
PHYSICAL REVIEW A VOLUME 44, NUMBER 10 15 NOVEMBER 1991

Qnset of the excluded-volume effect for the statistics of stiff chains
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We investigate the conformation of very stiR' chains with increasing molecular weight focusing on
the onset of the excluded-volume effect. A Flory argument is given for the case in which the shape
of monomers has a disklike anisotropy, which causes the excluded-volume eR'ect to set in for shorter
chains. A scaling argument determines the exponent associated with the anisotropy in terms of the
main exponent that controls the onset of the excluded-volume eR'ect. We suggest a way of viewing
the stifF chain as a train of mutually repelling blobs and reanalyze some data in the experiment
of Murakami, Norisuye, and Fujita [Macromolecules 1$, 345 (1980)]. An extensive Monte Carlo
simulation of the persistent self-avoiding walk (PSAW) has been performed on cubic and diamond
lattices. We find an extremely gradual crossover of the Flory exponent from the Gaussian value
(v& = ~) to the full self-avoiding one (vz 5) as the chain becomes longer. Finally, we present an
approximate analytic calculation of the attrition rate of an equivalent Right model for the PSAW.

PACS number(s): 05.50.+q, 61.41.+e, 64.60.Fr

I. INTRODUCTION

A main interest in studying the conformation of stifF
linear polymers in dilute solutions has been in the ef-
fect of stifFness on the scaling of the size of the chain.
Stiff' linear polymers are often called wormlike, semiflex-
ible, or rodlike [1—6]. The stifFness in equilibrium is usu-
ally described by rotational isomeric states [7—9], i.e. ,

a monomer-monomer link in a certain local orientation
is favored depending on the energy configuration of the
component atoms in the environment. Thus the thermal
mean conformation of the polymer tends to persist in
one direction. The mean length of this straight segment
is usually called a persis/ence leny/h, which is a measure
of the stiffness.

One may easily predict that for strong stiffness and
small molecular weight, the size of a single polymer (e.g. ,

end-to-end distance or the radius of gyration) will scale
like a straight rod. However, for large molecular weight
with fixed stifFness, the chain could be described as a
random walk with a variable step size whose mean corre-
sponds to the persistence length, if the excluded-volume
efFect is ignored. These descriptions also apply to other
properties of the polymer, such as the intrinsic viscosity
and sedimentation coefficients which correspond to difFer-
ent moments of the monomer-monomer distance distri-
bution. Indeed, some analytic expressions of end-to-end
distance of a stifF chain in terms of the contour length
are well known for certain non-excluded-volume random-
walk models [8, 10—12], and they tend to accurately de-
scribe the crossover between rodlike regime to ffexible
(random-walk-like) regime.

In a real polymer, however, two monomers cannot oc-
cupy the same space at the same time, and the confor-
mation of the polymer will be afFected by this excluded-
volume effect [7—9] in the flexible regime and beyond.

General features of the behavior of the linear stifF chain
in d = 3 can be sketched as in Fig. 1, where the end-
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FIG. 1. General behavior of the end-to-end distance R
of very stiR' linear polymers as a function of the degree of
polymerization N in three dimensions is plotted in double
logarithmic scale. Three distinct regimes and two crossovers
between them are termed as in the figure. N+ and N' are
typical values of N where corresponding crossovers occur. In
two dimensions, the Gaussian regime is known to be nonexis-
tent.

to-end distance (or the radius of gyration) R is plot-
ted against the degree of polymerization N in the dou-
ble logarithmic scale. There are three distinct regimes
[13, 14] if the chain is su%ciently stiff, namely, rodlike
(R N2), Gaussian (R2 N), and excluded-volume
(R N ") regimes. The crossovers between these suc-
cessive regimes are called rod-to-flexible and Gaussian-
to—excluded-volume, respectively. The Gaussian regime
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N —+ oo, p ~ 0 with N p = const.

Various approaches, such as series enumeration [16],
renormalization [13], and Monte Carlo simulations [12,
15], have been applied to find F(z). They all agree that
E = 1 exactly and the behavior of F(z) for z &( 1 is such
that (R ) N in all dimensions. However, its behavior
for z )) 1 strongly depends on the dimensionality [12].
In two dimensions, F(z) rapidly saturates to a constant.
For three dimensions, it is rather convenient to rewrite
Eq. (1) as

(R ) = F(Np), —
p

(3)

where F(z) z for z &( 1 and F(z) const for z » 1

in the limit (2).
It should be noted that F(z) is diff'erent from the Gaus-

sian persistent-random-walk (or PRW) scaling function,

Fo(z) = 2(e + z —I)/z,

in that, even though their small-z behaviors are the same,
Fs(z) approaches 2 for large z while F(z) approaches a
(lattice-dependent) constant greater than 2 in the limit
(2). This discrepancy is obviously due to the excluded-
volume effect which is not yet significant enough to give
the Flory exponent greater than the Gaussian value vo ——

z. Thus, even though the region z &) 1 in the limit (2)
is often called the Gaussian regime, the scaling function
is not identical to that of PRW.

For any finite and fixed p, the excluded-volume effect
will eventually dominate as N goes to infinity and a sec-
ond crossover (Gaussian —to—excluded-volume crossover)
is expected [13, 17] to occur. Such a crossover may be
controlled by a variable ¹

= Np& for some y ) 1 such
that the full SAW value of the Flory exponent is recov-
ered for N )&¹.Correspondingly, we expect that there

is not strictly the same as the non-excluded-volume case,
rather, it corresponds to an asymptotic behavior of a very
stiff and very long chain. Moreover, it is well known that
the Gaussian regime does not exist in d = 2.

In this paper, we will study the onset of the excluded-
volume effect for the statistics of stiff chains mainly in
the framework of the persistent self-avoiding walk model
(PSAW) first proposed by Halley, Nakanishi, and Sun-
dararajan [15]. In the PSAW model, a walk is realized on
a discrete lattice by making individual steps which, with
no immediate backtracking, choose a different direction
than the previous one with a probability p (gauche step)
or go straight in the same direction as before with a prob-
ability 1 —p (trans step). If this walk does not intersect
itself then it is taken as a valid member of the ensemble,
and otherwise it is discarded.

The original scaling ansatz [15] for the end-to-end dis-
tance of PSAW was written as

(R2) Nzv (2v —2)A F(N A)

where N is the number of steps, v is the Flory exponent,
and 4 is a crossover exponent. This is an asymptotic
expression in the limit of

exists another scaling function in the limit

(R ) = —a h(Np, Np"),
p

(6)

where a is the size of a monomer or the lattice constant
in the PSAW model and N* p & can be considered
as a scale for the number of monomers where the second
crossover begins to occur.

Since, in the limit (2) we have Np& ~ 0, the scaling
form (3) is clearly consistent with Eq. (6). In the limit

(5), we have Np —+ oo, and again Eq. (6) can be used if
we assume no singularity for h in this limit. In the latter
limit, Eq. (6) reduces to an expression for the excluded-
volume regime:

(R~) = a~h(N—p")
p

(7)

Furthermore, assuming that h(z) has a power-law behav-
ior for large z and requiring that (R~) oc N2", we are led
to a scaling relation [14]

(Rz) N zv
p

—cl' uz

where n = 1 —(2v —1)y (n = s in d = 3 by the Flory
approximation).

Previously, simulation [12], series-expansion [18], and
renormalization [13] calculations indicated that there
exist significant differences between two and three di-
mensions in the way the crossovers occur. Vfhile the
excluded-volume regime immediately follows the stiff
regime in d = 2, there is a Gaussian regime in between
the two crossovers in d = 3. This point is supported by
the Flory approximation [17] in that both limits (2) and

(5) become identical in d = 2 while they do not in higher
d!mensions.

Indeed, a previous numerical work [14] observed the
onset of the Gaussian —to—excluded-volume crossover in
the three-dimensional PSAW model. In that calcula-
tion, a crude numerical estimate of exponent y [cf. the
limit (5)) was given, which was significantly smaller than
the Flory value (y = 3 in d = 3). Qn the other hand,
an experiment on a real stiff polymer has been reported
[19],where the full excluded-volume effect is observed for
much shorter chains than their PSA%' counterparts. A
more extensive calculation of the exponent y as well as
a discussion of this latter point will be presented later. in
this paper.

We will also study the question of universality [20] for
the stiff chains. The lattice dependence of the scaling
function serves as a good criterion to determine whether
there exists universality for the PSAW model. We will
use the terminology where the strong universality means
not only the exponent but also the functional form of
the scaling function should be independent of the type
of lattice (up to metrica/ factors), while the weak univer-

N ~ oo, p-+ 0 with Np" = const (y & 1). (5)

It has been suggested [14] that this second limit could
be incorporated together with the first limit in a single
scaling function of the form
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sality does not require the latter. It is well known that
strong universality of the end-to-end distance and the ra-
dius of gyration holds for the stiff chains which are not
self-avoiding. This means that within the PRW model,
Eq.(4) holds for many different lattices with only very
mild modifications according to the definition of gauche
and trans steps (e.g. , see Schroll, Walker, and Thorpe
[10] for the diamond lattice).

While there are not many simulation studies of strong
universality for PRW or PSAW models reported, series
enumeration study [16] for the PSAW on square and tri-
angular lattice finds it impossible to obtain strong uni-
versality. Apart from the PSAW model, the exact solu-
tions [6, 21] of some directed-walk models also indicate
that there is no strong universality between square and
triangular lattices and the dimension dependence of hy-
percubic lattices vanishes only in the hmit d ~ oo.

Thus, the organization of this paper is as follows: In
Sec. II, we discuss the theoretical results. In particular,
we present the extension of the Flory argument for the
case in which the monomer has a disklike anisotropy in its
shape. Also, a way of viewing the stiff chains as a train
of mutually repelling blobs is suggested. Section III is
the major part of this paper: Results and analyses of our
Monte Carlo simulation for the three-dimensional PSAW
model are presented including the end-to-end distances,
exponent v and p, lattice dependence, and scaling func-
tion F(Np) [Eq.(3)]. We also present an approximate
analytic calculation of the attrition rate of a certain self-
avoiding flight model (which is asymptotically equivalent
to the PSAW model with a simple rescaling of the con-
tour length). This calculation allows us to determine a
lower limit for the exponent y in Eq. (5). In Sec. IV, the
experimental data from Murakami, Norisuye, and Fujita
[19] are reanalyzed and some possible interpretations for
the observed Gaussian —to—excluded-volume crossover are
suggested. Section V is devoted to summary and discus-
sion.

The interaction part is proportional to Odijk and
Houwaart's excluded volume [22] (per persistence
length), which can be generalized in d dimensions as

G0 oc 1 D" = —D""P p2

Thus in the Flory approximation,

(Np) 0 N2 2Qd —2

and

(R/1„)2 R2p
(12)

It should be noted that this relation is valid, if at all,
asymptotically for large N for which it is required that
F;„t,(N) » 1. This allows us to define N' such that
F;„t(¹) 1 and to obtain, from Eqs. (11) and (13),

(bp)-2(d-2)/(4 —d) (14)

Thus the Flory expression (13) is intended only for N »
N'.

The form (14) suggests a more general form beyond
the Flory approximation:

for some yet unknown exponent z. Treating the N* as
the crossover size discussed in Eqs. (6) and (7), we then
identify

Substituting the above expressions into Eq. (9) and min-
imizing E with respect to R, we get the end-to-end dis-
tance

N3/(d+2) —i/(d+2)b(d 2)/(d+-2)

II. THEORETICAL RESULTS z=p —1. (16)

We consider a linear polymer model whose monomers
have a disklike anisotropy and attach face to face so that
a segment forms a straight cylindrical rod. I et a be the
thickness and D the diameter of a monomer. Then the
ratic b = D/a can be used as a measure of the monomer
anisotropy and the average length of the segment (persis-
tent length) I&

= a/p may effectively represent the stiff-
ness of the polymer in terms of the gauche probability
as in the PSAW model. This is of course a very sim-

plified picture compared with real polymers. However,
we assume that the persistent length is much larger than
the diameter of the monomer so that the details around
joints between the two adjacent straight segments may
be considered unimportant.

We apply the Flory argument for this case to derive a
scaling expression of the end-to-end distance as a func-
tion of the number of monomers N and above parameters
p, b, and a. First, we write down the free energy of a sin-
gle polymer as a sum of interaction and elastic (entropic)
parts:

R2 N2v —nbP 2
) (17)

where n is the same as in Eq. (8) and P = (y —l)(2v —1).
It should be noted that Eq. (13) is recovered from this
expression if the Flory values of v and y are used in it.

As it turns out, Eqs. (17) and (8) are nothing more
than a result of a simple rescaling of variables in each
other. Suppose that I& is suKciently larger than D
so that the polymer with anisotropic monomers can be
viewed as that with isotropic monomers of size D with
the number of monomers reduced by a factor of b, that
is, b anisotropic monomers stick together to make one
isotropic block of size D. Then the variables (p, N, a, b)
in the original problem with anisotropic monomers can be
rescaled to obtain those in a new problem with isotropic
blocks (p', N', a', 1) as follows:

Again a simple scaling argument that was used in deriv-
ing Eq. (8), with Nps replaced by N/¹, leads to another
scaling relation incorporating the monomer anisotropy:
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a~a'=D=ba,
6 —+ 1.

(18)

Using this rescaling and knowing that the end-to-end dis-
tance is unchanged under the rescaling, we can deduce
Eq. (16) from Eq. (7) and Eq. (17) from Eq. (8) for in-
stance.

We now develop a way of viewing the stiff chain prob-
lem in a blob picture. Let us consider a train of mutually
repelling blobs which perform an ordinary self-avoiding
walk. Moreover, suppose the blobs themselves are made
up of a stiff self-avoiding chain in the Gaussian regime.
We suppose that each blob contains N* monomers so
that the number of persistence length segments within a
blob is

suggests are sufFicient to yield the flexible, excluded-
volume behavior.

Even though the blob picture produces consistent scal-
ing forms for the end-to-end distance [Eqs. (8) and (17)]
in the excluded-volume limit (5), it is undeniable that
the blob is not a physically well-defined object having in
particular a clear-cut geometrical boundary. Thus this
idea is only intended to illustrate the behavior of the
st, iA' chain at different length scales and not meant to be
a faithful physical picture which could be experimentally
verified. If it were to have some direct significance at
all, it would at best be approximate in the sense that
these blobs must significantly overlap, thus depressing
the prefactor in Eq. (20).

III. MONTE CARLO SIMULATION

(19)

for small p. We always assume that there are a large
number of persistent length segments in the whole chain
(i.e. , Np » 1), but the number of blobs may not be large.

If the number of blobs is large (i.e. , N/¹ » 1), then
the size of the chain can be written as

(20)

where ¹~is the number of blobs in a, polymer with ¹

monomers and ( is the average size of a blob. Given that

and using the non-excluded-volume random-walk relation

p-(@+i)/2a (22)

where Eq. (19) is used for g, , one immediately sees that
Eq. (20) reproduces Eq. (8). Moreover, it can be shown
that Eq. (20) leads to Eq. (17) applying the rescaling rule

(19) to NB and ( for the case of the anisotropic monomer.
If, on the other hand, the number of blobs is small (i.e. ,X/¹ 1 or less), then the size of the chain is

We generate PSAW's on the simple-cubic (sc), the
body-centered-cubic (bcc), the face-centered-cubic (fcc),
and the diamond lattice for various gauche probabilities
(p). A major difFiculty in realizing a large number of
long self-avoiding walks, as far as the computing time is
concerned, is that the loop checking should be performed
each time a new step is generated and if the intersection
occurs the whole walk stops growing, so that only a small
fraction of walkers starting at the origin will survive the
self-avoiding constraint to make a long walk. This situa-
tion has been greatly improved by use of the enrichment
technique [23] for the attrition rate and the hash-coding
method for the loop-checking routine. (See Appendix B.)

For the case of PSAW, however, one encounters an-
other di%culty: Even if the attrition is greatly reduced
as p becomes smaller, ¹ should be very large to get data
for a finite value of Np, which renders the loop-checking
for Np » 1 highly time-consuming even with the enrich-
ment technique and the hash-coding method being used.
To further improve this situation for very stiff chains, we
consider a random-flight model whose segment size dis-
tribution is the same as that of the persistence length of
PSAW:

P(1) = p(1 —p)' ', t = 1, 2, 3, . . . , (24)

which is just Eq. (3). Thus this blob picture is consistent
with the whole range of the crossover.

Now, the number of monomers per blob for the PSAW
model, ¹ p &, appears to be smaller than the Flory
approximation prediction since the lattice calculations
show (see later) that the actual value of y is less than
the Flory prediction of 3. This kind of discrepancy may
be due to the nature of the segment size distribution of
the PSAW model. Unlike in the Flory argument which
assumes uniform segment size, the actual distribution
is exponential, generating a large majority of segments
shorter than the mean. Thus it is not unreasonable that
a smaller number of monomers than the Flory argument

Thus in this flight model, a straight, segment consisting
of I individual steps can be generated by a single random
number according to the above distribution always mak-
ing a turn in a randomly chosen direction different from
that of the previous segment. (Backtracking is precluded
in any case. ) Removing all self-intersecting flights from
this ensemble will produce the ensemble for the corre-
sponding self-avoiding-Right model. The loop-checking
is also done by segment as in Ref. [24] partially using the
hash-coding method.

We match the uniform random number r between 0
and 1 to the segment size l as follows: Since r is continu-
ous down to the order of the inverse of the largest integer
that a computer in use can create, we consider a prob-
ability density function P'(I') defined for a real number
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I' & 0.5 onto which r is to be mapped. For each I', its
nearest integer is chosen as the segment size. Therefore
it is required that

~ ~ ~

1+0.5
P'(I') dl' = P(l), I = 1, 2, 3, . . .

l —0.5
(25)

where P(l) is as defined in Eq. (24) and thus ensures the
normalization of P'(I'). The relation between r and I' is
found by

P'(I') dl' = dr (26)

P'(I') =
i

ln
i (1 — )'1-p)

which in turn gives I' in terms of r,

1 ln(1 —r )l' = —+
2 ln(1 —p)

(27)

(28)

The data for PSAW are obtained from this flight simula-
tion by keeping track of the contour length of the flight
every time a new segment is generated. Details of the
parameters in the simulation and the computing times
are given in Appendix B. The data by segments for this
type of flight might also be of interest by itself and more
importantly in relation to the behavior of the PSAW as a
function of mean number of persistent segments, i.e. , Np.
We will discuss more on this point later in this section.

with an appropriate boundary condition. One can easily
determine P'(I') starting from an ansatz having the same
form of Eq. (24):

One of the main results of our simulation pertains
to the end-to-end distance and the related exponent v.
Figure 2 shows the result for the end-to-end distance
of the PSAW on the simple cubic lattice against the
mean number of persistent segments in the log-log plot.
The solid line is the exact PRW result in the limit (2),
which is Eq. (4). The gauche probabilities used are
p = 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01 where p = 0.8 cor-
responds to the ordinary SAW. Data for p ( 0.1 were
obtained mainly from the flight simulation. Maximum
Np for our data is 104 so that the maximum step is one
million for p = 0.01 and we generated more than 80000
realizations of it. In this figure, one can clearly see the
crossovers between three distinct regimes as the chain
gets longer and stiAer but the final excluded-volume
regime sets in for extremely long chains as the local
slope increases very slowly toward the full SAW value
(v = 0.59).

To study this feature in terms of the exponent itself,
it is convenient to examine the eA'ective exponent v~ de-
Aned as follows:

N(R~) 1

2 j~ (R~~)dN
(29)

This definition reflects the main exponent and the
correction-to-scaling in its asymptotic form,

vtv ——v+ Cr, N ' + CiN + (30)

if there is a power-law correction with an exponent L1 (
1.

Figure 3 shows the effective exponent vtv defined by
Eq. (29) for p = 0.8, 0.4, 0.2, 0.1 against the inverse of
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FIG. 2. Mean-square end-to-end distance of the PSAW on
the simple cubic lattice against the mean number of segment
Ny is shown for p = 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01 in the
order of higher slope beyond the Gaussian regime (Np » 1).
p = 0.8 corresponds to the normal SAW for which v~ 0.59.
Solid line is the exact result of the PRW [Eq. (4)] in the limit
(2). The excluded-volume eR'ect sets in, if very slowly, as the
chain becomes longer.
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FIG. 3. The eR'ective Flory exponent v~ defined by
Eq. (29) of the PSAW on the simple cubic lattice is plot-
ted against the inverse log of Np. Dashed lines are drawn for
a visual aid showing the general tendency of the asymptotic
behavior of v~ which approaches the ordinary SAW value of
v ( 0.59) as N ~ oo for fixed p.
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2 2(l —p) . N(Ro)p/N = 2 —p .1-(1-p)Np

for sc, bcc, and fcc lattices but we used Schroll, Walker,
and Thorpe's result [Eq. (20) of Ref. [10]] for (Ro) on
the diamond lattice. Note that (R ) deviates from (R2o)
in a similar manner for all lattices. Particularly, the am-
plitudes of the scaling functions for diR'erent lattices ap-
pear to be diA'erent only by some metric factors from
one another for N p 10. Thus it seems that even
though strong universality does not hold over the rodlike
to Gaussian regimes it might hold over the Gaussian-
to—excluded-volume regimes. If this were the case, the
scaling functions of PSAW in the limit (5) would be of
the same form (apart from some metric factors).

Another interesting point in Fig. 4 is that the results
for sc and fcc lattices are particularly similar to each

1. 10

p=0 . 01

I
]

I I ! 1.3 I I

p=0. 1

1.08—

1.06—
CE

1, 0'l—

1.02—

D sc
0 fcc

Q bcc
x dia. mond 1.2—

0 sc
D fcc

O bcc
x diamond

X

&0 x
o x

x
e

0 X
8 X

X

1 00"
IO0

e x

X
XX

x xXX

IO'

Np

10

1.0
10 10

Np

FIG. 4. The ratio of the mean-square end-to-end distance
of the PSAW to that of the PRW on the cubic and the di-
amond lattices against Np for p = O. l and 0.01. The latter
case shows the rod-to-flexible crossover and the former the
Gaussian —to—excluded-volume crossover.

the logarithm of Np. The integration in the definition of
v~ is done using Simpson's rule and we retain the result
of the computation for chains of up to a reasonable length
so that the wildly fluctuating behavior for the very long
chains (which is essentially statistical error) should not
obscure the general feature. One can readily see this
general feature that vs!! tends to approach the full SAW
value (v 0.59) as suggested by the dashed lines in the
figure even if their intermediate values are smaller for all
p ( 0.8.

For lattices other than simple cubic, we present the
end-to-end distance data for p = 0.1 and 0.01 to check
for the universality. The ratio of the mean-square end-
to-end distance of the PSAW ((R2)) to that of the PRW
((Ro)) is shown in Fig. 4 against the logarithm of Np,
where

other. Whether this is a mere accident or something
that can be explained by more direct geometrical consid-
erations is not clear at present.

We now examine the excluded-volume eA'ect more
quantitatively using numerical methods. As pointed out
in the Introduction, the excluded-volume eAect in the
limit (2) is totally suppressed as far as the exponent v is
concerned even if (R )p/N is always larger than Fo(Np)
[Eq. (4)] and quickly approaches a constant greater than
2 as Np —+ oo. From mere observation that the ampli-
tude of (R )p/N [F(Np) in Eq. (3)] saturates toward a
constant in a way similar to the PRW and requiring one
additional condition that F(Np) —+ 1 as Np ~ 0, we

suggest an approximate form of F(Np) as follows:

F(*)= -Fo(~~),

where Fo(z) is the scaling function for the PRW [Eq. (4)].
This corresponds to replacing the left-hand side of Eq. (3)
with the Gaussian result with some effective gauche prob-
ability p' = zp ( p, which is essentially a mean-field-like
approximation where the swelling of a chain due to the
excluded-volume eA'ect is expressed in terms of an in-
crease of stifFness of the corresponding Gaussian chain
imposing correct limiting behaviors.

We attempt to fit for ~ using our data with p = 10
and Np up to 100. The result is K„0.948, Ki-„
0.94'2, Kb«0. 975, zd;a 0.989. (The right variable
of the scaling function for the diamond lattice is Np/2.
See Schroll, Walker, and Thorpe [10].) With the self-
avoiding /Iighf algorithm on the simple-cubic lattice, we
could further probe into the limit (2) like p = 10 4, 10
with Np up to 10 but only obtain very similar values.

Finding out the scaling function in the limit (5) is an
even more dificult task. Exponent y should be deter-
mined. first and then the functional form of the end-to-
end distance in terms of Np&. In the previous work, an
attempt to numerically determine y was made by exam-
ining the best data collapse between absolute values of
(R2)p/N for different p's in the region Np )& 1, which
gave rise to y 2.3. In this work, the same method using
a much larger set, of data appears to favor a larger value
of y. Figure 5(a) clearly indicates a reasonable degree
of data collapse for Np . & 1 based on currently avail-
able data. Note that the larger p is, the steeper is the
slope of the curve over the Gaussian —to—excluded-volume
crossover which suggests an important requirement for
the data collapse that two curves with diAerent values of
p should not cross. The magnified view of these curves in
the inset of Fig. 5(a) shows that this requirement is well
achieved except for the p = 0.01 curve. However, consid-

ering the large fluctuation of p = 0.01 data for Np 1000
(indicated by error bars), we believe that this single ex-
ception cannot totally invalidate our estimation for y.
This value y 2.5 is fairly close to the estimate from the
experiment of Murakami, Norisuye, and Fujita [19] using
Eq. (15) with the multiplicative factor of unity discussed
in the following section.

However, we note that all our data were obtained for
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finite values of p but the scaling function that is to be
sought is meant for the limit (5). Thus we try (R )/(Ro)
as another scaling function, which systematically com-
pensates the finiteness of p as in Eq. (31) still having the
limiting behavior identical to that of (R )p/2N in the
limit (5). This indeed produces a better data collapse

as shown in Fig. 5(b), where the same logarithmic scale
as in 5(a) is used for the ordinate. Moreover, another
estimation for y follows from this new analysis, namely,
y 2.9, which is larger than the estimation based on
data collapsing as discussed in the preceding paragraph
(y 2.5). It is unfortunate that our data so far ob-
tained by consuming an enormous amount of computing
time are still insu%cient to numerically determine which
estimation for y is better and it might be that another
method like renormalization calculation is more desir-
able, though, in any case, y seems to lie between 2 and
3.
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Another important quantity that has been of great in-
terest in the study of stiA' chains is the number of configu-
rations for walks having a given number of steps by which
the exponent y and the efI'ective coordination number p
may be defined [Eq. (33)]. Each configuration should
be appropriately weighted to account for the number of
gauche (or trans) steps in it, . For the PEW, one can easily
verify that if the trans step is weighted by unity (hence
each gauche step by p/(1 —p)(z —2), where z is the coor-
dination number), then the number of N-step walks will
be like e~& in the limit (2) implying that y = 0 and p = e
both being independent of lattice type. This leads us to
an ansatz for the number of PSAW in the following form:

c „=c(N&) -(N&)
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Although this definition appears to adopt the limit (2),
we will also use it for the excluded-volume regime [N )¹(=p v)] to examine the asymptotic behavior of y
and p, within a numerical method. For this purpose, we

further define the global survivability as

AJ
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S(Np)—: —(N p) 'P~"cpsAw
PRW

(34)

where p is the ratio of the efI'ective coordination number
of PSAW to that of PRW, and the local survivability as

0.1
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0..0 I I I III &is&l
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S(Np) ( Np
(Np) =

s(Np H)
=

liN -H—(35)
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where H & 1 is some interval of variable Np. Now we
can define the Np-dependent efFective y and p similarly
to the way employed by Lam for the SAW on a diluted
lattice [25],

FIG. 5. The result of the PSALM on the simple cubic
lattice plotted against Np". Exponent y is estimated nu-

merically and takes on different values depending on how

(R ) is scaled. (a) Best data collapse over the Gaussian —to-
excluded-volume crossover is achieved with y 2.5. Max-
imum values of Np" are approximately 10, 17, 48, 63 for

p = 0.01, 0.02, 0.05, 0.1, respectively. Error bars in the in-
set refers to the p = 0.01 data. (b) y 2.9 gives best scaling.
Maximum values of Np" are approximately 1.6, 3.6, 13.4, 25.2
for p = 0.01, 0.02, 0.05, 0.1, respectively.

IH(*, *o) —~QII(~) + *oQa(*o)
H [ln(z —H) —ln(zo —H)]

I (-, .)-[Q(-)-Q(*.)]g (*,-.)
in@ H(~ —~.)

where

(37)
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QH (z)—:ln o-II (z), (38)

IrI(z, zp) = QIr(z') dz', (39)
~O

z ln z —(z —H) ln(z —H) —zp ln zp + (zp —H) ln(zp —H)q~(z, zp) —=

ln z —In(z —H) —ln zp + ln(zp —H) (4o)

A crucial relation between the above definitions and the
Monte Carlo data can be established by )

M —i
(43)

oH(Np) = lim
A(N, p)

~(r,p)-~ A(N —H/p, p)
' (41)

CM, SAF

+M,RF
(42)

where C~ sAF, C~nF are the roeighted number of M
segment self-avoiding and random flights, respectively.
Let us further define the local survivability and attrition
rate as the following:

where A(N, p) is the number of successful realizations
of N-step PSAW's with gauche probability p and thus
A(1, p) equals the total number of starts at the origin.
The role of interval H = A(Np) becomes clear when the
simulation data are obtained for every AN = H/p steps.
Simpson's rule is again used for the numerical integration
Eq. (39) and the results for y~z and p~& against the
inverse of the logarithm of Np are presented in Figs. 6 and
7, respectively. As we noticed for the exponent v, there is
a similar indication that p~& asymptotically approaches
the full SAW value ( s). However, p, seems to strongly
depend on p even in the asymptotic limit as is the case
for any nonuniversal quantities.

We now take up the flight model by itself and calculate
the survivability defined by

&M =~ &M ~ (44)

S~ and o'~ can be equivalently defined in the language
of Monte Carlo simulation by A~/Ai and A~/A~ i in
the limit A~ —+ oo, respectively, where AM is the number
of realizations of M-segment self-avoiding flights.

It has been noted that the statistics of the PSAW
model as a function of the number of steps is equivalent
to that of this flight model as a function of its contour
length. It should be further noted that the number of per-
sistent segments in an N-step PRW is sharply peaked at
Np for sufficiently large N and the contour length distri-
bution of M-segment random flight is sharply peaked at
its average, M/p, which is proved in Appendix A. There-
fore the statistics of the flight model with the number
of the segments M = Np should become very close to
that of the PRW (PSAW) with the number of steps N as
M = Np becomes large. This aspect is manifestly shown
in Fig. 8, where the probability density functions for the
PSAW (solid line) and the self-avoiding-flight model (dot-
ted line) with p = 0.1, 0.01 and M(= N p) = 5, 50 are pre-
sented. These are obtained by Monte Carlo sampling of
more than two million realizations. The complex struc-
ture of PSAW density functions for Np = 5 is not due
to the statistical fluctuation but to its inherent property
which does not seem to be widely recognized in the litera-
ture [26]. For Np = 50, however, there is little difference

1.20

p = 0.8

1, 00

z- 1.10— p=04

0.98—

0.96—
p= 0.2

p=0 1

p = 0.4

1.05—
p = 0.1

0.94—

0.92—
p= 0.8

1.00
0. 00 0 . 25 0 . 50

( log&0 Np)

0.75 1.00
0 . 90

0.00 0 . 25 0.50
( log10 Np)

0 . 75 1.00

FIG. 6. The efFective exponent p~~ defined by Eq. (38)
for the PSALM on the simple-cubic lattice. Dashed lines are
drawn for a visual aid to show the asymptotic limit of p~„as
N ~ oo for any fixed p. In d = 3, p 1.17 for the ordinary
SAW.

FIG. 7. The ratio of the effective coordination number
of the PSAW to that of the PRW for the simple-cubic lattice
defined by Eq. (37). It approaches unity as p becomes smaller
without showing any universal asymptotic behavior.
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Ps —
~

—
~

Prob(ls ) li+ 1, l4 —l2, ls & 13 li) =
~

—
~

(,) I'1) ' f'11 '
p(1 —p)

&4r
' '

&4r (2- p)'

It should be noted that 'P4 g P& since in such a case as Fig. 9(b), diagram ii the existence of the first segment
(dashed line) matters in forming a four-segment loop in contrast to the case like Fig. 9(b), diagram iii. Thus

Prob(l4 & l2 —1, r, & ls) + —V 4
(s) & I l ' 3 (4) (I) ' 4 —p

~4r — ' — 4 ' E4r (2-p'

This procedure becomes rapidly complicated as the
number of segments increases: To calculate Ps, for ex-(s)

ample, we need to compute probabilities for 15 diagrams
like diagrams i and ii of Fig. 9(c), which are distinct as far
as the relative direction and size relations of the segments
are concerned. Here we simply present the final result of
'P, 's [again, Ps ) g P5 and 'P4 g 'P~ due to the
presence of the erst one or two segments; see diagrams
iii and iv of Fig. 9(c)]:

(s) f1 ((I —p) (16 —15p+ 5p')
& (2 —p)'(3 —3p + p') r

'+pl,

«) t' I &
'

p(1 —p)(10 - 11p+ 4p')
(2 —p)'(3 —3p + p') '

15+(s) (1) 1 f (1 —p)s(5 —4p+ ps)

&4r (2-p)' I, (2 —p)(3-3p+ p')

One can easily observe some general features from
these calculations for P( ) which serve to justify the ap-

2

proximation (46) on the simple cubic lattice: First of
all, if the segments are not all in the same plane [e.g. ,
Fig. 9(c), diagram ii], the contribution of that diagram
to the crossing probability 'PM has the leading term
proportional to p. This is because a combination of a
group of segment sizes must be exactly the same as an-
other combination for the last segment to hit the first
segment. Moreover, this is also true for the case in which
the intersection occurs with the first and last segments in
the same coordinate direction for the same reason [e.g. ,

Fig. 9(b), diagram i]. Therefore all constant terms in

PM come from diagrams of planar polygons with an
even number of sides made by the intersection between
the first and last segments. This implies that there is no
constant term in PM(

) if M is an odd integer.
Another point is that the contribution of each dia-

gram to the crossing probability consists of two factors,
one from the choice of segment directions and the other
from the segment size relations, the former giving rise to
(4) for the sc lattice.

lt should be that the above points also apply for
'P( ),j ( M and that 'P( ) 'P( ) as p ~ 0. Therefore,
as far as the constant terms are concerned, each term in
the summation of Eq. (45) is roughly an order of mag-
nitude less than its previous term. Taking terms up to
linear in p, we arrive at

I

s 5
1~

I
I
I

II

I

I ~ ~ ~

III

=1 p -1 7
7f 4 ~ + ) 7C5 ~ + p)64 64 64 512

103 35
2O48

and using Eqs. (43), (44), and (46),

0; Ss(l —xs) for M ) 5, (47)

(c)

6 2~f
I1

I

W W

I
I
I

I
I
I

iv

~ 4 h

i=1

where Ss ——(1—n4)(1 —n'5). Substituting actual numbers
into Eq. (47) for small p, we obtain the final form of
approximation:

e o'~( ) for M)5.t'631 ' (6041)
q64r (6144r

FIG. 9. Some examples (incomplete list) of distinct con-
figurations of the Bight model with 4, 5, and 6 segments on
the simple cubic lattice which give nonzero contributions to
'P in Eq. (45). All segments in each diagram are on the
same plane except for diagram ii in (c). Arabic numbers are
labels for individual segments in the Bight.

(48)

In fact, the right-hand side of the above equation should
be an approximate upper bound of SM since the attrition
x~ is underestimated by Eq. (46). We present our Monte
Carlo result for SM with p = 10 i, 10 2, 10 ~, 10 s and
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TABLE I. The global survivabilities of the flight model [SM as in Eq. (42)] and PSAW [S(Np)
as in Eq. (34)] from our Monte Carlo data (simple cubic lattice). Numbers in parentheses are the
predictions of an approximate analytic calculation for the flight model [Eqs. (47) and (48)] which
serve as an approximate upper bound when p is small.

10
10
10
10

M =%~=10
Flight model

0.872 (0.880)
0.886 (0.889)
0.888 (0.890)
0.888 (0.890)

PSAW

0.854
0.872
0.873
0.874

10
10
10 '
10

M =%~=100
Flight model

O. 1O4 (O. 164)
0.173 (0.191)
0.183 (0.194)
0.183 (0.194)

PSAW

0.105
0.173
0.183
0.183

M(= Np) = 10, 100 in Table I.The prediction [Eq. (48)]
is very accurate for the Right model for smaller I and
reasonably good for the PSAW model for small p and
Np. The attrition of the PSAW in the Gaussian regime
has been numerically analyzed by Lee and Nakanishi
[12]. Their result was that the survival probability of
the PSAW in the Gaussian regime is proportional to
e ~ J' with A 0.0186 for the sc lattice. We note
that the right-hand side of Eq. (48) can be expressed
as e ~'~J' "'~J' with M replaced by Np and their A

corresponds to Aq = In(6144/6041) 0.0169.
Finally, we point out that for the approximations (46)

and (48) to be valid, M should be small enough such
that Mp && 1. If M itself is much larger than unity
but p ~ 0, then this should correspond to the Gaussian
regime of the PSAW with Np « 1. Therefore, to go
beyond the Gaussian regime, X should be greater than
p ~ at least, which sets the lower limit of exponent y to
be 2.

and the molar mass of the monomer Mo —127, we cal-
culate the monomer length a = Mo/Mi = 0.178+ 0.003
nm and the gauche probability p = a/q = 0.0042. The
diameter of the cylinder D, however, seems to assume
two diA'erent values, namely, 1.6 and 2.5 nm, depending
on what measurement it is estimated from. We will use
these two values as the range of estimate for D and obtain
the monomer anisotropy of b = D/a = 9.0—14. Hence the
block level gauche probability p' = bp = 0.038—0.059. Al-
though the monomer anisotropy is not exactly disklike
(the structure of poly-alkyl-isocyanates being in general
helical), we treat monomers as effectively disks in this
discussion.

In I"ig. 10, those converted data for the radius of gyra-
tion of PEIIC (circles) with an appropriate overall factor
are plotted against Np together with two other sets of
PSAW simulation data [one for p = 0.05 (dots) and the
other for p = 0.77 (crosses)] on the simple cubic lattice.

IV. ANALYSIS OF PREVIOUS EXPERIMENT
1O'
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Some years ago, Murakami, Norisuye, Fujita [19] re-
ported the result of light scattering and other mea-
surements performed on an extremely stiR' linear poly-
mer, poly-hexyl-isocyanate (PHIC) with narrow molecu-
lar weight dispersion in hexane solvent at room tempera-
ture. In particular, they reported the z-averaged radius of
gyration and analyzed its molecular weight dependence
in terms of the Benoit-Doty theory [2] for the Kratky-
Porod wormlike chain [1].

Although they recognized the onset of the excluded-
volume eA'ect at large molecular weight, no quantitative
analysis of this aspect was given, presumably because
there were no theoretical results to compare their data
with. It is the aim of this section to attempt some quan-
titative analyses on their result in the context of the dis-
cussions presented in previous sections.

We first convert the original data for the radius of
gyration given in terms of the experimental parameters
(see Table I and Fig. 7 in Ref. [19]) into those in terms
of the dimensionless, stiÃ chain parameters (X,p) with
the lengths being in units of the monomer size (a) in
the direction tangent to the contour. That is, from
the result that the molar mass per unit contour length
ML, ——715+15nm ~, the persistent length q = 42+1 nm,

x x"
XOP

CL

10

1O-'
1OO

I I I I I I Ill

1O'

I I I I I IIII
102 10

FIG. 10. The result of Murakami, Norisuye, and Fujita
[19] (circles) on the radius of gyration (S) of poly-hexyle-
isocyanate polymers is plotted in terms of PSAW parameters
together with PSAW results on the simple cubic lattice with

p = 0.05 (dots) and p = 0.77 (crosses). Solid line is the PRW
result [Eq. (49)]. a in the ordinate label is the monomer size
(contour length per monomer).
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The solid line is the Gaussian fit for the radius of gyra-
tion:

ln N*p ln By= 1 — +
ln bp ln bp

' (50)

(49)

Note that both the ordinate and the abscissa in Fig. 10
are invariant under the rescaling (18) for a fixed value
of (S ). Therefore, even though the PHIC data points
are plotted from original parameters, they would make
the same plot with the isotropic block level parameters.
To directly compare the experimental data of stiA' chains
with monomer anisotropy with the PSAW model, an ap-
propriate rescaling like (18) is needed to eliminate the
involvement of monomer anisotropy which is absent in
the PSAW model. We will view the PHIC chain as a
train of this isotropic blocks which are still stiff at the
block level whenever they are compared with the PSAW
model.

The crossover behavior of the experimental data from
the Gaussian —to—excluded-volume regime can be com-
pared with the predictions of the PSAW model in the
the following ways.

First of all, the Gaussian regime itself seems to be
rather close to the true Gaussian result (PRW) without
the excluded-volume eA'ect. As noted in previous sec-
tions, the end-to-end distance of the PSAW in the Gaus-
sian regime is definitely larger than that of the PRW.
This is the case for the radius of gyration as shown in
Fig. 10 by the PSAW simulation result for p = 0.05.
This value of p is chosen simply because it is about the
mean of estimated block level gauche probabilities.

Secondly, we note that the behavior of the radius of
gyration of PHIC starts to deviate from the Gaussian
regime at around Np 80 manifestly showing the onset
of the excluded-volume effect thus allowing us to estimate
from Eqs. (15) and (16)

conformation of a real stiff chain undergoes some type of
a phase transition as soon as the excluded-volume effect
is felt, .

One possibility of the chain conformation upon the
crossover may be that a train of mutually repulsive blobs
acts like a SAW, inside of which, however, it is rather like
that of the PRW (because of the first point noted above).
Since the crossover appears very sharp (the third point
above), the geometrical boundary of a blob should be
distinct with little overlap with other blobs. This might
be realized by some sort of repulsive molecular field. It
should be noted that this particular blob conformation
is slightly different from the blob picture suggested in
Sec. II in that the latter merely comes about from an ar-
bitrary interpretation of the variable of the scaling func-
tion and if the blobs did exist in the PSAW, they must
be overlapping significantly, with the Gaussian regime of
the PSAW, not with the PRW, inside each blob. Also,
the experimental points with the SAW exponent corre-
spond to regions of a few blobs, whereas a SAW of only
a few steps does not show the asymptotic exponent.

Another possibility related to the sudden change of the
Flory exponent may be that, having nothing to do with
the blob picture, the chain breaks up into nearly isotropic
units (essentially our "blocks" ) which are no longer stiflly
joined, i.e. , a sudden shattering occurs. Thus, lost per-
sistence is more than compensated for by the excluded-
volume interaction of this new self-avoiding walk of the
blocks. In Fig. 10, the part of the PHIC data points
which falls in the excluded-volume regime seem to be as
if they were a part of PSAW data with p = p" = 0.77
(for the ordinary SAW, p = 0.8.). This may suggest that
at X =

¹ beyond the newly formed isotropic blocks
perform a PSAW with p = p".

If any of these possibilities were true for a real poly-
mer, there may be some kind of phase transition as the
molecular weight increases. We are unaware of any other
experimental work that probes the conformation of the
real stiff polymer in more detail for the excluded-volume
eA'ect. A more quantitative theoretical study would re-
quire a new model incorporating an appropriate phase
transition at the onset of the excluded-volume effect.

where B is the proportionality constant in Eq. (15). The
range of estimation for y is dependent on those of h (9.0—
14) and B with ¹p= 80, p = 0.004'2: If B = 1 is used,
Eq. (50) will give y = 2.3—2.5. If B differs from unity
by a factor of 2 (smaller or larger), then y = 2.1—2.8.
As shown in the preceding section, the lattice results for
this exponent determined by the behavior of the scaling
function are essentially covered by this experimental es-
timation which is done from the finding of¹.However,
experimentally this crossover occurs abruptly, which is
in great contrast to the PSAW, and yet the experiment
gives the value for exponent y fairly close to that of the
PSAW which was purely numerically estimated.

Lastly but not least, the slope in the log-log plot of the
data points in the excluded-volume regime indicates that
the Flory exponent suddenly takes on a value very close

to the full SAW value of v( 0.59) immediately after the
onset of the crossover. This suggests a possibility that the

V. SUMMARY AND DISCUSSION

The persistent self-avoiding walk model has been used
to study the conformation of a stiff linear polymer in
a good solvent. The general behavior of the size R of
such very stiff chains in three dimensions as a function
of the degree of polymerization N is characterized by
rhree regimes, namely, rodlike (R N), Gaussian (R
N ~), and excluded-volume (R cV ~, v~ 0.59). Two
crossovers between these regimes, termed rod-to-flexible
and Gaussian —to—excluded-volume, can be expressed by
some scaling functions in terms of scaling variables Np
and Np&(y ) 1), respectively, where N and p i tend to
infinity while an appropriate scaling variable is being kept
finite. (p is the gauche step probability, the usual SAW
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corresponding to p = 0.8 on the simple cubic lattice. )
The crossovers are expected to occur when the chain

length becomes such that the corresponding scaling vari-
ables are of the order of unity (N+p 1,¹pi' 1). A
Flory argument predicts ¹ p b, where b is the
ratio of the diameter to the thickness of the monomer,
which implies that y = 3 but the monomer anisotropy
causes the excluded-volume eA'ect to set in for shorter
chains. Beyond the Flory theory, a scaling argument
leads us to an expression for the excluded-volume regime

N ~p ~b ~forN&&N' p "b, wherez=y —1,
n = 1 —(2v —1)y, P = (y —1)(2v —1). A view of very
long stiff chains as a train of mutually repelling blobs
inside which the chain is in the Gaussian regime repro-
duces the results of scaling and Flory arguments if Npu
is interpreted as the number of blobs forming the chain.

An extensive Monte Carlo simulation of the PSAW
shows that even though the Gaussian —to—excluded-
volume crossover occurs extremely slowly for stiA chains,
there exists a clear indication that the effective exponents
like v~ and y~ approach the full SAW values asymptot-
ically. Results on diA'erent types of lattices appear to
support the strong universality for the second crossover
scaling function up to a metric factor. Numerical estima-
tion for exponent y obtained from the best data collaps-
ing for the scaling variable Np& suggests diA'erent values
of y 2.5 or 2.9 depending on the choice of the scaling
function. The estimation of y from experimental data of
a real polymer (poly-hexyl-isocyanate) is done by directly
setting ¹p&= 1, which gives rise to y 2.3—2.5 or 2.1—
2.8 as the proportionality constant in N* p &6

is chosen to be 1—2+ . But in the real polymer case,
the excluded-volume regime (v 0.59) immediately fol-
lows rather sharply defined 1V' in great contrast to the
PSAW result, which seems to indicate a certain type of
structural phase transition.

A flight model on a discrete lattice which has the seg-
ment size distribution identical to the persistence length
distribution of the PRW (PSAW) and makes a turn at
each jump is shown to have asymptotically the same
statistics as that of the PRW (PSAW) in the rnany-
segment limit if the latter is expressed in terms of the
mean number of persisent segments Np. An approxi-
mate analytic expression of survival probability of this
self-avoiding-flight model is obtained for the p ~ 0 limit
and is shown to be a good approximation for that of
the PSAW in the Gaussian regime. Moreover, this ap-
proximation allows us to determine the lower limit of
exponent y to be 2. We also note that the spatial distri-
bution of the end-to-end distance of the PSAW having
not too many segments is very complex showing multiple
sharp peaks. This feature could be explained in terms of
the competition between the entropy and stiffness effects.
(See Appendix A.)

Finally, we believe that more analytic methods like
renormalization-group calculations may be necessary to
determine exponent y and new models that can incor-
porate, for instance, the energetics between side groups
of the stiff chain can be instrumental to understand the
sudden crossover which seems to exist in real polymers.
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APPENDIX A: PROBABILITY DISTRIBUTIONS
OF WALK AND FLIGHT MODELS

The probability that an N-step PRW has t turns (or
gauche steps) is

P~(t)= 1 )
™' t, t=o, . . . , N —1 (A 1)

where p is the gauche probability and q = 1 —p. Ex-
panding ln P~(t) in Taylor series around its maximum at
t = t, we get, with t Np and A QNpq,

(A2)

if Kpq « 1. This implies that the distribution for the
number of turns (hence the segments) in the PRW is

sharply peaked at t = Np (the average number of persis-
tent segments) with relative width 4jt 1/QNp « 1 in
the many-segments limit.

On the other hand, the probability that the contour
length of an M-segment flight (on a discrete lattice) is n
1s

PM(n) = ) . ) P(I;) 6„L
lM —1 ~=1

(A3)

where LM = Q, i 1; and P(t, ) is defined in Eq. (24).
Considering the number of possible ways in which M —1
turns can occur along the contour of length n, Eq. (A3)
can be written as

(A4)

We again expand ln PM(n) around its maximum at n = n
arriving at, for qM » 1,

PM(n) = e
—~~ f(~ —~)/&'l' (A5)

where n = M/p = (n) and 4' = gqM/p thus the relative
width 4'/n 1/+M « 1. Equations (A2) and (A5)
establish the statistical equivalence between the PRW
and the suggested flight model in the many-segment limit
with M = Np and we believe that the same is true for
the case in which the excluded-volume eA'ect is present.

We now express the spatial probability distributions of
the PRW, W~(r), and the flight model, WM(r), in more
quantitative terms. For the PRW, each gauche step is
weighted by p/(z —2) (z is the coordination number of
the lattice) and the first step by 1/z for a particular path
of end-to-end displacement r. Thus
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1
1V —1 t

WA (r) = —) . grv(t, r) I

4=0
(A6)

1.0-

where grv(t, r) is the number of N-step walks with t
gauche steps whose end-to-end displacement is r, and

) g~(t, r) = z
i i (z —2)'.(N —11

For the Right model, one can erst write down

CC

CL

5.0-
C)

WM(r) = ) .) P(1;) (A7)

WM(r) = z —2r' p ) gM(&, r) q",
z ( z —'2)q

where j M = P, i 1;. Note that the distribution for a
vector segment P(l, ) is simply that for the segment size
[Eq. (24)] divided by the number of possible directions
in which the segment can make a turn, namely, z for the
first segment and z —2 for all others. Thus we obtain

0.0 100 200 300 400 500

FIG. 11. Radial probability distribution of the PRW with

p = 0.01, N = 500, and AR = 1 in Eq. (A9). The local
peaks become sharper for smaller AR. PSAW (not shown)
has almost identical distribution for this set of parameters.

(A8)

where gM(n, r) is the number of M-segment flights with
contour length n whose end-to-end displacement is r, and
thus

gM(n, r) = g„(M —1,r).

Note that the r in Wiv has the upper cutoff ~r~ = N,
whereas there is none in WM.

To get the radial distributions from Eqs. (A6) and (A7)
as in Fig. 8, a suitable summation needs to be performed:

tD" (R) = ) tU(r),
&&

I &I (&+&R
(A9)

where m is to be replaced by either W~ or WM as appro-
priate. Equation (A9) reduces to a series of 4 functions
in the limit AR ~ 0 because of the discreteness of the
lattice. But even for a finite AR, Eq. (A9) for the PRW
and PSAW (Figs. 8 and ll) has a peculiar structure with
major peaks and minor oscillations which is absent in the
flight model when the (average) number of segments is
not very large. Why? It is very diKcult to answer by an
approximation for Eqs. (A6) or (A7) since in this case Np
is not large enough for any kind of useful approximation
even if N itself may be large.

However, one may get some insight for understanding
this feature by looking at the ~r~ = N (fully stretched
chain) case [26] for Eqs. (A6) and (A9), in particular.
The contribution to WAI in Eq. (A6) comes only from
the t = 0 term so that W~(N) = (1 —p)~ i. Now
consider a case in which ~r~ is only slightly less than N
in Eq. (A6) such that not too many turns are allowed.
Then the t = 0 term in W~ is absent because there must
be at least one turn to achieve the desired configuration
and thus W~(R) contains only terms in some positive
powers of p. Moreover, since the entropy factor g~ in

Eq. (A6) does not very rapidly change in the region ~r~

N, the stiKness factor (terms proportional to p or its
higher orders) would readily render W~ very small if p is
small enough. On the other hand, W~(N) const (e &)
for small p with Axed Np, which implies that this feature
becomes more prominent for smaller p. Explanations for
other peaks may be made in terms of a similar competing
eA'ect between the entropy and stiAness factors for a given
set of t and R for fixed N, even if it is not easy to pin
down where they occur from any simple argument.

For the flight model, however, R = M/p is not special
in the sense it is for the PRW (the upper cutoff of the
chain size) since the segment size of the flight is unlim-
ited only having a probability distribution. Moreover, the
stiffness factor p is out of the summation in Eq. (A7),
that is, it is constant for all r not being coupled with the
entropy factors gM which by themselves constitute an in-
Gnite summation. Even though there still exist more fa-
vorable sets of M and R for the entropy factor with given
n, that effect gets smeared out by the summation over
n. Therefore WM(R) is determined only by the entropy
factors and the summation in Eq. (A9), which turns out
to be a smooth function of R even for a relatively small
M (5 in this case).

APPENDIX B:MONTE CARLO METHOD

In this appendix, we discuss the loop-checking methods
for self-avoiding walks and flights on a discrete lattice in
more detail and present important simulation parameters
and computing times.

The idea of the hash-coding method for loop-checking
when a walk is realized by steps hinges on the fact that
every site on a discrete lattice can be assigned a unique
label by a simple FORTRAN code like mod(q. r, Is) + IS,
where q is a constant vector, r = (z, y, z) is the dis-
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TABLE II. Parameters used and number of the longest walks obtained in our Monte Carlo
simulations of the PSAW model on the simple cubic (otherwise specified) lattice. Data for p ( 0.1
were obtained mainly from the equivalent fiight model as explained in Sec. III. The number of
stages, length of stages, and the number of trials per stage refer to the parameters of a standard
enrichment technique.

jp

Q.8
0.4
0.2
0.1
0.1 (bcc)
0.1 (fcc)
0.1 (Diamond)
0.05
0.02
0.01
0.01 (bcc)
0.01 (fcc)
0.01 (Diamond)
10-4
10

Number
of stage

20
120
193
20
10
20
2

40
58
101

1
1
1

10
10

Length
of stage

(in units of Ep)
20

39.6
51.6
100
100
50

500
100
104
99
100
100
100
100
100

Number
of trials

per stage
5
6
5

11,10,9
4
4
5
8
7
6
1
1
1
6
5

Number
First step
8 794 990
1 470 036
1 325 860
3 086 425
1 603 228

124 448
1 530 155
1 095 364
1 533 716
2 628 996

218 953
756 828
124 851
680 706

3 510 845

of walks
Last step
3 000 000

100 238
108 071
130 578
100 011

30 009
10 000

121 965
102 222
80 364

100 000
100 000
100 000
20Q 004
200 011

placement of a site, and A' is some positive integer. This
will partition the whole lattice points into 2I~ + 1 cate-
gories so that the loop-checking can be done only among
a small number of sites in the same category. Thus an
array (hash) of size 2I& + 1 is needed to store the newest
step numbers which fell into each category and another
array (chain) of size equal to the iTiaximum number of
steps to keep track of the most recent previous step in
the same category of all steps generated.

This simple method cannot be directly used to de-
tect an intersection between two segments. So we intro-
duce supercategories represented by separate arrays and
restrict our discussion only to the simple cubic lattice.
Each segment belongs to three supercategories: For ex-
ample, a segment generated in the z direction belongs to
supercategories [zz], [zy], and [zz]. This segment is fur-
ther categorized by mod(qiy+ qqz, I&i) + Ki in [zz], by
mod(qsz, It 2) + I&q in [zy], and by mod(qsy, I&q) + I&z in
[zz]. Thus [zz] contains segments only in the z direction,
[zy] contains those in either the z or y direction, and [zz]
contains those in either the z or z direction. For each su-
percategory, hash and chain arrays as described in the
preceding paragraph are needed for bookkeeping and the
loop-checking is made only among segments belonging to
the same categories using the algorithm in Ref. [24].

The PSAW realization using the flight algorithm be-
comes particularly advantageous as p becomes smaller.
It wins over the walk algorithm by nearly a factor of 2
for p = 0.1 and by more than a factor of 100 for p = 0.01
as far as the computing speed is concerned. Our data for

p & 0.1 were obtained mainly from the flight algorithm.
We also used the well-known enrichment technique [23]

to compromise the computing time with the attrition in-
herent in growing self-avoiding walks and flights. Special
care must be taken when the enrichment is done for the
flight model to get the PSAW statistics (by keeping track
of the contour length). The correct method is that the
enrichment should be done at segments which first reach
the perdetermined contour lengths. If, instead, the flights
were enriched at a predetermined number of segments,
then in eA'ect the enrichment would be done always at
gauche steps when viewed in the frame of the PSALM,
which entails unduly more weights on gauche steps. This
generally produces a minor oscillation in the end-to-end
distance of the PSAW the period of which is related to
the length of the enrichment stage. This oscillation dies
out as the chain becomes longer only reducing the the
end-to-end distance by a small factor. Our p = 0.01 data
for the end-to-end distance up to Np = 104 were obtained
using the latter method but the correction for Np ~ 10
turned out to be less than 1% which is even less than
their standard deviations. Enrichment parameters and
number of PSAW realizations for various values of p are
presented in Table II.

Computers that were used in this work and their CPU
times are as follows: 60 h on ISI 68020 V24, 296 h on
Sequent Symmetry S-81, 312 h on DEC VAX 8800, 256
h on ETA-10 and Cray 2, 15 h on CDC Cyber 205, 1100
h on Stardent P-3000 Mini-Supercomputer, and 708 h on
Silicon Graphics 4D/340 Mini-Supercomputer.
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