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Stationary solutions for the Saffman-Taylor problem with surface tension
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We report a one-parameter family of solutions for the problem of the motion of an interface between a
viscous and a nonviscous two-dimensional fluid. The solutions have the interface moving uniformly
while the viscous fluid has a nontrivial potential low. In an alternative interpretation, the existence of
gravitational forces in the plane allow the interface to be at rest while the Quid is in motion. This family
of solutions is a generalization of a solution reported previously [L. P. Kadanoff, Phys. Rev. Lett. 65,
2986 (1990)]. The solutions presented here are found to be related to the traveling-wave solutions of the
"Harry Dym equation, "which is a completely integrable nonlinear evolution equation.

PACS number(s): 47.15.Hg 68.10.—m

Recently [1] one of us presented an exact solution for
the Saffman-Taylor problem with surface tension. This
problem [2,3] is one that involves two fiuids: one with
high viscosity and the other with low viscosity to be re-
garded as inviscid, each trapped between two glass plates
separated by the small distance b. The velocity in the
"two-dimensional" viscous fluid is given by Darcy's law

Q2v= Vp=VP,
12p

where p is the pressure, P is the velocity potential, and p
is the viscosity. The pressure in the nonviscous fluid is
taken to be constant and the jump in pressure across the
interface is ~~, where '~ is the surface tension and ~ is the
curvature of the interface. The flow in the viscous fluid is
incompressible so P and p obey the Laplace equation. In
this paper we report a one-parameter class of exact solu-
tions which is a generalization of the solution reported
previously [1].

We first discuss some general aspects of our procedure.
The dimensionality 2 of this problem makes it suitable for
complex analysis techniques. Accordingly, solutions to
the problem are obtained by expressing the coordinates of
the (viscous) fiuid, the interface, and the value of the ve-
locity potential in terms of analytic functions of an auxili-
ary complex variable ~. A solution then comprises three
parts: one has to specify a domain 0, called the "physi-
cal region, " in the ~ plane in which the possible values of
co for this solution lie, give a function 4(co) analytic in fI
to represent the complex potential, and then prescribe a
conformal mapping that maps this domain onto the actu-
al region occupied by the fluid.

Following Ref. [1] we seek solutions which have the in-
terface moving with uniform velocity while the Quid has a
nontrivial potential low. We write the coordinates
z=x+iy of the fluid as the image of some physical re-
gion Q under the map

z =f ( co, t ) =i Vt t +H ( co )L,

where VI is a real number, L, is a length parameter which

we shall determine later, and H(co) is an analytic function
of co in Q. The interface in the co plane will lie on the unit
circle ( co = 1) so that the coordinates y =x+iy lying on
the actual interface will be given as

y(s, t) =iVtt+H(e")L, (3)

for some appropriate range of the parameter s. Since VI
was chosen real we have that the interface velocity is
(0, Vt).

Next we introduce the conjugate function H defined as
H(co) =H(co), where the overbar (on the right-hand side)
stands for complex conjugation. The complex potential
4=/+i g, with g being the stream function, is then writ-
ten via the ansatz

i V„H(—co)L i ( Vt ——V )H(co ')L, (4)

H(co) = —I, dco+iC,
(co4 —2a co2+ 1)' rz

where V is a real number. The function H(co) is picked
such that H(co ') as a function of co is also analytic in 0
so that the velocity potential N itself is analytic in A.
Hence the pressure must obey Lapace's equation in the
viscous fluid. We must also satisfy the condition that on
the interface the perpendicular component of the fluid ve-
locity must be the same as the perpendicular component
of the interface velocity. In the frame moving with the
interface, this condition is the statement that the ap-
propriate velocity potential in this frame, &=i VI@, must
have an imaginary part independent of s. Then the inter-
face will be on a streamline. Equation (4) satisfies this
condition by construction, since at the interface we have

H ( e ")=H( e ") Notice tha. t Eq. (4) resembles a
modified version of the circle theorem for potential flow
outside an obstacle [4]. As a final step we must then
check that the jump of the pressure condition at the in-
terface as well as any additional boundary conditions are
indeed satisfied. Below we follow up with this program.

In order to construct our solutions we shall first give
the function H
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H, (co)+iC, Im co &0
H(co) =

H, (co)+i(C —2K), Im co (0 (6a)

where a is real parameter with a ) 1 and C is a constant
of integration which we shall fix later. The integral in
Eq. (5) is calculated along a contour in the complex co

plane connecting the origin to the point co. It will be un-
derstood that at the lower limit, co=0, the square root in
the integrand assumes the value + 1 and that it is then
varied continuously along the contour to the upper limit
cu. For a ) 1 all the singularities of the integrand lie on
the real axis. Denote them by co=+co& and co=+co2,
where ~2=co2 ' and 0&~i &1. For arbitrary contours
the integral in Eq. (4) will be multivalued, its values de-
pending on the position of the contour with respect to the
singularities. To assure single valuedness we take for the
domain D of definition of H the right half-plane Re co & 0
cut along the interval [O, co&] (see Fig. 1). So defined, the
function K(co) is clearly analytic in D.

We can express H in terms of standard elliptic in-
tegrals:

i2E = 2'
dco

(~4 2 2+ 1)1/2

A,
2

=4i dA, .
[(g2 2)( 2 g2)]1/2

The last integral can be written in terms of the complete
elliptic integrals [6]. We find then that

K =2',E(ir/2. k') .

We now specify the physical region Q. A solution is
obtained by choosing the first quadrant in D, with the
condition icoi & 1, as the domain 0 (see Fig. 2). The coor-
dinates y =x+iy, which lie on the interface, are given as
the image of the first quadrant of the unit circle under the
map (3). Performing the corresponding integrations one
can write the interface function y(s, t) explicitly. One
finds

Hi (ci) 2~2[E(—co/coi, k ) I (co/~1, k—)], (6b)

where Im stands for the imaginary part and the function
Hi is given by

(a)
physical

region . .

Slip Wall

———Constant
pressure

Inter face

where F(co, k) and E(co, k) are the generalized complex el-
liptic integrals of the first and second kind, respectively,
with k =coi ( 1 being the modulus [5]. For definetness we

are taking the so-called principal value of the elliptic in-
tegrals [5], this being the one when the contour in their
defining integrals is chosen to be the straight line joining
the origin to the point co. The function Hi is double
valued for co lying on the real axis with ico i

& co, but single
valued otherwise. The constant K above arises from the
contribution of the contour C& encircling the interval

[O, co2] (see Fig. 1). Performing this integration one finds

~ ~

Slip Wall

———Constant
pressure

""" Inter face

~= -QJ imaginary

air

~ ~

~ ~

0 +Q)=1 fluid

~ ~

. . . Q) =QJ&
~ ~ ~

—1 0

real.
'- ~ . -U

FIG. 1. The domain D of definition of the function H(co) [see
Eq. (5)]. Also shown is a contour of integration for the case
when Im cg (0.

FIG. 2. The geometry of the first solution. Panel (a) shows
the physical region in the co plane and (b) the plane z=x+iy,
where x and y are coordinates of points in the Auid; (a) is time
independent and in (b) the slip walls, the constant-pressure inlet
and the interface are all moving towards the top of the sheet
with velocity Vl.
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'[y(s, t) i V—t t ]=i v 2(a —cos2s )

os2$
ds , (9)

n V a —cos2s

for 0 s /2. Here the constant C in Eq. (5) was con-
veniently chosen to be

C= 2(1+a)— (10a)

In the case a & 1 this reduces to

C=a)2[2E(p, k') —k' ]=—,'K, (10b)

H(co) =H(co)+iK . (12)

H( ') as a function of co is indeed analytic in 0Hence co as
as advertise . L o e,

'
ed. [Note, however, that H(co ) is not

1 tic in D.] With the explicit form of H(co), we can now

iliary variable co. Using Eqs. (2), 4, and, we n,
the gradient of 4,

where p=arctan(1/Vk ), and E(p, isk') is the standard

ualit is obtained after some manipulation with the el-

d
'

terms of real elliptic integrals 6, but we wi
h' d t '1 here. Using Eq. (9) we can e

'

y
ce. After a briefcompute the curvature ~(s) of the mterface.

calculation we find

x(s)=[8,y( 'Im[B, ln(B, y ]

1=—&2(a —cos2s)=
2 Im(y iV, t) . —

L

as to check from Eq. (6b) that Hi to =Hi c0 .
Using this fact and Eqs. (6a) and (10 ), we o

have stagnation points correspond' gndin to the values
~=+1 and co=+i, whenever any of these points lies in

ever there is no stagnation
the original frame since the zeros of Eq. 13 apoint in e or

lie witihin the unphysical region ~ & 1,( 1 as one can easily
check using the constraint 2 V —V )0 from Eq. (15).

The last step of the calculation is simp y g h1 checking the
remaining oun aryb dary conditions at the edges of the physi-
ca1 region. n0 these surfaces ~ is either rea or pu

rom E . (13), in both cases, the velocityimaginary. From q.
f these sur-points in e y ith d'rection. The interpretation o ese

faces are as follows.
a)=iX A, ) 1; and(a) Slip toalls. These are the surfaces to=i, &; an

Fi . 2). In both cases the flow is
1 a sh bound-tangential to the walls, so we simply apply a slip boun-

ary condition on these walls.
(b) Constant pressure -inlet Here . co is real 'ggal and bi er

than co . The Row being perpendicular to the wall meanst an co2. e
n this wall. Hence wethat the pressure is constant a ong t is wa .

interpret it as an in e or
'

1 t f r Quid held at a fixed pressure.
withIn our so ution, no1 t only does the interface move wi

velocity (0, t, uV ) but the walls do also. From an
t of view, this inconvenience can eexperimenta ist s poin 0 ', ' ' '

e
"fixed" by tilting a setup like the one shown in Fi.g. , so
that the top o e picf th

'
ture is higher than the bottom, by

an angle 0 given by [1]

129 V
(16)sinO=

gb Ap

the densit di6'erence between the two Auids
en the solutionand g is the gravitational acceleration. en e s

hich the walls and interface are at rest.will be one in w ic
F' 3 shows some streamlines in this rame or eigul e s
case a =1.1. This solution approaches the one g'ne iven in

(13)
~ ~ ~

~ ~

$2
Re 4= pc~,

12p
(14)

where the pressure in the nonviscouus Quid has been set
equal to zero y e cb th hoice of C in Eqs. (10). A substitu-
tion of (4) and (11) into (14) gives the length I.:

1 /2
b

12~ 2V —V,
(15)

ordin to Fig. 2, the region of large ~tU
~

is the region
far from the interface. Thus as
that the far-field velocity is (0, V„).

f a discontinuity condi-At the interface we must satis. y a
e ressure. This is the statement that the realtion on the pressure. is is

the curvature,part of N must be proportional to e
specifically

~ ~

'~

~ ~

~ ~~ ~

Slip Wail-- —Constant
press ore

~~~~~~~~ $nterfoce

::::.'
'. VISCOUS

f luid

=x
3

For the solution to make sense, mor e
' L must be real. Within

V and V may be independently varied.
It is worth pointing out that in the frame w ere t e in er-

FICi. 3. Some streamlines for the firsrst class of solutions in the
interface and walls are at"t lt d" frame (see text) where t ei e

' '
1 flow. Shown here Isrest and the viscous fluid has a nontnvia

the case a =1.1.
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Ref. [1]when we take the limit a ~1.
We can obtain a second solution for this problem by

choosing a different physical region, as follows: we take
Q to be the full subregion of D which lies outside the unit
circle ( ~ro ~

& 1) (see Fig. 4). There is now an additional in-
terface corresponding to the fourth quadrant of the unit
circle. According to Eqs. (3), (10b), and (12) the interface
function y'(s, t) =i VIt +H(e ")L for this second inter-
face will be given by

0—

air

Slip Sall

Interface

~

Viscous
fluid

y'(s, t)=y(s, t)+i2(VIt —CL), 0&s &m/2 . (17)

Thus y' is just the mirror reQection of y with respect to
the axis y = V~t —Cl.. The curvature K' of this interface
is obviously z'(s) = —lr(s). The complex potential for this
solution is written as

air

i V„H—(ro)L i ( V—I —V„)IH&(ro ') iC]L—, (4')

which is simply the analytic continuation of the previous
one to the new physical region. From the jump of pres-
sure condition we find that the nonviscous Quid at the
second interface must be kept at a higher pressure pz
given by

12p

FIG. 5. Some streamlines for the second class of solutions,
for the case a =1.1, shown in the frame where the interfaces
and walls are at rest. The nonviscous Auid, "air," in the bottom
region is kept at a pressure higher than the pressure of the top
region by an amount p2 which is given in Eq. (18).

(Recall that the pressure p& of the nonviscous fiuid at the
first interface was set equal to zero. ) The remaining
boundary conditions are clearly satisfied since we only
have slip walls at co=+iA, , A, & 1, and at co=A, , 1&1, &ro2
(see Fig. 4). Figure 5 shows some streamlines in the
frame where the interfaces and walls are at rest. This
second solution has the advantage that the end boun-
daries of the Hele-Shaw cell can be placed far away from
the interface, making this setup a better candidate for an
experimental verification.

We now examine a third family of solutions for which
the parameter a falls within the range ~a ~

& 1. As before,
we define the function 0 via the contour integral

where C is as given in Eq. (10a) with ~a
~

& l. In this case
the singularities of the integrand all lie on the unit circle;
that is, cui=e' and m2=e ', where cos2e=a. The
domain D of the definition of H is chosen to be the right
half-plane cut along the two segments of the unit circle
given by ro=e —", a & s & m. /2 (see Fig. 6). Since D is sim-
ply connected and does not encircle any singularity it fol-
lows that H(co) is analytic in D.

The physical region Q is taken to be the first quadrant
within D (see Fig 7). T.he interface is the image under
Eq. (3) of the arc segment co=e", a&s &rr/2. This arc
segment has two "sides" depending on whether we ap-

H(ro) =f, , dro iC, —
(co —2aro +1)'~ (19)

physical.

,
'

region '

Slip Wall

Interface ~ ~ ~

'~Q '

.4a .
~ N

2

~ ~

FIG. 4. The geometry in the co plane of the second class of
solutions.

FIG. 6. The domain D of definition of the function H(co) for
the third class of solutions, showing the two cuts along the unit
circle [see Eq. (19}].
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proach it from above or from below. Each of these sides
gets mapped onto an interface which we denote by y U

and yI, respectively. More precisely, we write

y U(s, t) =i Vtt+H(to)L, co&e"

(20)

Jl -i.z

-I 5

yL(s, t)=iVtt+H(co)L, co&e"

where the downward (upward) arrow means that to ap-
proaches e" from above (below). Repeating the previous
analysis we find, for the lower interface,

y L (s, t) = y(s, t—), a & s & vr/2 (21)

where y(s, t) has the same formal expression as in Eq. (9)
but with ia i

& 1. Similarly, for the upper interface we
find

physical

region

Slip 0/a Il

———Constant
pressure

Interface

. . . —, z imaginary

Gl

~ ~ Slip Wall

———Constant
pressure

Interface

fluid .

z real

inary

y U(s, t) =2y(a, t ) —y I (s, t),
where y(a, t) —=yt (a, t) =y U(a, t) is a real number.
Hence these interfaces are the rejections of one another
with respect to the point y(a, t); see Fig. 7(b). The curva-
tures of the interfaces are clearly ~U(s) = —

I~L (s) =~(s),
for a&s &7r/2, where ~(s) is as given in Eq. (11) with
ia & 1.

The complex potential 4 is written in a slightly
modified version of Eq. (4):

=x
3

FIG. 8. Some streamlines (in the "rest" frame) for the third
family of solutions; shown here is the case a =0.9. The inset
shows closer details of the behavior near the r point source
(see text).

i V„H—(co)L +i ( VI —V„)H(to ')L, (4")

where H(co)=H(to)+i2C, as before. The choice of a
plus sign in the second term of Eq. (4") is to compensate
for the fact that at the interfaces we now have
H(1/e") = H(e"). Th—is velocity potential is clearly an-
alytic in Q. It is easy to check that the boundary condi-
tions at both upper and lower interfaces are indeed
satisfied with the parameter L being the same as in Eq.
(15). We have three other boundary conditions at the
edges of the physical region: (a) two slip walls, one at
to =i A, , 1, & 1, and another at to =i I, 0 & 1, &, 1, and (b) con-
stant pressure inlet or outlet at co=A., A, )0 [see Fig. 7(b)].

This last solution has the interesting feature that the
origin co=0 no longer lies in the unphysical region but
rather at the edge of the physical region. According to
Eq. (13) this means that the velocity field has a singularity
at the point z, =H(0)L = iCL, that is, t—he velocity be-
comes infinitely large as z approaches z, . One can deter-
mine the nature of this singularity by looking at the be-
havior of the solution in a small neighborhood of z, . One
then finds that the velocity field diverges at z =z, as a 4/3
power pole. We interpret this by saying that for this
solution we have an r point source sitting at z =z .C'
Figure 8 shows some streamlines for the case a =0.9.

As mentioned previously [1], there seems to be a close
connection between the Sa8'man-Taylor problem and the
"Harry Dym equation" (HDE) [7,8]

-3
—2

=x
3

2 8=c I',
Bt Bx (23)

FICx. 7. The geometry of the third solution. Panel (a) shows
the co plane and (b) the z plane. Note the two-"sided" interface
in (a) and the corresponding upper and lower interfaces in (b).

which is a nonlinear evolution equation related to the
classical string problem and known to be completely in-
tegrable [8]. The results given here are related to the
traveling-wave-type solutions of the HDE. If we write
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F(x, t)=u(x —ut), then u obeys the following nonlinear
ordinary differential equation (ODE):

Q — Q Q
C

2U
(24)

where primes indicate differentiation with respect to the
function argument. Equation (24) can be integrated and
gives implicit solutions for u in the form

' lj'2

x =ut+—2 ~ Q
QQ (25)

c gu +gg +U
l

where 8 and A are constants to be determined from the
behavior of the solutions at infinity. The similarities be-
tween (25) and the solutions reported here, as given in
Eqs. (5) and (19), are evident. For instance, we interpret
the —', -power pole present in one of our solutions as a
physical realization of the —,'-power branch point charac-
teristic singularity of the HDE [9,10]. A detailed analysis
of the HDE and its connections to the Saffman-Taylor
problem is beyond the scope of this paper. Here we will

just mention, as a final comment, that if one treats the
kind of steady Horns considered in this paper, i.e., Hele-
Shaw flows for which @(z)-z as z —+ ~, using the for-
malism of the Schwarz function [11], then one obtains
that the derivative ot the Schwarz function obeys an
ODE similar to Eq. (24) for the traveling-wave solutions
of the HDE. We are currently investigating whether oth-
er solutions [10] of the Harry Dym equation would also
correspond to solutions of the interface problem. While
this paper was being reviewed, we became aware of Ref.
[12], where a relation between Hele-Shaw flows and a
forced Harry Dym equation is also discussed within the
formalism of the Schwarz function.
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