

a
Bq

a
Bp

where A (essentially the Poisson bracket operator) is
given by

where Q
* and P " are complex conjugates of Q and P of

Eq. (12). A (Q, P) is an operator not on the Hilbert
space on which A (Q,P) is an operator, but it acts on
functions in PS. It also follows from Eqs. (7) and (13}
that corresponding to the product of QM operators,
F= AB, one has

with the arrows indicating the direction in which the
derivatives act. In the general multidimensional case, Eq.
(8) involves a multidimensional scalar product.

F, (q,p)=A 8 1=A 8, (q,p)

=8 A 1=8 * A, (q,p),
(15a)

(15b)
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where 8 * denotes 8 (Q *,P *). The expectation values
can also be expressed in terms of the Wigner operators,
V1z. p

Tr( AB)=(2irfi) ' f dq f dp A, (q,p)B, (q,p)

Equation (20) governs the time evolution of f(q, p),
which is the Wigner equivalent of the density operator.
The equation of motion for a general operator A(g, P),
Vlz. ,

(16a)

(16b)

= ( 1/iri) f dq f dp A 8, (q,p)

=(1/iii) f dq f dp 8 A, (q,p),
and the expectation value ( A ) is given by [compare Eq.
(5)]

A(q(t), p(t), t)=
dt

A(q(t), p(t), t)

+(if&) '[ A (q,p, t ),H(q, p, t) ]

(22)

(A ) =Tr(pA )=f dq f dp A f(q,p) . (17) can also be transformed into the PS equation:

One also has the commutator relation

(18)

d
A, (q(t),p(t), t )= A, (q(t),p(t), t )

a
at

With the help of the interconnections among the QM
operator A(q, P), the classical PS function A, (q,p) and
the PS (Wigner) operator A, the equation of motion for
the density operator, viz.

iL(q—(t'),p(t) ) A, (q (t),p(t) ),
(23)

which yields the classical Liouville equation in the classi-
cal limit Pi~0. For Hamiltonians of the type

iA =[H,p], H(q, p, t)=p /2m+ V(q, t), (24)

= —2H, (q,p)sin f (q,p, t),a AA

at
(20a)

which can be rewritten as

will have the following form in the Wigner representa-
tion:

with V(q, t) linear or quadratic in q, the equation of
motion is the classical Liouville equation. For a general
potential, however, Eq. (20) or (24) does not represent a
differential equation of simple order and involves a power
series. The formalisms presented in subsequent sections
would provide schemes for solving the quantum Liouville
equation.

=(iA') '(H H* )f(q,p, t)=i—Lf(q, p, t), (20b) III. OPERATOR EQUATION OF MOTION
IN PHASE SPACE

where L is the quantum Liouville operator defined in
terms of the Wigner operator H and H * corresponding
to the Hamiltonian H, viz. ,

iL =(i') '(H H* ) . — (21)

Equation (21) is the quantum Liouville equation and
determines the time evolution of the PS distribution func-
tion. Expansion in power series of A' using Eq. (13) shows
that the zeroth-order term in Eq. (20) corresponding to
the classical Liouville equation and the terms of even or-
der in fi represent the quantum corrections.

While the equation for the PS function [Eqs. (20) and
(23)] corresponds to the Schrodinger picture of QM, an
analog of the Heisenberg picture can be established
through the PS equation corresponding to the QM opera-
tor equation (22). Since the equation of motion for the
Wigner operator 3 does not seem to have been studied
earlier, we first present a derivation of this equation.

The time dependence of A can be obtained from Eq.
(23) for the corresponding PS function A, through the
operator correspondence [Eqs. (11)—(13)]. Since Eq. (13)
can also be written' in the form

n f fdgdi) G„(g,i))exp i .g p+
2K 2l

T

f f d g d i) G z ( g, i) )exp i g p— a
aq

+g q-
2l

+g q+
2l

ap

ap

(25a)

(25b)

where

Gz(P, i))= —f f dq dp A, (q,p)exp[ —i(gp+i)q)], (26)

one obtains the equation for A from Eq. (23), viz. ,
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A, —(iA') '(H A, —A H ),
Bt

(27)

X exp I i
I (kl+ k2)$ +( 91+ l2)e ]+(i&/2)(ki )2

—Iik) 1

and therefore the corresponding Wigner operator is given by
3

2~
(1/fi) f f f f f f dgdgdg&dg, dgzdgzdq'dp'G~(g„q, )G~(gz, i)2)

by multiplying with the exponential terms of Eqs. (25) and (26) followed by integrations over g, rI, q, and p variables.
The term H A, is the Wigner equivalent of the QM operator product H A and can be expressed as

F, =(HA ), =H A, =(vari/2~)'f f f f dg, dg, dg, dg, G~(g„g, )G„(g„g,)

(28)

X e"p~(' i/2)(gi'92 —'9, (~)]e"PI'~(g)+$2 g)P'+—('9, +'9r. —/)iI']]

Xexp i g Ii+
2l

where use has been made of the identities

a
Bp

(29)

8
exp i (, p+ — +q, q—2'

, elf 2

=exp i (g, +gz) p+

Bp

a
Bq

exp i g2 p+
2I

+(g, +g2) q—

+q2 q—
2E

exp[(i'/2)(g~g2 —i),$2)] . (30)

Since the integral over the p' and q' variables of the
second exponential term in Eq. (29) gives a 6 function,
one readily obtains

(I f ) =(H H* )(I f ) . — (34)

I' =H„A (31)

+(ih') (H A„—A H ),

which is analogous to the Heisenberg equation of motion
for a quantum-mechanical operator.

IV. TIME-DEPENDENT INVARIANTS
AND SOLUTION FOR THE PHASE-SPACE

DISTRIBUTION FUNCTION

Analogously, the term H' A, is equal to A H, by Eq.
(15), and hence the corresponding Wigner operator is
A„H . The equation of motion for the Wigner operator

is therefore given by

(32)
dt (1/fi)(I I*)f„(q,p,—t)=a„ f„(q,p, t) . (35)

The definition of the PS eigenfunctions f„ for station-
ary states follows from the generalization of Eq. (1) for
the PS distribution function, viz. ,

f„=(2~Pi) ' f dy exp

Hence, (I f ) also satisfies the same Wigner-Moyal-type
equation (20). We now make use of the properties of this
invariant to solve for the PS function f (q,p, t) from Eq.
(20).

The solution involves an expansion in terms of the PS
eigenstates of the invariant operator, given by

I = I —(iA') '(H I I H~)=0 . —
dt at

Now, operating (BI /Bt) on f(q,p, t) and using Eqs. (33)
and (20) and the commutator condition (H I * =I *H„)
[see Eq. (18)],one obtains

(33)

Consider the TD system characterized by the Hamil-
tonian of the form of Eq. (24) and the resulting equation
for the PS distribution given by Eq. (20). Now, assume
that there exists an invariant I(q,p, t) for this TD prob-
lem. The Wigner operator I corresponding to this in-
variant satisfies

X &q
—y/2lp„ iq+y/2&, (36)

Ig„=a„g„. (37)

The two eigenvalue equations obeyed by the PS func-
tions f„(q, Ii ) are

corresponding to the density matrix operatorp„=
~
n ) ( m ~. Here, p„(=P„sg ) characterizes the

nth and mth eigenstates corresponding to the eigenvalue
problem in the Hilbert space of the wave function, viz. ,
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(1/fi)([I,p„] ), =(I/A')(I I—„*)f„(q,p)
= —2(i /fi)I(q, p, t)sin(iriA/2) f„
=a. f., (qp»)

—,'( [I,p„]+), =I(q,p, t)cos(fiA/2) f„
(38a)

I, (q,p) is a real function of its arguments, the operator
(I I—*

) is clearly Hermitian and the eigenvalues [a„j
are real. Also since [f„] form an orthonormal set, the
PS eigenfunctions [f„]also form an orthonormal com-
plete set, i.e., they satisfy

(2iriri) ' f f dq dp f„ f„* =5„„5 ~ (40a)
I

anm~ n, m (38b)
and also the "self-orthogonality" relation

where the eigenvalues a„and a„' are related to the QM
eigenvalues by f fdqdpf„. =S„. . (40b)

a„=( I lfi)(a„—a ), (39a) The functions f„ form a Hermitian matrix with respect
to their subscripts n and I, i.e.,

a„' = —,'(a„+a (39b) f. (q,p, t) =f*.(q,p, t) (41)

Since the Bopp operators Q and P defined in Eq. (12) as
well as the operators Q

* and P * are Hermitian, any real
function of these operators is also Hermitian. Since

We now proceed first to prove that the eigenvalues
a„are not explicitly time dependent. Differentiating
Eq. (38a) with respect to time, one obtains

Ba„ f„+a„A f„+ —(I„I' )—fn, m=1
' a I (42)

at

Now, allowing Eq. (33) to operate on f„and the equation of I * corresponding to Eq. (33) on f„and subtracting,
one obtains

I„——I * f„+ . [(H H* )(I„—I *
) CI —I * —)(H —H* )]f„—=0 . (43)

From Eqs. (42) and (43), one obtains f„, ih (H H* —
) f„—

—(H H" ) f„—

=i A (gaia„)f„

[(I„I*
) gaia„—] i A—

at

(44)

The objective now is to find a solution to Eq. (20b)
through the eigenfunctions f„of the invariant opera-
tor. Since [f„]form a complete set, f (q,p, t) can be
written as

f(q,p, t)=QC„(t)f„(q,p, t) .
n, m

(48)

Taking the scalar product with f„*, ~ and using the
orthogonality property off„[seeEq. (40)], we get

Substituting Eq. (48) into Eq. (20), taking the inner prod-
uct with f„. , and using Eq. (47), one obtains

iii(a„—a„) f„. .. ih 8 —(H H„* ) f„—aC„,
i% ' +fz

Bt

~~n' m'
C, =0, (49)

where

=i A (irta„)$„„,$

which implies that

f„, , iA (H H* ) f„——
'a

an m=0
dt

(46)
Therefore, the time-dependent coefficients C„, ,(t) are
given by

indicating that the eigenvalues of the invariant operator
have no explicit time dependence.

Equation (45) for the off-diagonal case implies that

C„, ,(t) =e px[i[a„ .(t) a„, ,(t')]]C„. ,(t'), —

which on substitution in Eq. (48) leads to

(51)
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f(q,p, t)= +exp[ i—a„(t')] f f dq'dp' f„* (q', p', t')fo(q', p', t') exp[i'„(r)]f„(q,p, t) .
'n, m

(52)

Equation (52) enables one to obtain f (q,p, t) from the
eigenfunctions f„and the boundary condition for
f(q,p, r) at r=r'.

As an example, we now consider the case of a time-
dependent harmonic oscillator described by the Hamil-
tonian

f., (q,p &)=f.„.(q/p pp pq—) . (6l)

f„, i' — (H —H*—
) f„

Using this knowledge of the functional dependence of
f„on q and p, one can easily solve Eq. (50), rewritten as

H=p /2+ ,'co (—t)q (53)

I(p, q, t ) = —,
' [ (pp pq )

—+k ( q /p ) ], (54)

The time-dependent invariant I(t) associated with this
system is given by'

p(f„—,h'(I I * )f—„),
to obtain the phase factor given by

a„(t)= gaia„ f—dt p

(62)

where k is a constant and p(t) satisfies

p+ pw ( t) =k /p

Our objective is to obtain the solution of Eq. (20b) for this
system in terms of the eigenfunctions of the invariant
operator (54). The latter can be expressed in the simple
form

I= ,'(P +kg )— (56)

in terms of the new variables Q and P obtained through
the canonical transformations

Q =q/p (57)

Equation (56) suggests that the invariant in the
transformed variable plays the role of Hamiltonian for a
time-independent harmonic oscillator.

For the phase-space considerations of the oscillator
problem, we have

a 2 a(H H' )= ip — +—ice (t)q
Bq Bp

(58)

(I I *
) = i (pp ——

pq
—) p +p

Bq Bp

k+i q
p2 Qp

(59)

The second expression when reexpressed in terms of the
new variables Q and P takes the form

Once we identify (I I *
) with —(H H* ) o—f the time-

independent harmonic oscillator, the eigenfunctions f„
can be obtained from standard results. ' Therefore, one
has all the necessary quantities to obtain the distribution
function f(q, p, t) from Eq. (52) when the initial function
fo(q, p, t') is known.

V. CGNCI. UDING REMARKS

The evolution of phase-space forrnalisms in quantum
mechanics has been driven by a desire to obtain a classi-
cal conceptual framework for discussing quantum phe-
nomena. It not only provides an enhanced view of the in-
terpretive aspects, but it also enables one to employ the
various methods of approximation or expansion used in
classical cases to the problems of quantum domain.

The operator equation in phase space that has been
proposed here supplements the analogous equation-of-
motion approach for the quantum chemical calculations.
Invariance plays an important role' in obtaining the
solution for the time-dependent harmonic oscillator and
to obtain the phase-space distribution function, the
operator equation for the invariant operator is essential.
Using the operator equation derived here, a time-
dependent density-functional theory can be developed
in phase space. A master-equation approach for open
quantum systems can also be developed using the opera-
tor equation. It is also of interest to obtain a path-
integral solution to the phase-space function and show
its interconnection with the Bohm s quantum-fluid-
dynamical approach. ' '

(I I *
) = iP —+ikg— (60)
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