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Drift, shape, and intrinsic destabilization of pulses of traveling-wave convection
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I describe experiments on "pulses" of convective traveling waves in an annular geometry, using
ethanol-water mixtures with moderate negative separation ratio. In a suSciently uniform cell at con-
stant Rayleigh number, pulses drift in the direction of propagation of the underlying traveling waves,
with no long-term change in velocity. The drift velocity increases with increasing distance e above on-

set. In contrast with previous observations of motionless pulses, this result is qualitatively consistent
with theories based on a subcritica1 Ginzburg-Landau equation. The pulse shape is also described in de-

tail. The pulses exhibit a noticeable asymmetry, which decreases as e is increased. I also describe exper-
iments at high e in which pulse destruction by convective amplification of traveling-wave Auctuations is

suppressed by the existence of multiple pulses. In this case, destabilization takes place by an intrinsic
mechanism: Above a certain threshold, the pulse simply expands into the rest of the system, accom-
panied by a large decrease in wave speed.

PACS number(s): 47.25.Qv, 47.20.Ky

I. INTRODUCTION

One of the most interesting features of one-dimensional
traveling-wave (TW) convection in binary fiuid mixtures
is the tendency of this system to exhibit confined s'tates:

spatially isolated regions of TW's which coexist stably
with the rest of the system, which is quiescent [1—3].
Confined states were first observed in narrow rectangular
convection cells, using Auids with separation ratio
g- —0. 1 [1]. The fact that confined states appeared near
the end walls of the cell, coupled with their similarity to
states produced by a theoretical model based on coupled
Ginzburg-Landau equations which explicitly included the
refiections of TW's from the walls [4], suggested that
such reAections were important to their existence. How-
ever, the recent observation of the same confined state in
narrow annular cells [2,3], in which there are no
rejections, has cast doubt on such an interpretation. The
careful measurements in Ref. [2], in particular, have
shown that this confined state bears a strong resemblance
to a "pulse" solution of a subcritical Ginzburg-Landau
equation for the amplitude of unidirectional, one-
dimensional TW's in an unbounded geometry [5,6]. Thus
it appears correct to refer to the confined state seen near
g- —0. 1 in a narrow experimental geometry as a pulse
i.e., a state whose confinement is an intrinsic feature of
the unbounded system and not caused by the interaction
of TW's with the end walls of the cell.

However, despite the resemblance of experimental
pulses to solutions of subcritical Ginzburg-Landau equa-
tions, they exhibit two features which are not given by
this model. The first is their stability above onset. In an
infinite system [6], a pulse solution is stable only up to
value e3«0 whose value depends on system parameters
(here e denotes the fractional distance above the onset of
convection). For parameters such that e3 (0, the pulse
goes unstable by splitting into two fronts which expand
into the rest of the system at a selected velocity which

vanishes at e, and increases monotonically for e& e3 In
the Benjamin-Feir unstable regime [6], the state between
the expanding fronts exhibits phase defects. The experi-
mental behavior is quite different. In annular containers,
experimental pulses are observed to be stable over a band
of Rayleigh numbers which straddles the onset of convec-
tion and extends to e&-0.01 [2,3,7]. Above this value,
my collaborators and I have shown that pulse destabiliza-
tion in an annulus occurs because of destruction by con-
vectively amplified fiuctuations [7]. In a rectangular
geometry, where these fluctuations are suppressed by
losses upon reAection from the end walls of the cell, I
have recently found [8] that pulses do go unstable via a
mechanism which bears some resemblance to the
scenario predicted in Ref. [6]. However, pulse stability
above onset still seems to contradict the theory valid for
an infinite system.

The second perplexing feature of traveling-wave pulses
is that, except for transients, previous experiments found
them to be motionless in the laboratory frame [2,3,7],
whereas pulse solutions of the simplest subcritical
Ginzburg-Landau equation implicitly drift at the group
velocity so of linearly unstable TW's [5,6]. It should be
stressed that this linear group velocity is large: for typi-
cal experimental conditions, so —1.5 in dimensionless
units, while the largest transient pulse drift velocity ob-
served in experiments prior to the present work is «0.02
[9]. In general, it is a surprise to find that a system which
exhibits continuous translational symmetry should select
a pulse velocity of zero for a wide range of parameters.
In an attempt to reconcile these observations, Deissler
and Brand [10] numerically investigated the effect of add-
ing cubic nonlinear gradient terms to the Ginzburg-
Landau equation. They found that such terms can
indeed slow and even reverse the propagation of pulses.
In addition, a pronounced asymmetry in pulse shape was
observed. However, in a single-field Ginzburg-Landau
theory, a vanishing pulse velocity occurs only for a
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measure-zero set of parameters. This contradicts previ-
ous observations of stationary pulses for a wide range of
experimental parameters.

A great deal of insight into traveling-wave pulses has
been shed by the recent work of Barten, Liicke, and
Kamps [11].These authors performed numerical integra-
tions of the full, two-dimensional Navier-Stokes equa-
tions which govern convection in binary fluids. One of
the solutions they found, for g= —0.08, appeared to be
identical to experimentally observed pulses. Significantly,
they found that this pulse solution was accompanied by a
large-scale circulation of concentration which affects the
buoyant forces in the Quid in such a way as to reduce the
pulse propagation velocity to a value 35 times lower than
the linear group velocity, for @=0.008. The difference
between this slow propagation and zero velocity seems
small, and the authors suggested that the inhuence of the
side walls of experimental cells —typically, cells are only
1.5 to 2 times wider than their height —may account for
previous experimental observations that pulses do not
drift. However, both of the important effects discussed in
that work —large-scale Bows and the inhuence of side
walls —lie outside the scope of subcritical Ginzburg-
Landau models.

In this paper, I report experimental observations of
pulses of traveling-wave convection in an annular
geometry. The distinguishing feature of these experi-
ments is that a significant effort has been expended in as-
sessing and reducing nonuniformities in the convection
cell. In contradiction to previous reports, I find that, in a
sufFiciently uniform cell, traveling-wave pulses do drift
[12]. The drift velocity vd, vanishes near onset, exhibits a
shifted square-root dependence on the distance e above
onset, and agrees fairly well with the drift velocity found
in Ref. [11]. Drift velocities as high as 0.08 have been ob-
served. The parameters of the fitted dependence vz, (e),
as well as the value e2 below which pulses lose stability
and vanish, depend on the separation ratio g. Because of
the sensitivity of drift velocity on e, the pulse drift fol-
lows local nonuniformities in the convection cell. It is
necessary to postulate only a rather modest level of
nonuniformity for there always to exist a region in the
cell where pulses exhibit zero velocity for any applied
temperature difference for which they are stable. Under
such conditions, pulses exhibit a transient drift until they
reach this region, at which time they stop, and this ap-
pears to be what has happened in previous experiments.
The challenge I now present to theorists is to calculate
the dependence of the drift velocity on e and on g

A second feature of the pulses described in this paper is
their shape. Niemela, Ahlers, and Cannell [2] found that
pulse profiles could be fit using a function which is a
zero-drift-velocity solution to the lowest-order subcritical
Ginzburg-Landau equation. This stationary analytical
pulse exhibits a spatially symmetric amplitude profile.
However, in theory [6], pulses which drift exhibit a spa-
tial asymmetry, and this feature was observed in both the
numerical work of Barten, Liicke, and Kamps [11] and
the simulations of Deissler and Brand [10]. Motivated by
this apparent discrepancy, I have performed a detailed
analysis of pulse shape for a subset of my data. The

pulses observed in these experiments do indeed exhibit an
asymmetry, associated dominantly with a leading-edge
shoulder. This asymmetry decreases sharply with e. The
pulse shape appears to be very well described by the nu-
merical pulse of Ref. [11].

This paper also includes a brief account of observations
of the destabilization of traveling-wave pulses. As men-
tioned above, this destabilization is usually the result of
the interaction between pulses and convectively amplified
TW Quctuations. However, as pointed out in Ref. [7],
while pulses are destroyed by large-amplitude Auctua-
tions, they are total absorbers of small-amplitude TW's.
Thus, by creating several pulses in the same cell, I have
been able to extend the range of stability against Auctua-
tions to larger values of e than have been achieved in pre-
vious experiments. This has allowed the observation of
quite rapidly drifting pulses, since the pulse velocity in-
creases monotonically with e. More importantly, the
suppression of fluctuations in states consisting of three
pulses is so complete that the threshold for pulse destabil-
ization via an intrinsic mechanism can be reached. This
mechanism consists of the pulse splitting into two fronts
which expand into the rest of the system, in qualitative
agreement with analytical work based on the subcritical
Ginzburg-Landau equation [6]. However, at the same
time, the velocity of the underlying TW drops substan-
tially.

The remainder of this paper is organized as follows.
Sections II and III describe the experimental apparatus
and the use of states of linear TW's as diagnostics for cell
uniformity and geometry. In Sec. IV, I describe tech-
niques for creating multiple pulses, and I present pulse-
drift data. Section V describes measurements of pulse
shape, and Sec VI deals with intrinsic destabilization of
pulses. Section VII is a summary.

II. APPARATUS

The convection cell used in these experiments, shown
in Fig. 1, has evolved from the cells used in several previ-
ous experiments [7] and has been designed for extreme
geometric and thermal uniformity. The bottom plate is a
mirror-polished disk of silicon, of thickness 1.524 cm, to
the bottom of which has been glued an electrical film
heater. The walls of the cell are formed by a disc and
ring of ULTEM 1000 polyetherimide plastic which have
been turned on a lathe so as to key to a center hole and
outer lip in the silicon plate. Because of this, the walls of
the cell are accurately concentric. The top plate of the
cell is an extremely flat disk of sapphire of thickness
0.635 cm. The cell is sealed by four Hat gaskets of
ethylene-propylene rubber which sit in grooves just out-
side the walls of the cell, and two small, diametrically op-
posite holes at mid-height are connected to TeAon tubes
(not shown) for filling the cell. Three versions of this cell
were used in this work, differing in the dimensions of the
plastic spacers and the geometric uniformity which was
achieved. Their dimensions are listed in Table I.

Silicon has several advantages over polished metal mir-
rors for experiments of this type. This material does not
need to be plated for protection or reAectivity, can be
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TABLE I. Fluid properties and cell dimensions. I „& is the radial width and mean circumference of the cell, scaled by its height.

P, P, and L are the separation ratio, Prandtl number, and Lewis number, respectively.

Cell

A

8
C

Height
(cm)

0.3130(21)
0.2680(9)
0.2582(4)

1.655(11)
1.876(6)
1.948(3)

75.96(50)
88.67(30)
92.03(14)

(wt%)

0.0145
0.0220
0.0280

mean
(' C)

26.9
27.9
28.2

—0.072
—0.101
—0.123

P

6.69
6.83
7.00

0.0086
0.0087
0.0088

easily polished to extreme flatness, and is quite difficult to
scratch or corrode. Thus the disassembled mirror can be
cleaned by buffing vigorously, and the assembled cell can
be flushed with concentrated hydrochloric acid. The
disadvantages of reduced thermal conductivity and opti-
cal reflectivity, with respect to nickel-plated copper or
sterling silver, have proven to be unimportant.

The cell is clamped together between two circular brass
frames. The upper frame serves as a flow channel for the
circulating water which cools the top of the sapphire
plate and as a holder for the upper quartz window and
the main lens of the optical system. As shown in Fig. 1,
cooling water is injected tangentially at two points into
an annular channel of rectangular cross section which
has been cut into the underside of the upper frame. A
gap of 0.013 cm between the bottom face of the inner
wall of this channel and the sapphire plate allows cooling
water to leak out onto the sapphire with substantial az-
imuthal velocity, swirling around and cooling the cell in
an azimuthally symmetric manner. A larger gap at the
top window of the flow channel allows the water to pass
into an upper annular channel, from which it returns to
its source. The cell assembly sits on leveling screws and
is surrounded by insulating foam.

The geometric uniformity of the convection cell has

QUARTZ

SAPPHIRE

SILICON

FICr. 1. A cross section of the experimental cell is shown.
The cell is formed by a plastic disk and ring which are clamped
between a silicon bottom plate and a sapphire top plate. Cool-
ing water is injected into the space above the cell, following the
paths indicated by arrows. A film heater is glued to the bottom
of the silicon plate; in addition, a ring of small resistors (shown
as two black dots on either side of the main heater) has been at-
tached to the outside edge of this plate, for trimming out small
asymmetries in the bottom-plate temperature. The main lens of
the optical system (not shown) is attached to the frame of the
top quartz window, and the entire cell is surrounded by thick
foam insulation (also not shown).

been assessed using several mechanical, optical, and con-
vective techniques. The diameter of the outer cell wall
was measured to an accuracy of about 5 X 10 cm using
a calibrated, three-point inside-diameter micrometer.
The radial width of the cell was measured at eight
different places using an optical comparator, which has
reproducibility of about 2X10 cm. From these mea-
surements, I obtain a very accurate measurement of the
mean diameter and width of the cell, and I verify that the
width exhibits azimuthal nonuniformities of less than
about 3X10 cm. This is small enough to be unimpor-
tant. The thickness of the cell spacer is measured using a
micrometer, but, because the sealing gaskets might not be
squeezed completely into their grooves when the cell is
clamped together, this does not necessarily represent the
true height of the assembled cell. As described in Sec.
III, the properties of linear TW's can give a potentially
more accurate indication of the average cell height, and
the dimensions in Table I were deduced this way. Final-
ly, the uniformity of the height of the cell is assessed by
performing the final assembly under an interferometer
which is installed in the experimental optical system. By
tightening the twelve screws which hold the cell together
against the resistance of the sealing gaskets, I can make
minute local adjustments of the cell height. In this way,
the height can be adjusted with a uniformity of as good as
+ one fringe, representing a fractional height uniformity
of about +1X10, and this figure remains stable for
long times [13]. With noncompliant gaskets, the unifor-
mity can easily be twenty times worse, and that is bad
enough to have a substantial effect on all of the dynami-
cal states discussed below.

The thermal control of the cell comes from the cooling
water and the lower-plate heater. A bath circulator pro-
vides the input water, whose temperature (25.00 C) is re-
gulated to a stability of about +0.6 mK by a dc-
bridge —servo circuit driven by a thermistor in contact
with the sapphire plate. A pair of thermistors, one in
contact with the sapphire plate and the other embedded
in the silicon plate, form two arms of an ac bridge whose
output is used to regulate the power applied to the film
heater on the lower plate. The short-term fluctuations of
the difference temperature are measured using a separate
dc bridge and are found to be about +0.15 mK. These
numbers should be compared with the temperature
difference applied across the cell during experimental
runs, which is typically 5 C. The long-term fluctuations
are more appropriately measured using the properties of
linear TW's, as described below.

Direct assessment of the thermal uniformity of the cell
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is rather difticult. A thermistor dragged in a circle across
the top of the sapphire plate with a temperature
difference applied across the cell did not reveal any
nonuniformities at the level of a few mK but was not
much more precise than that. Furthermore, a direct,
nonperturbing measurement of the temperature profile of
the lower plate seems quite dificult and has not been at-
tempted. However, as I show below, both the properties
of linear TW and the propagation of nonlinear TW pulses
can be used for extremely sensitive measurements of the
uniformity of the Rayleigh number.

The Auids used in these experiments are carefully de-
gassed solutions of high-purity ethanol in deionized wa-
ter. The fluid parameters are taken from Ref. [14] and
are listed in Table I. Repeated Gushing with fresh solu-
tions and overnight stirring by fully nonlinear TW con-
vection at moderate Rayleigh number are performed be-
fore commencing experiments, to ensure that accidental
large-scale concentration gradients are eliminated.

The optical system used in these experiments, which
has been described in detail in a previous publication
[15], consists of a telescope which views the cell from
above and projects a reduced white-light shadowgraph
image of it, through beamsplitters, onto various detec-
tors. One of these, referred to here as the circular cam-
era, consists of an annular array of 720 wedge-shaped
photodiodes. Since the convection patterns are one di-
mensional, consisting of radial wave fronts which propa-
gate azimuthally, such a detector is ideal for sampling the
image in space-time. Under the control of a small corn-
puter, the circular camera makes scans of the image at
regular time intervals and stores them for later analysis.
For pulse data, this analysis consists of computation of
the pulse amplitude profile at each time step, using spa-
tial demodulation at the measured mean wave number.
In addition, the computer can calculate the profiles of the
two oppositely propagating azimuthal components of the
convection pattern in real time, using complex demodula-
tion [15]. This capability is used in the analysis and con-
trol of linear TW states (see below). I refer to the two az-
imuthal directions of propagation in the annulus as "left"
and "right. " A second image of the shadowgraph is pro-
jected onto a video camera for inspection of the pattern,
and a photomultiplier views a selectable point in a third
image through a narrow slit.

III. LINEAR TRAVELING WAVES
AS A DIAGNOSTIC TOOL

The linear instability which triggers the onset of con-
vection in binary Quid mixtures has been extensively
studied using experimental [16] and theoretical [17] tech-
niques. In a uniform or nearly uniform one-dimensional
system, the oscillations due to this instability consist of
superpositions of left- and right-going TW's whose ampli-
tudes AL z(x, t) obey a linearized Ginzburg-Landau
equation:

Tp

a~„a~„
+s ' =e(x)(1+ico)AL zBt Bx

~L,R
+g o( 1 +ic i )

Bx

In this equation, the stress parameter e is allowed to have
a weak spatial dependence, in order to account for
nonuniformities in the experimental cell. I define F to be
the spatial average of e(x). Experimentally, F corre-
sponds to the fractional amount by which the applied
Rayleigh number exceeds the measured onset of convec-
tion. v.

p is a characteristic growth time, s is the group ve-
locity, and go is a correlation length. The coefficients co,
are very small for the Auids used in these experiments and
will henceforth be neglected. These parameters have
been calculated theoretically, and experiments have
verified these calculations with high precision. Linear
TW states can be stabilized at onset and experimentally
characterized in great detail. Each experimental run in
this work begins and ends with a careful observation of
linear TW's, and this gives a great deal of useful diagnos-
tic information.

The first piece of information obtained from linear
TW's is the applied temperature difference corresponding
to the onset of convection, which defines e—=0. To ini-
tiate this measurement, the temperature difference hT
applied across the cell is set at the nominal onset mea-
sured previously, and a flexible metal bellows which ter-
minates one of the cell's fill tubes is gently tapped. As de-
scribed in Ref. [7], this causes fiuid to squirt into and out
of the two filling holes, creating disturbances in the cell at
their locations. In a short time, each of these decomposes
into two narrow, oppositely propagating linear wave
packets which begin traveling around the cell (this pro-
cess is illustrated in the presence of a nonlinear pulse in
Fig. 6 below). In this way, linear wave "energy" is rapid-
ly injected into the system, and, over the course of about
two days, the narrow wave packets evolve into a pattern
of nearly spatially uniform TW's. The measurement of
the convective onset consists of servoing AT so that the
total wave energy in the system exhibits a vanishing
growth rate. To accomplish this, shortly after the wave
packets are injected into the cell, the computer which
controls the circular camera begins repetitively running a
program which acquires data corresponding to a few os-
cillation periods and calculates the spatial profiles of the
left- and right-going TW amplitudes. An analog signal
proportional to the sum of the spatial averages of these
two profiles is fed to the computer which controls hT,
and this computer begins executing a servo program
which adjusts AT so as to keep the analog signal con-
stant. Because the input to the servo is a spatially aver-
aged wave amplitude, this program converges on the on-
set of convection quite rapidly —the fractional fluctua-
tions can drop to the 10 level in a few hours —even
though the spatial structure of the TW continues to
evolve for a day or two.

With a technique of this precision, onset measurements
spaced a few weeks apart allow the detection of very
small drifts, such as may be due to small leaks in the cell
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FIG. 2. Amplitude and wave-number profiles calculated vs
position x in cell 3 by complex demodulation of circular-
camera data, for a steady state of linear waves exactly at onset,
using a fluid with f= —0.021. In all three frames, full curves
correspond to the right-wave component, and dashed curves
correspond to the left-wave component. (a) Amplitude profiles
AL R(x), measured in units of fractional image intensity. Both
profiles exhibit spatial growth in the region 0 —90' and spatial
decay in the region 90 —360'. (b) Wave-number profiles
kL z(x). The two wave numbers agree almost exactly and ex-
hibit very slight distortions. (c) Local stress parameter e«(x)
derived from the amplitude profiles in (a) using Eqs. (1) and (2).
The two curves agree well and exhibit nonuniformities of better
than about +0.2%.

plumbing. These can allow ethanol to selectively evapo-
rate, changing the separation ratio, and hence the onset
temperature, at a localized position in the cell. In the ex-
periments reported here, the worst drifts in onset were
only at the level of 1X10 per day, and this is negligi-
ble. In analyzing the pulse data, I subtracted out the
measured drifts.

Once the TW pattern at onset has settled, its amplitude
and wave-number profiles can be used for assessing the
uniformity of the cell and the alignment of the optics.
The profiles in Figs. 2(a) and 2(b) were measured using a
fluid with g= —0.021 in cell A. The amplitude profiles
in Fig. 2(a) are uniform to within +30%%uo, and this is quite
good. These measurements can be substituted into Eq.
(1) to yield two separate estimates for the spatial depen-
dence of the stress parameter e:

these estimates is obtained by dividing the measured os-
cillation frequency by the measured wave number. Be-
cause of the narrow cell width, this value is somewhat
smaller than the theoretical value [7,18]. By contrast, the
parameter 7 p which has been deduced roughly from the
dependence of growth rate on hT [16],does not appear to
be affected by this. Also, the second term on the right-
hand side of Eq. (2) is small, so the accuracy of the pa-
rameter go is not important, and the theoretical value is
used without further verification.

The estimates calculated using Eq. (2) are shown in
Fig. 2(c). They agree reasonably and indicate that cell A
exhibits nonuniformities in Rayleigh number of less than
+0.2%. This value, while small, is still a few times larger
than the calculated effect of the measured nonuniformity
of the cell geometry on the local Rayleigh number. I
therefore deduce that the source of this asymmetry is a
nonuniform bottom-plate temperature, possibly caused
by a defective or improperly positioned film heater. In
cell C, an initial asymmetry in E(x) comparable to that in
Fig. 2(c) was corrected by gluing a ring of small heaters
around the edge of the underside of the silicon bottom
plate, as shown in Fig. 1, and adjusting the local heating.
As described in a forthcoming article [19], a stable uni-
formity in E(x) of (1—3) X 10 was achieved in this way.

The use of linear TW amplitude profiles for measuring
the profile of e(x ) requires the convection pattern to have
settled to a steady, single-azimuthal-mode state with both
wave components exhibiting measurable amplitudes. I
do not yet trust this method enough to believe ei (x)
without corroboration from ez(x). Also, an implicit as-
sumption in the derivation of Eq. (1) is that the amplitude
profiles of TW's vary only slowly in space. Thus a
narrow-bandwidth demodulator was used to compute the
profiles in Fig. 1, and only the smoothest components of
el it(x) can be measured. In cell B, which exhibited a
very localized nonuniformity, the linear state obtained
after several days consisted of a superposition of two
modes, one strong and one weak, and this gave rise to a
slowly modulated pattern from which stable profiles for
eL it(x) could not be calculated. However, as I show
below, the e dependence of the propagation of nonlinear
pulses can also be used for a very reliable determination
of the uniformity of the cell.

The wave-number profiles kL z(x) of the linear TW's
are also useful. The two wave-number profiles shown in
Fig. 2(b) agree almost exactly, and their mean is uniform
in space to within better than +1%. By changing the fo-
calization distance and other parameters of the optical
system, I have verified that these nonuniformities are due
solely to misalignments and distortions in the optics and
do not represent anything about the dynamics of the con-
vective state. Therefore I have used the wave-number
profiles as a diagnostic for the optics. The computer pro-
gram which calculates the TW amplitude profiles also
displays the sine and cosine components of the lowest
spatial Fourier mode of the mean of the wave-number
profiles. These differ from zero if the optical axis of cir-
cular camera is not centered on the image of the cell, and
I adjust the transverse position of the camera to null
them (the second and third harmonics represent distor-
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FIG. 3. Power spectra computed from three 20000-sec seg-
ments of a time series of single-point image-intensity measure-
ments, during the evolution of a state of linear waves in the
same Quid as in Fig. 2. The spectrum in (a) is derived from a
segment beginning about 4 h after the injection of linear wave
packets into the system and shows spectral lines corresponding
to two azimuthal modes. In the time series used for (b), started
20000 sec after the end of that in (a), the lower mode has de-
cayed. In (c), started 20000 sec after the end of that in (b), one
mode remains, corresponding to the 38th azimuthal mode.

tions due to misalignments of other optical components
and to tilt of the circular camera, but I have not yet
found a reliable way to use this information for optimiza-
tion). With this adjustment, the nonuniformities in the
wave-number profiles can be reduced to the level of
+0.5% in cells A and C. Once adjusted, this figure
deteriorated to only +1% after a month of experiments
in cell C. In cell B, which exhibited only a modulated
linear state, the amplitude of the lowest Fourier mode of
the mean wave-number profile exhibited a small slow os-
cillation due to the beating of the two modes, and I ad-
justed the camera position to null the mean of the oscilla-
tions. Even in cell B, distortions and misalignments are
too small to have a measurable affect on pulse drift.

One last piece of diagnostic information comes from
the photomultiplier measurement of the image intensity
at a single spatial point during the evolution of the linear
TW pattern. Figure 3 shows temporal spectra computed
from several subsets of such a time series. Figure 3(a),
from a segment beginning shortly after the narrow wave
packets were first injected into cell A, exhibits two dom-
inant spectral lines of similar amplitude. These corre-
spond to the two azimuthal spatial modes whose interfer-
ence produces the wave packets which have evolved from

the initial localized disturbances. As time proceeds [Fig.
3(b)], one of the lines decays, leaving a single line [Fig.
3(c)] which, as verified from the circular-camera image,
corresponds to an azimuthal mode number of n =38.

The growth rate of the nth mode, whose wave number
is k„, can be deduced from Eq. (1):

y„=ro 'e' hk„—, (3)

IV. PULSE PRODUCTION AND DRIFT

In this system, for f- —0. 1, the first stable nonlinear
state observed upon increasing e above onset is one of
traveling-wave pulses. The main qualitative effect studied
in this paper is illustrated in Fig. 4: in a suKciently uni-
form cell, pulses drift continuously in the direction of the
underlying TW. This drift is not a transient. I have ob-
served pulses to drift for days at constant e, with no
long-term change in velocity. As shown below, the drift
velocity depends on the local value of e(x) and thus on
the spatially averaged value F. The fastest pulses studied
circle the cell in 24 h. Using techniques described below,
I have made states consisting of one, two, and three
copropagating pulses. At the same e(x), pulses in
multiple-pulse states propagate at the same velocity as
they do in single-pulse states, and left-going pulses propa-
gate at the same velocity as right-going pulses.

I begin this section by discussing techniques for pro-

where hk„=k„—k„and k, is the critical wave number
[16]. The relative growth of the diff'erent lines in a multi-
line spectrum is thus an inverted parabola centered on
the frequency corresponding to k„and a fit to such data
can yield k„ if more than two lines are present (note that,
since linear TW s are practically dispersionless [16,17], a
frequency spectrum is equivalent to a wave-number spec-
trum). Thus a fit to the relative growth rates in a three-
line spectrum measured in cell C exhibited a maximum at
a frequency corresponding to n, =45.67+0.07. Howev-
er, even the two-line spectrum in Fig. 3 permits the
deduction that, in cell A, k, lies between wave numbers
of the 37th and 38th modes and is closer to the latter.
That is, the mode number corresponding to k, is
n, =37.75+0.25. With the theoretical value [17]
k, /m. —1=—0.0061, this allows the dimensionless cir-
cumference of the cell to be deduced:
I &=2mn, /k, =76.0+0.5. Since the physical measure-
ment of the mean circumference is quite accurate —for
cell 3, I &d =23.776+0.003 cm —this yields the cell
height d=0. 3130+0.0021 cm. This is to be compared
with the measured thickness of the spacer used in cell
A: 0.3073+0.0005 cm. The deduced value relies on the
theoretical calculation of the critical wave number, which
may not be accurate for the narrow cells used in this
work [18]. However, averaged over the three cells, this
value exceeds the measured spacer thickness by
0.0055+0.0020 cm —an amount which believably corre-
sponds to the resistance of the cell gaskets. In any event,
using one of these values instead of the other would make
a negligible change in the pulse velocities measured
below.
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FIG. 4. Amplitude profiles of a state consisting of two pulses

of left-going TW's, in a fluid with P= —0.072 in cell A, at
a=0.0090. At each time step, one line of circular-camera data
is demodulated in space at the measured mean wave number to
produce a profile of the TW amplitude. Profiles at succeeding
times are displayed in hidden-line format by shifting each
profile vertically by an amount proportional to the elapsed time.
In this data record, both pulses drift continuously to the left.

FIG. 5. Interaction of oppositely propagating pulses, in the
same Auid and ce11 as in Fig. 4, but with 8=0.011. Horizontal
arrows underneath the pulses indicate the direction of propaga-
tion of the underlying TW. Because the pulses drift in the same
direction as the TW, oppositely propagating pulses always meet,
and only one of the two input pulses survives the resulting in-

teraction. Under these conditions, the system always evolves
into a state of copropagating pulses.

ducing stable states which consist of several copropagat-
ing pulses. There are several reasons why such states are
useful. Multiple-pulse states produce data faster than
single-pulse states. More importantly, spatial variations
in Ud, can be sampled over the entire cell in less time us-
ing such a state than with a single-pulse state. Also, as
shown in Ref. [7], pulses become unstable to destruction
by convectively amplified fluctuations at a value of e
which is inversely proportional to the length of the sys-
tem. In a multiple-pulse state, as shown in Sec. VI, the
relevant length for the growth of Auctuations is the spac-
ing between pulses; thus such states remain stable to
higher values of F than single-pulse states. This allows
pulse-drift data to be taken at values of F at which
single-pulse states are unstable. Finally, as discussed in
Sec. VI, triple-pulse states attenuate Auctuations so much
that a threshold for destabilization by an intrinsic mecha-
nism can be reached.

Simply increasing e from below to above onset pro-
duces, after a long transient, a state which consists of
several pulses —as many as six. However, this state usu-
ally consists of nearly equal numbers of left- and right-
going pulses. Because the pulses drift in the direction of
the underlying TW, pairs of counterpropagating pulses
always approach each other and interact. As shown in
Fig. 5, this interaction is fatal for one of the two input
pulses, and it is not possible to predetermine which one
survives. As a consequence, the most likely evolution of
a spontaneously generated multiple-pulse state is for
pulses to be removed from the system one by one, until a
single pulse remains. A double-copropagating-pulse state

rarely occurs spontaneously, and I have never created a
triple-copropagating-pulse state this way. Thus, simply
jumping above onset is an unreliable way to produce
multiple-copropagating-pulse states, and I have had to
develop techniques for making such states.

There are several tools which can be exploited to add a
pulse of a chosen direction and at a chosen location to an
existing state. First, as described above and in Ref. [7],
tapping on the end of one of the fi11 tubes injects a distur-
bance at each of the fill holes, and these grow into pulses
above onset. Second, an existing pulse, properly located,
can be used to absorb unwanted linear TW's [7]. Finally,
if two quasilinear wave packets approach each other,
nonlinear interactions will cause the amplitude of the
weaker one to be suppressed, if the amplitude of the
stronger one is large enough. Figure 6 illustrates the use
of these effects to create a copropagating pulse at a 1oca-
tion approximately diametrically opposite an existing
pulse. Figure 6(a) shows the initial state, consisting of
single right-going pulse at location 62'. Figure 6(b) shows
the system just after disturbances have been injected at
the fill holes, which are labeled I and 2. In Fig. 6(c),
these disturbances have decomposed into linear wave
packets: left- and right-going wave packets Lz and R2
originated at location 2, and right-going packet R, ori-
ginated at location 1. The left-going wave packet L

&
has

already been absorbed by the nonlinear pulse. Note that
R

&
is about twice as strong as L2. During the time be-

tween Figs. 6(c) and 6(d), the Rayleigh number was mani-
pulated near onset to keep the amplitude of R, high
enough to have a nonlinear interaction with L2, but not
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so high as to prematurely evolve into a nonlinear pulse.
As a result, the ratio of the amplitudes of R

&
and Lr2 is

even greater after than their interaction [Fig. 6(d)] than
before [Fig. 6(c)]. Because the amplitudes of R2 and L2
have been kept small, they are absorbed when they col-
lide with the original pulse [Fig. 6(e)]. Now, with the
three other linear wave packets essentially gone, manipu-
lations of the Rayleigh number are used to turn R i into a
nonlinear pulse when it reaches the desired location. Just
prior to Fig. 6(e}, the Rayleigh number is increased to
@=0.0331. This causes R& to slow down and grow up
into a pulse [Figs. 6(e}—6(g)]. During this evolution, R&
emits strong, right-going linear TW s—these are evident
in Fig. 6(f). In order to keep their amplitude small
enough to be absorbed by the original pulse, the Rayleigh
number is turned down to near onset at about the time of
Fig. 6(f). The absorption of the remaining linear TW
leaves a final state of two copropagating pulses, approxi-
mately 180' apart [Fig. 6(h)].

The procedure used in Fig. 6 can easily be extended to
create a state of three copropagating pulses which are ap-
proximately equally spaced. The Rayleigh-number in-
crease which turns R, into a pulse can be delayed, so that
the final pulse stops near location 320', approximately
120' away from the original pulse. Subsequently tapping
on the fill tube then produces only wave packets R

&
and

L2, because R2 is immediately absorbed by the new pulse.
The suppression of Lz and the production of a right-
going from R

&
then proceed essentially as above, with

slight changes in timing. In Fig. 7, a third copropagating
pulse is added to a preexisting two-pulse state by tapping

50—

FIG. 6. Adding a second, right-going pulse to a single-pulse
state in cell C, at f= —0. 123. Linear wave packets are
identified with the symbols L&, R2, etc. , in which the letters
refer to the propagation direction of the TW, and the subscripts
refer to the point of origin: point 1 is the fill hole at location 90',
and point 2 is the fill hole at location 270'. (a) Initial single
right-going pulse at 5=0.0177. (b) Time t =0. Tapping the fill

tube creates a strong disturbance at location 1 and a weaker dis-
turbance at location 2. (c) Time t =196 sec. After propagation
at @=0.0177, the disturbances have decomposed into left- and
right-going linear wave packets R&, L2, and R2. L& has been
absorbed by the existing pulse. At this point, e is reduced to
0.0011 to limit the growth of the linear TW. (d) Time t =868
sec. After the interaction between L2 and R &, the former is re-
duced in relative amplitude, because of weakly nonlinear in-
teractions with the latter. R2 is already being absorbed by the
initial pulse. At this time, F is reduced to 0.0008 to prevent L2
from growing too large to be absorbed by the pulse and to
prevent R

&
from prematurely evolving into a pulse. (e) Time

t = 1148 sec. F is increased to 0.0331 to cause R
&

to evolve into a
pulse near location 270'. (f) Time t =1428 sec. With Rl
stopped and at high amplitude, e is reduced to 0.0023 to limit
the amplitude of newly created linear TW's. (g) Time t =1708
sec. Linear TW's are nearly gone, and R& has nearly evolved
into its final form. (h) Time t =3108 sec. Final state of two
copropagating pulses, approximately 180 apart.
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FIG. 7. A hidden-line plot of demodulated spatial amplitude
profiles as functions of time shows the addition of a third, left-
going pulse to a double-pulse state in cell A, at lt = —0.072. In
this case, with F held fixed at 0.0093, the fill tube is tapped as the
two existing pulses move past locations 156 and 278. The
right-going wave packet originating at location 90' and the left-
going wave packet originating at location 270' are immediately
absorbed. The other two linear wave packets collide at location
34; since the left-going wave packet originating at 90' is the
stronger of the two, a left-going pulse results.
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on the fill tube as the original two pulses move into posi-
tions where they will rapidly absorb two of the injected
wave packets. The larger amplitude of the left-going
wave packet originating at location 90' causes it to
suppress the right-going wave packet orig nating at 270',
resulting in the production of a third left-going pulse.

There are two other tools which have been used to fa-
cilitate these manipulations. The first is local heating,
which is accomplished by applying a voltage to one or
several of the small resistors arrayed around the lower
edge of the bottom plate of cell C. Because (as shown
below) both the drift velocity of a TW pulse and the
growth rate of a linear wave packet depend on e(x), an
added local "hot spot" can be used to move an existing
pulse to a new location, as well as to selectively enhance
the growth of one or two linear wave packets over that of
others. By adding and moving such local point sources of
heat on the bottom plate, I have been able to create pairs
of both counterpropagating and diametrically opposite
copropagating pulses directly from the conducting state.
Both processes take about an hour. Second, I have
learned how to launch pulses from either of the fill tubes
without exciting a disturbance at the other. This reduces
the need to use pulses or quasilinear wave packets to ab-
sorb unwanted linear TW's.

With a suitably prepared state of pulses, the depen-
dence of drift velocity on e can be measured. I begin this
measurement by acquiring circular-camera data at regu-
lar time intervals. At each time step, the amplitude
profile is computed by demodulating in space at the mean
measured wave number, and the position of each pulse is
determined by computing the first moment of its ampli-
tude profile. DifFerentiating in time gives the drift veloci-
ty vd, as a function of spatial position x. vd, is scaled by
«./d, where « is the thermal diffusivity of the fiuid and d
is the cell height. Figure 8 shows the spatial dependence
of vd, (x, F) measured using left-going pulses in cell 3 for
g= —0.072 at several difFerent values of F. vd, &0 for
left-going pulses, but I will consider only the absolute
value of v„, in what follows. Figure 8 shows that the
magnitude of the average drift velocity increases with e.
Aside from this, the spatial structure of vd, (x, e) is repro-
ducible from run to run, and from pulse to pulse in a
given run. As shown below, this is just because vz, (x,e)
is sensitive to the local value of e(x ).

For ttj= —0.072, v~, was measured as a function of po-
sition in 19 runs at diferent values of e, yielding 6445
separate measurements of vd, (x,F). Figure 9 shows the
spatially averaged drift velocity vd, (F) vs e for these 19
runs. The error bars in Fig. 9 are dominated by the spa-
tial variation of vd, . The drift velocity vanishes near on-
set and increases roughly linearly with F. To within the
error bars, multiple-pulse states exhibit the same drift ve-
locity as single-pulse states. At this separation ratio,
pulses lose stability and vanish when e(x) is reduced
below ez = —0.001+0.002.

From the 6445 measurements of vd, (x, e), both the in-
trinsic dependence of the drift velocity on Rayleigh num-
ber vd, (e) and the spatial dependence e(x ) can be extract-
ed. For this purpose, I have developed an iterative pro-
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FIG. 8. Drift velocity Ud, vs spatial position in cell A for
several difFerent left-going pulses, at l(= —0.072. {a) Single-
pulse state V=0.0027. (b) Triple-pulse state @=0.0065. The
three pulses are represented by di8'erent symbols: +, 0, and X.
(c) Triple-pulse state V=0.012. (d) Triple-pulse state V=0.017.
The absolute value of the average drift velocity increases with
increasing e. The spatial structure of Ud, (x) is reproducible
from run to run as well as from pulse to pulse in a single run.
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FIG. 9. Average drift velocity vs e for l(= —0.072. Each
symbol represents the spatially averaged value Ud, in a run like
those in Fig. 8, plotted at the value of t. for that run. The error
bars represent twice the standard deviation of the spatial varia-
tion of Ud, for each point. Open circles, single-pulse states; solid
circles, double-pulse states; triangles, triple-pulse states.

cedure which begins with a postulated inverse depen-
dence e(vz, ). In the present case, I start by fitting the
data in Fig. 9 to a straight line, although, as will shortly
become clear, a parabola would be a better choice. Then,
for each of the 6445 measurements of vd, (x,F), the fitted
e( v d, ) is used to calculate the stress-parameter nonunifor-
mity 5e(x)=e(vd, (x, F))—F. If the dependence vd, (e) is
close to linear over the range of variations in each indivi-
dual run, then 5e(x ) should match the curves in Fig. 2(c).
The results for 5e(x ) are binned in space and averaged to
produce the fu11 curve in Fig. 10; the error bar is twice
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FIG. 10. Full curve: binned and averaged values of the
stress-parameter nonuniformity 5e(x) for cell A, as deduced
from pulse-velocity data in Figs. 8 and 9. The error bar
represents twice the average of the standard deviations in each
of the bins. Dashed curve: average of the two curves eL &(x)
shown in Fig. 2 (c), shifted to the right by 21 or 4.4d.

the average of the standard deviations in the individual
bins. For comparison, the dashed curve is the average of
the two estimates eL z(x) shown in Fig. 2(c). The pulse-
velocity result matches the low-spatial-frequency corn-
ponent of the linear-TW result quite well. For the best
agreement between the two measured profiles, I have
shifted the linear-TW curve to the right by 21, which
corresponds to 4.4 times the cell height, or approximately
one pulse width. Thus it appears that Ud, (x) depends on
the value of e(x) measured at its leading edge. A more
precise measurement of the shift between the pulse center
and the e(x ) profile, made by studying the drift of a pulse
through a peak in e(x) at a known location, will be de-
scribed in the following article [19].

It is worth pausing to note that measurements of pulse
drift have yielded an extremely useful assessment of the
uniformity of the experimental cell which is cornplemen-
tary to that obtained by stabilizing linear TW states. The
results in Fig. 2(c) depend on the values of the parameters
in Eqs. (1) and (2) and explicitly rely on a theoretical
model which cannot describe fast spatial variations. In
contrast, the pulse-velocity result in Fig. 10 relies on no
theory and is self-calibrating. The true spatial resolution
of this measurement depends on noise, properties of the
optical system, and on the nature of the interaction of the
pulse with inhomogeneities, and these are subjects of
ongoing investigation. While it is encouraging that two
results based on different dynamical states agree, the
pulse-velocity measurement is much easier to perform
and is more reliable and accurate. Investigations made
since the preliminary report of this work [12] have re-
vealed that the sharp dips at locations 160 and 280 in
the pulse-velocity measurement of e(x ) were caused by
two tiny droplets of an oily liquid which slowly grew over
the month during which the measurements were made.
These therefore had a time-dependent effect on these
measurements, leading to the rather large error bar in
Fig. 10. By contrast, the linear-TW results in Fig. 2 were
made some time previous to the first observation of the
droplets and would have an unknown sensitivity to them.

0.02—

0.005 0.010 0.015 0.020

These droplets were traced to the cell gaskets and were
eliminated by soaking them in ethanol for a week before
assembling cells B and C.

Using the averaged spatial dependence of 5e(x) in Fig.
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FIG. 12. (a) Local stress-parameter nonuniformity 5e(x) for
cell 8, deduced from measurements using double left-going
pulses and single-right-going pulses at g= —0. 101. A sharp
feature is observed at location 270'. The rest of the cell is uni-
form to +0. 1%%uo. (b) Standard deviation o.z,(x ) of the measure-
ments in (a). Outside the region of the sharp feature, the small
standard deviation indicates that 5e(x) was quite stable during
the course of the experiments.

FIG. 11. Pulse drift velocity vd, as a function of stress pa-
ratneter e, for P= —0.072. Each data point represents an indi-

vidual measurement of vd, (x,e) and is plotted at the corre-
sponding calculated value of e(x, F). The smooth curve is a
square-root fit to the data. No measurements were made for
e & 0, although it appeared that pulses lose stability near a=0 at
this value of P.
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TABLE II. Parameters of fits to pulse drift velocities

rrns errorEp

—0.072
—0. 101
—0. 123

0.051
0.050
0.058

0.002 48
0.006 24
0.01397

0.0027
0.0013
0.0018

—0.001+0.002
—0.0042+0.0004
—0.0118+0.0004

0.890
0.899
0.931

convective states. However, the rest of the cell is quite
uniform, and, since the drift of a localized pulse is sensi-
tive only to the value of e(x) at its leading edge, it ap-
pears quite reasonable simply to discard the data ob-
tained near the sharp features in Fig. 11. The resulting
measurements of Ud, (e), shown in Fig. 13, indeed exhibit
much less scatter than those in Fig. 11, and this is mostly
due to the fact that e(x) was more stable in time than
during the previous experiments. Using the parameters
in Table II, the square-root form proposed above fits the
positive-velocity data with a rms error of only 0.0013. It
should be noted in Fig. 13 that the pulse velocity remains
approximately zero over a tiny range in e below the value
at which this functional form passes through zero. The
fit to the square-root form excluded these data. When
e(x ) is reduced from —0.0036 to —0.0047, the pulse
loses stability and vanishes.

Cell C was made simply by disassembling cell B, clean-
ing it, reseating the gasket seal, and reassembling. A pre-

10, the true local stress parameter e(x, F)=F+6F(x) can
be calculated for each of the 6445 measurements of
vd, (x, e), thus removing the dependence on the spatial
coordinate x. The resulting data for Ud, (e) are plotted in
Fig. 11. This graph is equivalent to that in Fig. 9, except
that, with the spatial dependence removed, the average
standard deviation of the points in a narrow interval in e
is about 2 times smaller than that corresponding to the
error bars in Fig. 9. The smooth curve in Fig. 11 shows a
fitted function of the form vd, (e)= —vo+a(@+co)'
With this fit, the iterative procedure can be restarted, re-
sulting in a further slight reduction in scatter. With the
fit parameters in Table II, this functional form fits the
data with a rms error of 0.0027. Other functional forms,
such as a straight line, give a noticeably worse fit. This is
more evident in the data presented below.

Cell B was constructed using a different bottom plate
and spacer than cell A. The stress-parameter profile
5e(x) measured using left-going pulses in cell 8 with
g= —0. 101 is shown in Fig. 12. Somewhat surprisingly,
a sharp feature is observed near location 270. As noted
above, this defect made it impossible to stabilize a single-
mode linear TW state, and this cell can be regarded as
useless for accurate observations of uniform, cell-filling
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C5 FIG. 14. Drift velocity vd, measured as a function of spatial

position at a=0.0016 using a state of two right-going pulses in a
fiuid with P= —0. 123 in cell C. As a result of careful trimming
of the heat applied to the lower plate of the cell, the drift-
velocity profile is extremely uniform, except for wiggles which

appear to be the residual effects of optical distortions. These
measurements are calibrated against e on the right-hand axis of
the graph, using the fit of vd, (e) in Fig. 15. Without any
smoothing of the wiggles, averaging the entire e(x) profile yields
a standard deviation of 3.2 X 10 . Convoluting this e(x )

profile with the pulse-amplitude profile in Fig. 16(a), as a guess
of the Auctuation level truly felt by the pulse, reduces this to
1.0X10 . This value drifted back up to 1.9X10 after a
week of experiments.
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FIG. 13. Pulse drift velocity vd, as a function of stress pa-
rameter e, for g= —0. 101. The individual data points were ob-
tained as in Fig. 11, using a double-left-pulse state and a single-
right-pulse state. The smooth curve is a fit using the same
square-root functional form.

When the local value e(x ) is reduced below the lower stability limit e2, pulses lose stability and disap-
pear.
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FIG. 15. Pulse drift velocity Ud, as a function of stress pa-
rameter e, for g= —0.123. Most of the data points below
e= —0.009 were obtained using a single right-going pulse in the
original, nonuniform cell. The rest of the data come from mea-
surements on a double-right-going-pulse state made after the
cell uniformity was improved to the level in Fig. 14. The two
data runs agree and are well fit by the square-root functional
form (solid curve). There is no evidence of pinning at zero ve-

locity.

V. PULSE SHAPE

In Ref. 2, the shapes of motionless traveling-wave
pulses were analyzed by fitting raw shadowgraph data to

liminary series of experiments with f= —0. 123, made as
above, produced a smooth 5e(x ) profile of peak-to-peak
amplitude 0.005, demonstrating that the sharp feature in
5e(x) in cell B had been removed. About 20%%uo of this
nonuniformity can be attributed to the measured nonuni-
formities in cell geometry. These runs also yielded the
parameters of the square-root dependence of ud, (e).
Then, using techniques described in Ref. [19],additional
local heating of the bottom plate was adjusted to yield a
uniform pulse-velocity profile. As shown in Fig. 14, a
spatial uniformity in 6e(x ) of parts in 10 was achieved.
With this level of uniformity, it is no longer necessary to
amass large amounts of data for accurate measurement of
e(x). Rather, two rapid scans in e' were performed, and
the measured drift velocity is plotted versus e in Fig. 15.
In analyzing these data, two full measurements of e(x ) as
in Fig. 14, were made before and after the data scans, so
that the iterative data-analysis procedure could be ex-
tended to allow e to be interpolated both in time and in

space for each experimental point in Fig. 15. However,
e(x, t) was so stable and uniform that this additional
correction had little effect on the quality of the data.
These data continue to be well fit by the square-root
dependence vd, (e). Note also in Fig. 15 that a substantial
region of negative drift velocity is seen at this value of 1t,
and that there is no evidence of pinning at zero velocity.
The laboratory frame is not sensed by these pulses.
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FIG. 16. (a) Right-wave (full curve) and left-wave (dashed
curve) amplitude profiles computed for a right-going pulse at a
local value E(x)= —0.0084 in cell C with g= —0. 123. Here,
the spatial position x is scaled by the cell height d and is shifted
so that the centroid of the main pulse is at x=0. The right-
wave component exhibits a reproducible leading-edge shoulder.
The main body of the pulse exhibits slight asymmetry which is
not reproducible. The left-wave component has a very low am-
plitude and exhibits a phase defect. This computation was per-
formed using a demodulator with very wide spatial and tem-
poral bandwidths; it was verified that further increases in band-
width did not result in any systematic change in pulse shape. (b)
The solid curve shows the wave number of the right-going com-
ponent of the pulse in (a). A strong gradient and a steep drop at
the leading edge of the pulse are reproducible features. The
dashed curve is the wave-number profile exhibited by the nu-
merical pulse computed in Ref. [11].

a function with a spatially symmetric amplitude profile
which is a stationary solution of the lowest-order subcrit-
ical Ginzburg-Landau equation. Reasonably good fits
were obtained, and the principal parametric evolution
was a weak increase of pulse width with e. The fit func-
tion exhibits a strong spatial gradient in wave number,
and this also gave a good fit to the data. In addition,
these experiments established that pulse shapes are the
same in annular and rectangular containers. These fits
have recently been repeated at several different separation
ratios by the authors of Ref. [20]. Their pulses appear to
be slightly longer than those in Ref. [2], but otherwise,
the reported weak dependence of pulse width on f and e
is consistent with the earlier measurements.

The technique of fitting data to a chosen function has
the disadvantage that fits may be possible even if an in-
correct function is used. Extraction of wave amplitudes
by complex demodulation [15] is a complementary tech-
nique in which the correct pulse shape appears as an out-
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put rather than as an input. A potential disadvantage of
this technique is that it requires bandpass filtering, and
this may cause distortions in the output pulse shape if the
data exhibit a strong variation in wave number and/or
frequency. However, because of the low noise level in
these experiments, the demodulator bandwidth can be
wide enough to encompass the entire range of wave num-
ber and frequency variation in the data and still produce
a clean output.

Pulse shapes were studied in detail as a function of e
for g= —0. 123. Figure 16 shows the computed ampli-
tude and wave-number profiles for a right-going pulse at
e= —0.0084. The right-wave component in Fig. 16(a)
consists of a slightly asymmetric pulse with a noticeable
leading-edge shoulder. The weak asymmetry in the main
body of the pulse is not reproducible, and I suspect that
its cause is residual optical distortions. However, the
shoulder is a reproducible feature of all the traveling-
wave pulses I have studied. This particular pulse was
chosen for display because its chosen for display because
its amplitude profile is virtually indistinguishable from
the pulse which was numerically computed for @=0.008
and g= —0.08 in Fig. 4 of Ref. [11]. The main body of
the pulse can also be reasonably well fit using the func-
tional form cited in Refs. [2] and [20]. The fit parameters
obtained are similar to those found by those authors, but
the leading-edge shoulder is a feature not accounted for
by the symmetric amplitude profile of that function.

The amplitude profile of the counterpropagating-wave
component is shown by the dashed curve in Fig. 16(a).
The sharp amplitude null seen at x/d = —0.6 is due to a
phase defect which appears as a singularity in the corre-
sponding wave-number profile at the same spatial point
(not shown). Weak, noisy, defected counterpropagating-
wave components are the rule in these experiments and
are also evident in pulses in rectangular cells [cf. Fig.
2(b), Ref. [21]). The present results lead to the somewhat
puzzling deduction that reflections from an end wall can-
not be their cause.

The solid curve in Fig. 16(b) shows the wave-number
profile computed for the right-wave component of this
pulse. The principal reproducible features of this profile
are its steep spatial gradient and the sharp drop in wave
number at the leading edge of the pulse. If the demodula-
tor bandwidth used in this computation is decreased for
noise reduction, the erratic trailing edge of the profile
tends to smooth out and turn upward, imparting a sig-
moidal shape. However, it is not clear that this is the
proper way to reduce the noise in this profile. The gra-
dient and center wave number of the wave-number profile
are quite similar to those exhibited by the functional form
used to fit pulse shapes in Refs. [2] and [20]. However,
the overall shape of the wave-number profile is almost
perfectly matched by that of the numerically computed
pulse in Ref. [11] (dashed curve). The slight difference
between the numerical and experimental wave numbers
at the very leading edge of the pulse may be due to the
fact that the numerical profile was computed by counting
zero crossings rather than by demodulation.

In light of the observation by Deissler and Brand [10]
that the nonlinear gradient terms which introduce a pulse

L„=(I„/Io)' " . (4b)

The lengths L„are scaled in units of the cell height. The
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FIG. 17. Amplitude and first three nonvanishing moment
lengths computed vs e for experimental and theoretical pulse
amplitude profiles. (a) Pulse amplitude Io. (b) Pulse width L2.
(c) Asymmetry length L3. (c) Fourth-moment length L4. The
solid circles represent experimental pulses at g= —0. 123. The
scatter in the data appears to be due to the unreproducible
asymmetry noted above in the pulse in Fig. 16(a). The smooth
curve in (a) is a fit to the functional form Io=b+a(@+co)'
with the value Eo=0.01397 taken from Table II. The open
squares plotted at e= —0.013 are computed for a Gaussian of
FWHM 5.0. The open circles at e= —0.013 and —0.001 are
computed using the function and fit parameters in Fig. 4 of Ref.
[2l.

drift into the solutions of the complex Ginzburg-Landau
equation also cause an asymmetric pulse shape, it may be
of significance to understand the evolution of the experi-
mental pulse shape with e. I have chosen to parametrize
this dependence by computing the first few moments of
the pulse amplitude profile. For a profile A(x), whose
nth moment I„ is

I„=J x "A(x —xo)dx, (4a)

where x0 is set so that I& =0, I compute the nth moment
length L„:
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closed circles in Figs. 17(a)—17(d) show the dependence
on e of the zeroth moment and the first three nonzero
moment lengths of experimental pulses at g= —0. 123.
Not surprisingly, the pulse amplitude Io increases with E'.

The smooth curve in Fig. 17(a) is a fit to the square-root
dependence followed by the drift velocity, with eo fixed at
the value co=0.01397 found for this value of P. The
pulse width L2 increases weakly with e, with a slope that
is consistent with those reported in Refs. [2] and [20]. In-
terestingly, the asyrnrnetry length L 3 shows a pro-
nounced decrease with e. A weaker decrease is exhibited
by L4. The open symbols in Figs. 17(b) and 17(d) show
the moment lengths computed for three syrnrnetric pulse
shapes: a Gaussian of full width at half rnaximurn
(FWHM) 5.0 (open square plotted at e= —0.013) and the
Ginzburg-Landau solutions fitted at e= —0.013 (FWHM
equal to 5.4) and —0.001 (FWHM equal to 5.0) in Fig. 4
of Ref. [2] (open circles). The experimental L2 can be
matched by altering the fit parameters of the latter func-
tion, but to simultaneously match L4 requires unreason-
able parameter values. Of course, odd moments vanish
for these symmetric functions.

VI. FLUCTUATION SUPPRESSION
AND INTRINSIC PULSE DESTABILIZATION
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FIG. 18. Single-left-pulse state in cell A with P= —0.072
and F=0.0081. Over the course of the run, convectively
amplified TW fluctuations produce a strong, coherent wave

packet which becomes visible at the end of the data record. The
dimensionless length of the nonconvecting region in this run is
66.

Several references have been made in this paper to
suppression of linear TW Auctuations by pulses. These
statements are based on the work described in Ref. [7], in
which it was found that small-amplitude linear TW's are
absorbed by pulses, while large-amplitude linear TW's
destroy them. Because small fluctuations are always
present in this system, and because linear TW's are con-
vectively unstable above a=0, we argued that these ob-
servations imply that, in a system of length I, pulses
should be stable against destruction by fluctuations up to
a value ef CC I /I . This in turn implies that, in an annular
container, a state of N equally spaced pulses should be
stable up to Fo- X. This is fluctuation suppression.

Figures 18 and 19 show that this argument is correct.
Figure 18 illustrates a single-pulse state at @=0.0081,
with g= —0.072. At this value of e, spontaneously gen-
erated linear TW's are convectively amplified into a
coherent wave packet which becomes visible at the end of
the data record. Judging from the large amplitude of
these TW's, it appears that a small further increase in e
would lead to the destruction of the pulse. The length
over which linear TW's are convectively amplified in this
state is just the system length minus the pulse width, or
66 times the cell height.

For a double-pulse state, TW fluctuations become visi-
ble only at higher F. As shown in Fig. 19, convectively
amplified fluctuations first reach the level shown in Fig.
18 only at 5=0.0121. In this run, the two quiescent re-
gions were of different size, and the longer region had a
length of 40 times the height of the cell. The ratio of the
values of e in Figs. 18 and 19 is indeed inversely propor-
tional to the ratio of the lengths of the largest noncon-
vecting regions in the cell, to within 10%%uo. This supports
the argument in the preceding paragraph. Quantitative
observations and modeling of this kind of convective
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Flax. 19. Double-left-pulse state in cell A with g= —0.072
and 5=0.0121. As in Fig. 18, a convectively amplified wave
packet becomes visible at the end of the run. The dimensionless
length of the larger nonconvecting region in this run is 40.

amplification of TW fluctuations have recently been re-
ported by Schopf and Rehberg and Rehberg et al. [22].

These numbers imply that a state consisting of three
equally spaced pulses should exhibit TW fluctuations of
substantial amplitude only for e-0.03. However, such
high values have never been reached in these experi-
rnents, because, as shown in Figs. 20 and 21, pulses lose
stability via a different mechanism well before this. Fig-
ure 20 shows the evolution of a triple-pulse state at high
e. At t=5040 sec, just as the center of one of the
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slightly nonuniform cell and the suppression of Auctua-
tions have been crucial in making this observation.

Figure 21 shows another intrinsic destabilization of
one of three right-going pulses. Unfortunately, the initial
value of F was not recorded for this run, but, judging
from the behavior, I estimate that @=0.018. Shortly
after the beginning of the run, the pulse whose initial lo-
cation is near 0' starts to go unstable in a manner very
similar to that shown in Fig. 20. By the time F is reduced
to 0.0150 (at t =25 260 sec), the TW's in that pulse have
slowed to almost zero velocity, and additional rolls have
been added by the collision of one of the other two pulses.
At t =29 660 sec, e is reduced to 0.0070, and the result is
a very broad confined state of nearly stationary rolls. The
rest of the system is kept clear of TW fluctuations by the
remaining pulse, which disappears when F is reduced to—0.0064 at time t =38590 sec. Ultimately, this causes
the broad confined state of nearly motionless rolls to van-
ish as well.

The initial evolution of the destabilized pulse in Fig. 21
is similar to that in Fig. 20: decreasing TW velocity, fol-
lowed by expansion of the amplitude profile into the rest
of the system. Again, the broadened pulse appears to be
hysteretic. In both cases, it seems likely that it is possible
to find a band of e over which the broadened pulse is
stable. In particular, at 8=0.0070, except for the leftover
drifting pulse, it appears that the broad region of essen-
tially stationary rolls in Fig. 21 was stable. Clearly, both
the spatial extent of the destabilized pulse and the veloci-
ty of the underlying TW are sensitive functions of the his-
tory of the system.

VII. DISCUSSION

The initial results presented in this paper document the
continued evolution of the control and perfection possible
in the experimental study of convection in binary fluids.
Using the techniques discussed in Sec. III and IV, it has
been possible to precisely measure the experimental
geometry and to control the principal stress parameter e
with stabilities of parts in 10 in time and of parts in 10
in space. The shadowgraph technique and the methods
used for data analysis have also progressed so far that the
fundamental excitations of the system —traveling
waves —can be extracted and characterized with practi-
cally no noise or distortion. Thus, even with an extreme-
ly wide demodulator bandwidth, the right-wave ampli-
tude profile in Fig. 16(a) has a signal-to-noise ratio of
several hundred at its peak. With these and other ad-
vances in experimental technique, traveling-wave convec-
tion in an annular container has evolved into an extrerne-
ly high-precision testing ground for understanding non-
linear pattern formation in one dimension.

Theoretical understanding of this system on the basis
of the full Navier-Stokes equations is also quite advanced.
The numerical calculations of Ref. [11]give an excellent
qualitative accounting of the pulse amplitude and wave-
number profiles seen in these experiments. Because of the
differences in g and e between the theory and the experi-
ment, the nearly exact quantitatioe agreement in Fig. 16
is probably fortuitous. However, there seems little reason

to doubt that the theoretical calculations are essentially
correct, and that quantitative agreement in the pulse
shape will be obtained for computations and experiments
performed at the same parameter values. This optimism
is reinforced by the close agreement between parameter-
matched numerical calculations and experiments on the
confined states of arbitrary length seen at more negative
separation ratio [23] that has been reported recently [24].
There remain small discrepancies among the pulse shapes
reported here and in Refs. [2] and [20]—in particular,
the pulses in those reports do not appear to exhibit the
leading-edge shoulder seen in Fig. 16 and in the computa-
tions of Ref. [11]. The reason for this is not simply that
the pulses in Refs. [2] and [20] are motionless. Motion-
less pulses in the present experiment (created by setting
e= —0.0101 at f= —0. 123) exhibit a pronounced asym-
rnetry due to the shoulder —cf. Fig. 17(c). This suggests
that the weak experimental imperfections which ap-
parently pinned the pulses in Refs. [2] and [20] to zero
velocity also had an effect on their shape.

Despite the apparently excellent theoretical accounting
for the shape of drifting pulses, the parametric depen-
dences of their drift velocity and stability, as well as their
shape, still leave several quantitative issues for theory to
resolve. First, the drift velocity increases monotonically
in e for fixed g and decreases monotonically in f for fixed
e. The latter dependence allows the value Ud, =0.039
(0.057) to be interpolated for the parameters of Ref. [11]:
e =0 0069 (0..0115) and g = —0.08. Those numerical
computations yield ud, =0.051 (0.082) [25], quite reason-
able agreement considering the uncertain effects of the
narrow lateral dimension of the cell used in these experi-
rnents. Second, the pulse asyrnrnetry, as measured by the
moment length L3, decreases with e at f= —0. 123. Fi-
nally, the pulse loses stability when e drops below a value
e2, which increases with g. While it seems quite likely
that the computations of Ref. [11]can account for these
measurements quantitatively, this has yet to be done ex-
plicitly.

Ginzburg-Landau-type models have become extremely
popular for the theoretical description of pattern-forming
systems. For the present system, such an equation is the
direct result of an analysis of the Navier-Stokes equations
which treats the convection as a small perturbation of the
quiescent, conducting state seen just below onset [17].
One of the attractions of this system is that the
coefficients in both the linear [16,17] and first nonlinear
[26,27] terms of the Ginzburg-Landau equation have
been accurately calculated and measured, and the result-
ing equations have been shown to correspond quite well
to observed behavior in the weakly nonlinear case, i.e., at
small negative p [27,28]. Thus, just as it was encouraging
to find in Ref. [2] that experimental pulses could be well
fit by a solution of the lowest-order subcritical Ginzburg-
Landau equation, so was it equally puzzling to find that
the pulses were motionless, contrary to expectations
based on this equation and on more general symmetry ar-
guments. The present observations of drifting pulses
resolve this puzzle and reopen the possibility that such a
model can explain the quantitative features of traveling-
wave pulses. However, it must be recognized that, be-



PAUL KOLODNER

cause of the large-scale concentration flows revealed in
numerical pulses [11],it is probably erroneous to assume
that traveling-wave pulses represent only an infinitesimal
perturbation of the conducting state. A symptom of this
is that observed pulse velocities are small —v~, ~0. 1,
while the group velocity s in the Ginzburg-Landau equa-
tion for the weakly nonlinear case has a typical value of
1.5 for the fluids used in these experiments. Thus the
Ginzburg-Landau model which pertains to experimental
pulses may be ill suited for a first-principles quantitative
calculation based on a perturbation analysis of the
Navier-Stokes equations.

If a phenomenological Ginzburg-Lindau model can be
constructed which explains pulse drift and shape in de-
tail, then it will face three interesting new tests: to ex-
plain first the interactions between pulses and fast TW
Iluctuations that were described in Ref. [7]; second, the
pulse-pulse collisions described there and in Ref. [19],
and, third, the intrinsic destabilization described here. I
have reserved all discussion of pulse collisions for Ref.
[19]. In both of the other two phenomena, TW's with
vastly different wave speeds must be described. The
strong hysteresis, apparently arbitrary length, and small-
to-vanishing phase velocities encountered in the intrinsic
destabilization process are major features which may be
quite difBcu1t to explain on the basis of this theory or any
other. It is worth pointing out that a very similar desta-
bilization scenario, characterized by a slow expansion
into the rest of the system, a strong decrease in wave
speed, and absence of spatiotemporal defects, has been re-
ported in experiments on confined states in rectangular
cells at separation ratios closer to zero [20,29]. In those
experiments, the destabilization was shown to be the re-
sult of a transition from a convectively unstable situation
to an absolutely unstable one. In the present work, how-
ever, the estimate of the absolute instability threshold
based on the Ginzburg-Landau equation appropriate to
the weakly nonlinear case —which may be quantitatively
incorrect at the present values of g—suggests that the
destabilization reported in Figs. 20 and 21 takes place far

below this transition. For this reason, I have referred to
this process as "intrinsic. "

It should also be pointed out that the intrinsic destabil-
ization seen in the present annular geometry is qualita-
tively different in some respects from that seen at compa-
rable f in a rectangular cell with suppressed fluctuations
[8]. Here, for g= —0.072, the expansion of the edges of
the pulse into the rest of the system is accompanied by a
strong decrease in phase velocity, while spatiotemporal
defects are not seen [30]. In a rectangular cell with
P= —0.089, the phase velocities in the stable and unsta-
ble pulses were essentially the same, and spatiotemporal
defects were common. These differences may be related
to end-wall reflections or the different AH widths.

Finally, there remains one issue which may be resolved
by further experimentation. The numerical computations
of Ref. [11] suggest an intimate connection between the
pulses described here and the confined states of arbitrary
length which were observed some time ago at more nega-
tive values of P [23]. Both confined states are accom-
panied by the large-scale concentration flow mentioned in
the preceding paragraphs, which slows their drift from
the velocity of the underlying TW to the low values ob-
served in these experiments. However, the original obser-
vations of the arbitrary-length states found them to be
motionless in annular containers [23], while these states
were observed to drift backwards in subsequent experi-
ments in rectangular containers, independent of the
direction of stray gradients in e(x) [31]. The drift of
those confined states does not seem to be as clearly relat-
ed to cell nonuniformities as it is in the case of TW
pulses. New experiments in a very uniform cell are need-
ed to resolve this situation.
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